Jackknife methods for improved cluster-robust inference

James G. MacKinnon ¹ Morten Ørregaard Nielsen ²

Matthew D. Webb ³

¹Queen's University

²Aarhus University

³Carleton University and Ottawa-Carleton Graduate School of Economics

August 3, 2023

2023 - Canadian Stata Conference

Introduction

- Cluster robust inference can be a challenge
- Reliable inference requires at least two things:
 - Getting the level of clustering correct (Ibragimov and Müller, 2016; MacKinnon et al., 2020)
 - Determining whether the asymptotic requirements are satisfied and changing the approach to inference when they are not
- See our guide for an overview "Cluster-robust inference: A guide to empirical practice." (MacKinnon, Nielsen and Webb, 2022a)
- This talk will focus on results in:
 - "Leverage, Influence, and the Jackknife in Clustered Regression Models: Reliable Inference Using summclust" MacKinnon, Nielsen and Webb (2022c)
 - "Fast and reliable jackknife and bootstrap methods for cluster-robust inference." (MacKinnon, Nielsen and Webb, 2022b)

When will the conventional estimator be unreliable?

When is the conventional reg y x, cluster(clustervarname) going to be unreliable?

- When there are few clusters
- When the clusters are unbalanced
- When some clusters have high leverage
- When some clusters are highly influential
- ullet When the effective number of clusters G^* is small, and differs from G

What can you do to improve inferences?

- ullet Estimate leverage, influence, and G^* using summclust
 - summclust y x, cluster(clustervarname)
 - summclust will also quickly calculate CV₃
- Alternatively consider the wild cluster bootstrap (Cameron et al., 2008):
 - Available natively in **Stata 18** using:
 - wildbootstrap reg y x, cluster(clustervarname)
 - boottest is an ado program with a few added features (Roodman et al., 2019):
 - reg y x
 - boottest x, cluster(clustervarname)
 - One new feature in bootstrap is the WCR-S variant proposed in MacKinnon et al. (2022b)
 - reg y x
 - boottest x, cluster(clustervarname) jackknife

Nunn and Wanthechekon example - summclust output

. summclust trust_neighbors exports \${CTRL}, cluster(eth) gstar

SUMMCLUST - MacKinnon, Nielsen, and Webb

Cluster summary statistics for exports when clustered by eth. There are 20027 observations within 185 eth clusters.

Regression Output

s.e.	Coeff	Sd. Err.	t-stat	P value	CI-lower	CI-upper
CV1 CV3					-0.959752 -1.198148	

Cluster Variability

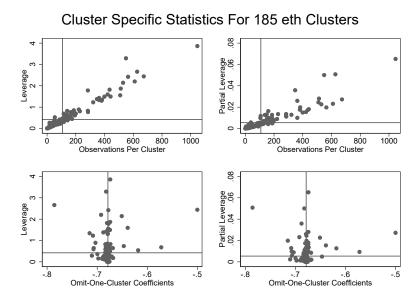
Statistic	Ng	Leverage	Partial L.	beta no g
min	1.00	0.002350	0.000000	-0.785572
q1	16.00	0.061718	0.000479	-0.679851
median	44.00	0.179111	0.001866	-0.679144
mean	108.25	0.421622	0.005405	-0.678541
q3	133.00	0.526073	0.006497	-0.678548
max	1046.00	3.861242	0.065182	-0.500066
coefvan	1 44	1 /62991	1 676173	0 028645

Effective Number of Clusters

 $G^*(0) = 12.315$

 $G^*(1) = 4.767$

Figure: Nunn and Wanthechekon example - default summclust figure



Background on Cluster Robust Inference

Consider the linear regression model

$$\mathbf{y}_{g} = \mathbf{X}_{g}\boldsymbol{\beta} + \mathbf{u}_{g}, \quad g = 1, \dots, G,$$
 (1)

where the data have been divided into G disjoint clusters.

