
Implementing econometric estimators with Mata

Christopher F Baum and Mark E. Schaffer

Boston College and DIW Berlin / Heriot–Watt University

DC09 & UKSUG15, July-September 2009

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 1 / 50

Introduction

In this talk we will describe the development of two econometric
estimators using the capabilities of Mata, stressing how the combined
Stata ado-file / Mata function environment is very well suited to
performing such tasks.

The first estimator, an extension of Stata’s sureg for linear seemingly
unrelated regressions, might have been implemented in the same way
if we had access to Stata 11.

The second, a nonlinear GMM (generalized method of moments)
extension of the linear IV (instrumental variables) estimator, might be
able to take advantage of some of Stata 11’s new capabilities if we had
written it with Stata 11 at hand. What we present today is based upon
what is feasible in the Stata 10.1 environment, and is described at
greater length in sections 14.8 and 14.9 of An Introduction to Stata
Programming (ITSP), Stata Press, 2009.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 2 / 50

Introduction

In this talk we will describe the development of two econometric
estimators using the capabilities of Mata, stressing how the combined
Stata ado-file / Mata function environment is very well suited to
performing such tasks.

The first estimator, an extension of Stata’s sureg for linear seemingly
unrelated regressions, might have been implemented in the same way
if we had access to Stata 11.

The second, a nonlinear GMM (generalized method of moments)
extension of the linear IV (instrumental variables) estimator, might be
able to take advantage of some of Stata 11’s new capabilities if we had
written it with Stata 11 at hand. What we present today is based upon
what is feasible in the Stata 10.1 environment, and is described at
greater length in sections 14.8 and 14.9 of An Introduction to Stata
Programming (ITSP), Stata Press, 2009.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 2 / 50

Introduction

In this talk we will describe the development of two econometric
estimators using the capabilities of Mata, stressing how the combined
Stata ado-file / Mata function environment is very well suited to
performing such tasks.

The first estimator, an extension of Stata’s sureg for linear seemingly
unrelated regressions, might have been implemented in the same way
if we had access to Stata 11.

The second, a nonlinear GMM (generalized method of moments)
extension of the linear IV (instrumental variables) estimator, might be
able to take advantage of some of Stata 11’s new capabilities if we had
written it with Stata 11 at hand. What we present today is based upon
what is feasible in the Stata 10.1 environment, and is described at
greater length in sections 14.8 and 14.9 of An Introduction to Stata
Programming (ITSP), Stata Press, 2009.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 2 / 50

SUR for an unbalanced panel

Stata’s seemingly unrelated regression (SUR) estimator (sureg)
estimates a set of equations, employing the matrix of residual
correlations for each equation to produce a refined estimate of its
parameter vector.

The sureg estimator can be considered as a panel data estimator that
operates in the wide form. It is common for panel data to be
unbalanced, and Stata’s xt commands handle unbalanced panels
without difficulty. However, sureg discards any observation that is
missing in any of its equations.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 3 / 50

SUR for an unbalanced panel

Stata’s seemingly unrelated regression (SUR) estimator (sureg)
estimates a set of equations, employing the matrix of residual
correlations for each equation to produce a refined estimate of its
parameter vector.

The sureg estimator can be considered as a panel data estimator that
operates in the wide form. It is common for panel data to be
unbalanced, and Stata’s xt commands handle unbalanced panels
without difficulty. However, sureg discards any observation that is
missing in any of its equations.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 3 / 50

SUR for an unbalanced panel

We would like to use sureg without losing these observations. If we
use correlate varlist, observations missing for any of the variables
in the varlist will be dropped from the calculation. In contrast, the
pairwise correlation command pwcorr varlist will compute correlations
from all available observations for each pair of variables in turn.

The logic of sureg is that of correlate; but the correlations of
residuals employed by sureg may be, as in pwcorr, calculated on a
pairwise basis, allowing the estimator to be applied to a set of
equations which may cover different time periods (as long as there is
meaningful overlap).

I illustrate how Mata may be used to handle this quite sophisticated
estimation problem. I worked with the code of official Stata’s reg3 to
extract the parsing commands that set up the problem, and then wrote
my own ado-file to perform the computations. It calls a Mata function
that produces the estimates.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 4 / 50

SUR for an unbalanced panel

We would like to use sureg without losing these observations. If we
use correlate varlist, observations missing for any of the variables
in the varlist will be dropped from the calculation. In contrast, the
pairwise correlation command pwcorr varlist will compute correlations
from all available observations for each pair of variables in turn.

The logic of sureg is that of correlate; but the correlations of
residuals employed by sureg may be, as in pwcorr, calculated on a
pairwise basis, allowing the estimator to be applied to a set of
equations which may cover different time periods (as long as there is
meaningful overlap).

