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Introduction

Cluster robust inference can be a challenge

Reliable inference requires at least two things:

o Getting the level of clustering correct (Ibragimov and Miiller, 2016;
MacKinnon et al., 2020)

o Determining whether the asymptotic requirements are satisfied and
changing the approach to inference when they are not

@ See our guide for an overview “Cluster-robust inference: A guide to
empirical practice.” (MacKinnon, Nielsen and Webb, 2022a)

This talk will focus on results in:

o "Leverage, Influence, and the Jackknife in Clustered Regression Models:
Reliable Inference Using summclust" MacKinnon, Nielsen and Webb
(2022¢)

e “Fast and reliable jackknife and bootstrap methods for cluster-robust
inference.” (MacKinnon, Nielsen and Webb, 2022b)
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When will the conventional estimator be unreliable?

When is the conventional reg y x, cluster(clustervarname) going to
be unreliable?

When there are few clusters
When the clusters are unbalanced
When some clusters have high leverage

When some clusters are highly influential

When the effective number of clusters G* is small, and differs from G
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What can you do to improve inferences?

o Estimate leverage, influence, and G* using summclust
o summclust y x, cluster(clustervarname)
o summclust will also quickly calculate CV;3
@ Alternatively consider the wild cluster bootstrap (Cameron et al.,
2008):
o Available natively in Stata 18 using:
@ wildbootstrap reg y x, cluster(clustervarname)
e boottest is an ado program with a few added features (Roodman et
al., 2019):
@ reg y X
@ boottest x, cluster(clustervarname)
e One new feature in bootstrap is the WCR-S variant proposed in
MacKinnon et al. (2022b)
@ reg y X
@ boottest x, cluster(clustervarname) jackknife
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Nunn and Wanthechekon example - summclust output

. summclust trust_neighbors exports ${CTRL}, cluster(eth) gstar

SUMMCLUST - MacKinnon, Nielsen, and Webb

Cluster summary statistics for exports when clustered by eth.
There are 20027 observations within 185 eth clusters.

Regression Output

s.e. Coeff sd. Err. t-stat P value CI-lower CI-upper
cv1i -0.679136 ©0.142233 -4.7748 ©.0000 -8.959752 -0.398520
cv3 -0.679136 ©.263865 -2.5816 ©.0106 -1.198148 -0.160124

Cluster Variability

Statistic Ng Leverage Partial L. beta no g
min 1.00 ©.002350 ©.000000 -0,785572

ql 16.00 ©.061718 ©.000479 -0.679851
median 44.00 9.179111 ©.001866 -0.679144
mean 188.25 8.421622 ©.005405 -08.678541

q3 133.00 0.526073 ©.006497 -0.678548

max 1046.00 3.861242 ©.065182 -0.500066
coefvar 1.44 1.462991 1.676173 ©.028645

Effective Number of Clusters
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Figure: Nunn and Wanthechekon example - default summclust figure

Cluster Specific Statistics For 185 eth Clusters
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Background on Cluster Robust Inference

o Consider the linear regression model

Ye=XB+u;,, g=1,...,G, (1)

where the data have been divided into G disjoint clusters.

@ The y;, Xz, and u, may be stacked into N-vectors y, X,and u, so
that (1) can be rewritten as y = X3 + u.

@ This division is meaningful if we make assumptions about the errors,
_¥T
and the score vectors s, = X, ug.

@ For a correctly specified model, E(s;) = 0 for all g. We further
assume that

E(sgs;) =3, and E(sgs;,) =0, g,g =1,...,G, g +#g,
(2)
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OLS Estimator of 3

@ The OLS estimator of 3 is
B=X"X)"XTy =B+ (X' X)X u,
o It follows that

G G ., G
B =0 X = (U X%) Y @)
g=1 g=1 g=1

o Inference is usually done by replacing the score vectors s, with the
empirical score vectors §; = X, dg

8/28



o The variance of 3 should be based on the usual sandwich formula,

(X7X) (Zz )(x (4)

However, we need an estimate of the X,

@ The most common approach is
G(N —1) ©
: - T xTx)1
S R (z:: ) X)L (5)

This is known as CV;

The default for "clustered" errors in Stata
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Two Other Cluster Robust Variances Estimators

o Bell and McCaffrey (2002) proposed two other estimators CV, and
CV;

o CV;, collapses to HG, with singleton clusters

@ CV3 collapses to HC3 with singleton clusters
CVs: 6~ X"X)~ (XX 6
S (ng $)XTX)N ()

where §; = XgTMg_g1 iy and Mgz = Iy, — xg(xTX)—lx;.
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Issues With CV, and CV3