- The y_g , X_g , and u_g may be stacked into N-vectors y, X, and u, so that (1) can be rewritten as $y = X\beta + u$.
- This division is meaningful if we make assumptions about the errors, and the score vectors $\mathbf{s}_g = \mathbf{X}_g^{\top} \mathbf{u}_g$.
- For a correctly specified model, $E(\mathbf{s}_g) = 0$ for all g. We further assume that

$$\mathrm{E}(\pmb{s}_{g}\pmb{s}_{g}^{\top}) = \pmb{\Sigma}_{g} \quad \text{and} \quad \mathrm{E}(\pmb{s}_{g}\pmb{s}_{g'}^{\top}) = 0, \quad g, g' = 1, \dots, G, \quad g' \neq g,$$
 (2

OLS Estimator of β

ullet The OLS estimator of $oldsymbol{eta}$ is

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y} = \boldsymbol{\beta}_0 + (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{u},$$

It follows that

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0 = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \sum_{g=1}^{G} \boldsymbol{X}_g^{\top} \boldsymbol{u}_g = \left(\sum_{g=1}^{G} \boldsymbol{X}_g^{\top} \boldsymbol{X}_g\right)^{-1} \sum_{g=1}^{G} \boldsymbol{s}_g.$$
(3)

• Inference is usually done by replacing the score vectors \mathbf{s}_g with the empirical score vectors $\hat{\mathbf{s}}_g = \mathbf{X}_g^{\top} \hat{\mathbf{u}}_g$

Variance of $\hat{oldsymbol{eta}}$

ullet The variance of $\hat{oldsymbol{eta}}$ should be based on the usual sandwich formula,

$$(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} \Big(\sum_{g=1}^{G} \boldsymbol{\Sigma}_{g} \Big) (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}. \tag{4}$$

- ullet However, we need an estimate of the Σ_g
- The most common approach is

$$\mathsf{CV}_1: \qquad \frac{G(N-1)}{(G-1)(N-k)} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \Big(\sum_{g=1}^{G} \hat{\boldsymbol{s}}_g \, \hat{\boldsymbol{s}}_g^{\top} \Big) (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1}. \tag{5}$$

- This is known as CV₁
- The default for "clustered" errors in Stata

Two Other Cluster Robust Variances Estimators

- Bell and McCaffrey (2002) proposed two other estimators CV_2 and CV_3
- CV₂ collapses to HC₂ with singleton clusters
- CV₃ collapses to HC₃ with singleton clusters

CV₃:
$$\frac{G-1}{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} \Big(\sum_{g=1}^{G} \boldsymbol{s}_{g} \boldsymbol{s}_{g}^{\top} \Big) (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1},$$
 (6)

where
$$\acute{\pmb{s}}_g = \pmb{X}_g^{ op} \pmb{M}_{gg}^{-1} \hat{\pmb{u}}_g$$
 and $\pmb{M}_{gg} = \textbf{I}_{N_g} - \pmb{X}_g (\pmb{X}^{ op} \pmb{X})^{-1} \pmb{X}_g^{ op}$.

Issues With CV₂ and CV₃

- Despite CV₂ and CV₃ being proposed two decades ago, and being endorsed in Pustejovsky and Tipton (2018) and Imbens and Kolesár (2016) they have not been used often
- A major limitation is that the M_{gg} can be very large matrices, so storing/inverting these can lead to memory issues
- Two recent papers show how to calculate CV₃ without constructing M_{gg}^{-1} (Niccodemi et al., 2020; Niccodemi and Wansbeek, 2022)
- Stata 18 has a fast version of CV₂, implemented using:
 - reg y x, vce(hc2 clustervarname)
- We instead show how to calculate CV₃ as a jackknife

Two Cluster-Jackknife Variance Estimators

ullet A cluster-jackknife estimator of ${\sf Var}(\hat{eta})$ is

$$CV_{3J}: \frac{G-1}{G} \sum_{g=1}^{G} (\hat{\beta}^{(g)} - \bar{\beta}) (\hat{\beta}^{(g)} - \bar{\beta})^{\top}, \tag{7}$$

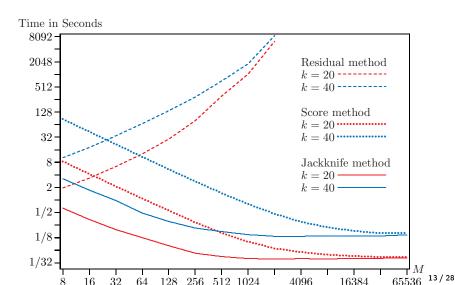
- where $oldsymbol{eta}^{(g)}$ are the leave out cluster g estimates of $oldsymbol{eta}$ (more on these later)
- ullet $ar{eta}$ is the sample mean of the $\hat{eta}^{(g)}$
- We can estimate CV_3 in (6) if we replace $\bar{oldsymbol{eta}}$ in (7) by $\hat{oldsymbol{eta}}$

CV₃:
$$\frac{G-1}{G} \sum_{g=1}^{G} (\hat{\beta}^{(g)} - \hat{\beta}) (\hat{\beta}^{(g)} - \hat{\beta})^{\top}$$
. (8)

- Brute force versions of these can be estimated in Stata using the jackknife prefix, or vce(jackknife) or vce(jackknife, mse)
- NB cluster fixed effects and singular sub-samples cause problems for the native Stata routines

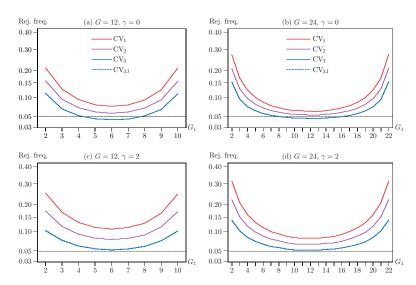
The Jackknife is faster and is feasible for large samples

Figure: Figure from "bootknife" MacKinnon, Nielsen and Webb (2022b)



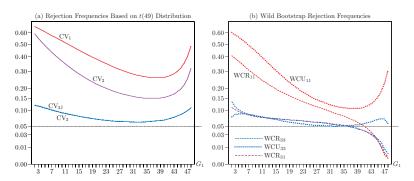
The Jackknife is more reliable

Figure: Figure from "bootknife" MacKinnon, Nielsen and Webb (2022b)



Jackknifing the residuals for the Wild Cluster Bootstrap Really Helps

Figure: Cluster sizes based on state of incorporation in the US



Cluster Level Heterogeneity

- ullet Many simulations and theoretical results have shown that CV_1 is most reliable with a large number of homogeneous clusters Djogbenou, MacKinnon and Nielsen (2019)
- At the observation level there are three classic measures of heterogeneity: leverage, partial leverage, and influence (Belsley, Kuh and Welsch, 1980; Chatterjee and Hadi, 1986)
- Measures of leverage at the observation level are based on how much the residual for observation *i* changes when we drop that observation from the regression
- If h_i denotes the i^{th} diagonal element of the "hat matrix" $\boldsymbol{H} = \boldsymbol{P}_{\boldsymbol{X}} = \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}$, then omitting the i^{th} observation changes the i^{th} residual from \hat{u}_i to $\hat{u}_i/(1-h_i)$.

The Influences of Clusters

• Similarly, dropping the $g^{\rm th}$ cluster when we estimate $m{\beta}$ changes the $g^{\rm th}$ residual vector from $\hat{m{u}}_g$ to $(\mathbf{I}-m{H}_g)^{-1}\hat{m{u}}_g$, where

$$\mathbf{H}_{g} = \mathbf{X}_{g}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}_{g}^{\top} \tag{9}$$

is the $N_g \times N_g$ diagonal block of \boldsymbol{H} that corresponds to cluster g.

- The matrix H_g is the cluster analog of the scalar h_i .
- These matrices can be large, hence we suggest the scalar:

$$L_g = \operatorname{Tr}(\boldsymbol{H}_g) = \operatorname{Tr}(\boldsymbol{X}_g^{\top} \boldsymbol{X}_g(\boldsymbol{X}^{\top} \boldsymbol{X})^{-1}). \tag{10}$$

- The average value of L_g is k/G
- When a particular L_g is much larger than k/G, that cluster is said to have high leverage

Partial Leverage

- We might be interested in what happens if we were to only alter the coefficient of a particular regressor when dropping each cluster.
- For individual observations, Cook and Weisberg (1980) introduced the concept of partial leverage, ILet

$$\dot{\mathbf{x}}_{j} = \left(\mathsf{I} - \mathbf{X}_{[j]} (\mathbf{X}_{[j]}^{\top} \mathbf{X}_{[j]})^{-1} \mathbf{X}_{[j]}^{\top}\right) \mathbf{x}_{j},\tag{11}$$

where x_j is the vector of observations on the j^{th} regressor, and $\boldsymbol{X}_{[j]}$ is the matrix of observations on all the other regressors.