@ Despite CV; and CV3 being proposed two decades ago, and being
endorsed in Pustejovsky and Tipton (2018) and Imbens and Kolesar
(2016) they have not been used often

@ A major limitation is that the M,, can be very large matrices, so
storing/inverting these can lead to memory issues

@ Two recent papers show how to calculate CV3 without constructing
Mggl (Niccodemi et al., 2020; Niccodemi and Wansbeek, 2022)

e Stata 18 has a fast version of CV,, implemented using:

e reg y x, vce(hc2 clustervarname)

@ We instead show how to calculate CV;3 as a jackknife
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Two Cluster-Jackknife Variance Estimators

o A cluster-jackknife estimator of Var(3) is

G-1<

. — 2 2\( A 2\ T
Vi TS (A - B - )T, @
g=1

where 3(8) are the leave out cluster g estimates of 3 (more on these
later)
3 is the sample mean of the 3(&)
o We can estimate CVs in (6) if we replace 3 in (7) by B

G
CIN B9 - ppe - p)T ©

g=1

CVs:

@ Brute force versions of these can be estimated in Stata using the
jackknife prefix, or vce(jackknife) or vce(jackknife, mse)
@ NB cluster fixed effects and singular sub-samples cause problems for

the native Stata routines
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The Jackknife is faster and is feasible for large samples

Figure: Figure from “bootknife” MacKinnon, Nielsen and Webb (2022b)
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The Jackknife is more reliable

Figure: Figure from “bootknife” MacKinnon, Nielsen and Webb (2022b)
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Jackknifing the residuals for the Wild Cluster Bootstrap

Really Helps

Figure: Cluster sizes based on state of incorporation in the US

(a) Rejection Frequencies Based on #(49) Distribution (b) Wild Bootstrap Rejection Frequencies
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Cluster Level Heterogeneity

@ Many simulations and theoretical results have shown that CV; is most
reliable with a large number of homogeneous clusters Djogbenou,
MacKinnon and Nielsen (2019)

o At the observation level there are three classic measures of
heterogeneity: leverage, partial leverage, and influence (Belsley, Kuh
and Welsch, 1980; Chatterjee and Hadi, 1986)

@ Measures of leverage at the observation level are based on how much
the residual for observation i changes when we drop that observation
from the regression

o If h; denotes the i*! diagonal element of the “hat matrix’
H = Px = X(X'X)71XT, then omitting the i*" observation changes
the i*" residual from ; to a;/(1 — h;).
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The Influences of Clusters

o Similarly, dropping the g'" cluster when we estimate 3 changes the
g residual vector from i, to (I — Hg) i, where

Hy = Xg(XX)71x] (9)

is the Ny x Ng diagonal block of H that corresponds to cluster g.
e The matrix Hg is the cluster analog of the scalar h;.

@ These matrices can be large, hence we suggest the scalar:
Ly = Tr(Hg) = Te(X, X (X TX)71). (10)

@ The average value of Lz is k/G

@ When a particular L, is much larger than k/G, that cluster is said to
have high leverage
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Partial Leverage

@ We might be interested in what happens if we were to only alter the
coefficient of a particular regressor when dropping each cluster.

e For individual observations, Cook and Weisberg (1980) introduced the
concept of partial leverage,|Let

% = (1= X (X5 X))~ Xgp) % (1)

where x; is the vector of observations on the jth regressor, and X)) is
the matrix of observations on all the other regressors.

@ The partial leverage of observation i is simply the i*" diagonal element

oo TonN=1eT . - 270eT <. D -
of the matrix X;(X; X;)™"X;', which is just X3/(X;' X;), where X3 is the

ith element of X;.

18/28



Cluster Partial Leverage

@ The analogous measure of partial leverage for cluster g is

ST

X _Xoj
L, = &°% 12
8gJ )?J'T)?j7 ( )

where Xz is the subvector of X; corresponding to the g cluster
@ The average partial leverage is 1/G
o A cluster is said to have high partial leverage when Lg; >>1/G

e Examining the empirical distribution of Lg; is often useful
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Cluster Influence

o We may also be interested directly in what happens to the coefficients
when we omit a cluster

@ We can do this in a computationally efficient manner, by first
constructing

XgTXg and XgTyg, g=1,...,G. (13)

@ We can then get the vector of estimates when cluster g is deleted is
then
B = (XTX - X]X;) (X Ty — X/ yg). (14)

@ If interest is mostly in a single coefficient one could report all the B}g)
for g =1,..., G in either a histogram or a table.