• The partial leverage of observation i is simply the i^{th} diagonal element of the matrix $\acute{\mathbf{x}}_{j}(\acute{\mathbf{x}}_{j}^{\top} \acute{\mathbf{x}}_{j})^{-1} \acute{\mathbf{x}}_{j}^{\top}$, which is just $\acute{\mathbf{x}}_{ji}^{2}/(\acute{\mathbf{x}}_{j}^{\top} \acute{\mathbf{x}}_{j})$, where $\acute{\mathbf{x}}_{ji}^{2}$ is the i^{th} element of $\acute{\mathbf{x}}_{j}$.

Cluster Partial Leverage

• The analogous measure of partial leverage for cluster g is

$$L_{gj} = \frac{\acute{\mathbf{x}}_{gj}^{\top} \acute{\mathbf{x}}_{gj}}{\acute{\mathbf{x}}_{i}^{\top} \acute{\mathbf{x}}_{j}}, \tag{12}$$

where \acute{x}_{gj} is the subvector of \acute{x}_{j} corresponding to the g^{th} cluster

- ullet The average partial leverage is 1/G
- A cluster is said to have high partial leverage when $L_{gi} >> 1/G$
- ullet Examining the empirical distribution of L_{gj} is often useful

Cluster Influence

- We may also be interested directly in what happens to the coefficients when we omit a cluster
- We can do this in a computationally efficient manner, by first constructing

$$\mathbf{X}_{\mathbf{g}}^{\top}\mathbf{X}_{\mathbf{g}}$$
 and $\mathbf{X}_{\mathbf{g}}^{\top}\mathbf{y}_{\mathbf{g}}, \quad \mathbf{g} = 1, \dots, G.$ (13)

 We can then get the vector of estimates when cluster g is deleted is then

$$\hat{\boldsymbol{\beta}}^{(g)} = (\boldsymbol{X}^{\top} \boldsymbol{X} - \boldsymbol{X}_g^{\top} \boldsymbol{X}_g)^{-1} (\boldsymbol{X}^{\top} \boldsymbol{y} - \boldsymbol{X}_g^{\top} \boldsymbol{y}_g). \tag{14}$$

- If interest is mostly in a single coefficient one could report all the $\hat{\beta}_j^{(g)}$ for $g=1,\ldots,G$ in either a histogram or a table.
- ullet The summclust package uses these $\hat{eta}_j^{(g)}$ to report CV $_3$ standard errors.

What to report

- It is helpful to examine several measures of heterogeneity to determine the reliability of CV1
- We suggest inspecting all of the cluster sizes, (partial) leverages, and omit one cluster coefficients
- Inspecting these as a histogram or as scatter plots can be informative
- One could calculate the scaled variance scaled variance

$$V_s(a_{\bullet}) = \frac{1}{(G-1)\bar{a}^2} \sum_{g=1}^{G} (a_g - \bar{a})^2,$$
 (15)

 Alternatively, one could look at alternative means, such as harmonic, geometric, and quadratic

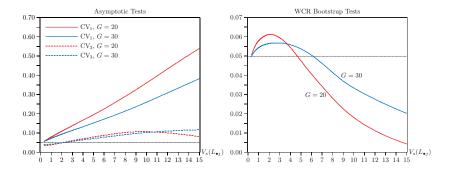
Quick Simulation Experiment

- We are interested in the usefulness of these summary measures in determining when CV1 might be unreliable
- In the simulations there are 2000 (3000) obs divided among 20 (30) clusters, by

$$N_g = \left[N \frac{\exp(\gamma g/G)}{\sum_{j=1}^G \exp(\gamma j/G)} \right], \quad g = 1, \dots, G - 1, \tag{16}$$