@ The summclust package uses these B}g) to report CV3 standard errors.
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What to report

It is helpful to examine several measures of heterogeneity to determine
the reliability of CV1

o We suggest inspecting all of the cluster sizes, (partial) leverages, and
omit one cluster coefficients

Inspecting these as a histogram or as scatter plots can be informative

One could calculate the scaled variance scaled variance

Vilan) = ey o — 3 (15)

Alternatively, one could look at alternative means, such as harmonic,
geometric, and quadratic
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Quick Simulation Experiment

@ We are interested in the usefulness of these summary measures in
determining when CV1 might be unreliable

@ In the simulations there are 2000 (3000) obs divided among 20 (30)
clusters, by

N [N exp(18/6)
© L S ee(i/6)

@ When G =30, min Ny 7 — 32, max N, 237 — 396.

@ For each sample we calculate the scaled variance of the partial
leverages V(L)

L g=1...6-1, (16)

@ We fit the rejection frequency using

ri250-1-ﬂ(Vsi)-i-fz(Vsl,-p)‘*‘ﬁleB‘f‘Ui, (17)
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Asymptotic Tests ‘WCR Bootstrap Tests
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Conclusion and Future Work

@ Determining when cluster robust inference is reliable is challenging
o Inspecting the extent of cluster heterogeneity can help

@ We propose cluster level measures of leverage and influence to help
detect heterogeneity

@ Our measure of influence, allows for rapid calculation of a more
reliable variance estimator CV3 and CVsy

o We also show how to quickly calculate the effective number of clusters

o We developed the Stata package summclust to make these
calculations easy

@ Work in progress by us involves extending the cluster jackknife to
multi-way clustering and logit models

24 /28



Bibliography |

Bell, Robert M., and Daniel F. McCaffrey (2002) ‘Bias reduction in
standard errors for linear regression with multi-stage samples.” Survey
Methodology 28, 169-181

Belsley, David A., Edwin Kuh, and Roy E. Welsch (1980) Regression
Diagnostics (New York: Wiley)

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller (2008)
‘Bootstrap-based improvements for inference with clustered errors.’
Review of Economics and Statistics 90, 414-427

Chatterjee, Samprit, and Ali S. Hadi (1986) ‘Influential observations,
high-leverage points, and outliers in linear regression.” Statistical Science
1, 379-416

Cook, R. Dennis, and Sanford Weisberg (1980) ‘Characterizations of an
empirical influence function for detecting influential cases in regression.’
Technometrics 22, 495-508

25 /28



Bibliography I

Djogbenou, Antoine A., James G. MacKinnon, and Morten @. Nielsen
(2019) ‘Asymptotic theory and wild bootstrap inference with clustered
errors.” Journal of Econometrics 212, 393-412

Ibragimov, Rustam, and Ulrich K. Miiller (2016) ‘Inference with few
heterogeneous clusters.” Review of Economics and Statistics 98, 83-96

Imbens, Guido W., and Michal Kolesar (2016) ‘Robust standard errors in

small samples: Some practical advice." Review of Economics and
Statistics 98, 701-712

MacKinnon, James G., Morten @. Nielsen, and Matthew D. Webb (2020)
‘Testing for the appropriate level of clustering in linear regression
models.” QED Working Paper 1428, Queen’s University

MacKinnon, James G., Morten @. Nielsen, and Matthew D. Webb (2022a)

‘Cluster-robust inference: A guide to empirical practice.” Journal of
Econometrics xx, to appear

26 /28



Bibliography Il

MacKinnon, James G., Morten @. Nielsen, and Matthew D. Webb (2022b)
‘Fast jackknife and bootstrap methods for cluster-robust inference.” QED
Working Paper 1485, Queen’s University

MacKinnon, James G., Morten @. Nielsen, and Matthew D. Webb (2022c¢)
‘Leverage, influence, and the jackknife in clustered regression models:
Reliable inference using summclust.” QED Working Paper 1483, Queen's
University

Niccodemi, Gianmaria, and Tom Wansbeek (2022) ‘A new estimator for
standard errors with few unbalanced clusters.” Econometrics 10, 1-7

Niccodemi, Gianmaria, Rob Alessie, Viola Angelini, Jochen Mierau, and
Tom Wansbeek (2020) ‘Refining clustered standard errors with few
clusters.” Working Paper 2020002-EEF, University of Groningen

Pustejovsky, James E., and Elizabeth Tipton (2018) ‘Small sample methods
for cluster-robust variance estimation and hypothesis testing in fixed
effects models.” Journal of Business & Economic Statistics 36, 672—-683

27 /28



Bibliography IV

Roodman, David, James G. MacKinnon, Morten @. Nielsen, and
Matthew D. Webb (2019) ‘Fast and wild: Bootstrap inference in Stata
using boottest.” Stata Journal 19, 4-60

28 /28



	References