- When G = 30, min $N_g 7 32$, max $N_g 237 396$.
- For each sample we calculate the scaled variance of the partial leverages $V_s(L_{ullet i})$
- We fit the rejection frequency using

$$r_i = \beta_0 + f_1(V_{si}) + f_2(V_{si}^{1/2}) + \beta_1 G_{i0}^* + u_i,$$
 (17)



Conclusion and Future Work

- Determining when cluster robust inference is reliable is challenging
- Inspecting the extent of cluster heterogeneity can help
- We propose cluster level measures of leverage and influence to help detect heterogeneity
- Our measure of influence, allows for rapid calculation of a more reliable variance estimator CV₃ and CV₃ J
- We also show how to quickly calculate the effective number of clusters
- We developed the Stata package summclust to make these calculations easy
- Work in progress by us involves extending the cluster jackknife to multi-way clustering and logit models

Bibliography I

- Bell, Robert M., and Daniel F. McCaffrey (2002) 'Bias reduction in standard errors for linear regression with multi-stage samples.' *Survey Methodology* 28, 169–181
- Belsley, David A., Edwin Kuh, and Roy E. Welsch (1980) Regression Diagnostics (New York: Wiley)
- Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller (2008) 'Bootstrap-based improvements for inference with clustered errors.' Review of Economics and Statistics 90, 414–427
- Chatterjee, Samprit, and Ali S. Hadi (1986) 'Influential observations, high-leverage points, and outliers in linear regression.' *Statistical Science* 1, 379–416
- Cook, R. Dennis, and Sanford Weisberg (1980) 'Characterizations of an empirical influence function for detecting influential cases in regression.' *Technometrics* 22, 495–508

Bibliography II

- Djogbenou, Antoine A., James G. MacKinnon, and Morten Ø. Nielsen (2019) 'Asymptotic theory and wild bootstrap inference with clustered errors.' *Journal of Econometrics* 212, 393–412
- Ibragimov, Rustam, and Ulrich K. Müller (2016) 'Inference with few heterogeneous clusters.' *Review of Economics and Statistics* 98, 83–96
- Imbens, Guido W., and Michal Kolesár (2016) 'Robust standard errors in small samples: Some practical advice.' *Review of Economics and Statistics* 98, 701–712
- MacKinnon, James G., Morten Ø. Nielsen, and Matthew D. Webb (2020) 'Testing for the appropriate level of clustering in linear regression models.' QED Working Paper 1428, Queen's University
- MacKinnon, James G., Morten Ø. Nielsen, and Matthew D. Webb (2022a) 'Cluster-robust inference: A guide to empirical practice.' *Journal of Econometrics* xx, to appear

Bibliography III

- MacKinnon, James G., Morten Ø. Nielsen, and Matthew D. Webb (2022b) 'Fast jackknife and bootstrap methods for cluster-robust inference.' QED Working Paper 1485, Queen's University
- MacKinnon, James G., Morten Ø. Nielsen, and Matthew D. Webb (2022c) 'Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust.' QED Working Paper 1483, Queen's University
- Niccodemi, Gianmaria, and Tom Wansbeek (2022) 'A new estimator for standard errors with few unbalanced clusters.' *Econometrics* 10, 1–7
- Niccodemi, Gianmaria, Rob Alessie, Viola Angelini, Jochen Mierau, and Tom Wansbeek (2020) 'Refining clustered standard errors with few clusters.' Working Paper 2020002-EEF, University of Groningen
- Pustejovsky, James E., and Elizabeth Tipton (2018) 'Small sample methods for cluster-robust variance estimation and hypothesis testing in fixed effects models.' *Journal of Business & Economic Statistics* 36, 672–683

Bibliography IV

Roodman, David, James G. MacKinnon, Morten Ø. Nielsen, and Matthew D. Webb (2019) 'Fast and wild: Bootstrap inference in Stata using boottest.' *Stata Journal* 19, 4–60