I illustrate how Mata may be used to handle this quite sophisticated
estimation problem. I worked with the code of official Stata’s reg3 to
extract the parsing commands that set up the problem, and then wrote
my own ado-file to perform the computations. It calls a Mata function
that produces the estimates.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 4 / 50

SUR for an unbalanced panel

We would like to use sureg without losing these observations. If we
use correlate varlist, observations missing for any of the variables
in the varlist will be dropped from the calculation. In contrast, the
pairwise correlation command pwcorr varlist will compute correlations
from all available observations for each pair of variables in turn.

The logic of sureg is that of correlate; but the correlations of
residuals employed by sureg may be, as in pwcorr, calculated on a
pairwise basis, allowing the estimator to be applied to a set of
equations which may cover different time periods (as long as there is
meaningful overlap).

I illustrate how Mata may be used to handle this quite sophisticated
estimation problem. I worked with the code of official Stata’s reg3 to
extract the parsing commands that set up the problem, and then wrote
my own ado-file to perform the computations. It calls a Mata function
that produces the estimates.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 4 / 50

SUR for an unbalanced panel

For brevity, I do not reproduce the parsing code taken from reg3.ado.
The syntax of my program, suregub, is identical to that of sureg but
does not support all of its options. The basic syntax is:

suregub (depvar1 varlist1) (depvar2 varlist2) ... (depvarN varlistN)

The parsing code defines a local macro eqlist of equations to be
estimated and a set of local macros ind1 ...indN which contains
the right-hand-side variables for each of the N equations.

We first generate the OLS residuals for each equation by running
regress and predict, residual. We find the maximum and
minimum observation indices for each set of residuals with the max()
and min() functions, respectively.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 5 / 50

SUR for an unbalanced panel

For brevity, I do not reproduce the parsing code taken from reg3.ado.
The syntax of my program, suregub, is identical to that of sureg but
does not support all of its options. The basic syntax is:

suregub (depvar1 varlist1) (depvar2 varlist2) ... (depvarN varlistN)

The parsing code defines a local macro eqlist of equations to be
estimated and a set of local macros ind1 ...indN which contains
the right-hand-side variables for each of the N equations.

We first generate the OLS residuals for each equation by running
regress and predict, residual. We find the maximum and
minimum observation indices for each set of residuals with the max()
and min() functions, respectively.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 5 / 50

SUR for an unbalanced panel

For brevity, I do not reproduce the parsing code taken from reg3.ado.
The syntax of my program, suregub, is identical to that of sureg but
does not support all of its options. The basic syntax is:

suregub (depvar1 varlist1) (depvar2 varlist2) ... (depvarN varlistN)

The parsing code defines a local macro eqlist of equations to be
estimated and a set of local macros ind1 ...indN which contains
the right-hand-side variables for each of the N equations.

We first generate the OLS residuals for each equation by running
regress and predict, residual. We find the maximum and
minimum observation indices for each set of residuals with the max()
and min() functions, respectively.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 5 / 50

SUR for an unbalanced panel

// generate residual series
local minn = .
local maxn = 0
forvalues i = 1/`neq´ {

local dv : word `i´ of `eqlist´
local eq`i´ = "`dv´ `ind`i´´"
qui {
regress `dv´ `ind`i´´
tempvar touse`i´ es eps`i´
predict double `eps`i´´ if e(sample), resid
generate byte `touse`i´´ = cond(e(sample), 1, .)
summarize `eps`i´´, meanonly
local maxn = max(`maxn´, r(N))
local minn = min(`minn´, r(N))
}

}

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 6 / 50

SUR for an unbalanced panel

Temporary matrix sigma contains the pairwise correlations of the
equations’ residuals. They are produced with calls to correlate. We
then invoke the Mata function mm_suregub, passing it the number of
equations (neq), the list of equations (eqlist) and the computed
sigma matrix.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 7 / 50

SUR for an unbalanced panel

tempname sigma
matrix `sigma´ = J(`neq´, `neq´, 0)
// generate pairwise correlation matrix of residuals;
// for comparison with sureg, use divisor N
local neq1 = `neq´ - 1
forvalues i = 1/`neq1´ {

forvalues j = 2/`neq´ {
qui correlate `eps`i´´ `eps`j´´, cov
mat `sigma´[`i´, `i´] = r(Var_1) * (r(N) - 1) / (r(N))
mat `sigma´[`j´, `j´] = r(Var_2) * (r(N) - 1) / (r(N))
mat `sigma´[`i´, `j´] = r(cov_12) * (r(N) - 1) / (r(N))
mat `sigma´[`j´, `i´] = `sigma´[`i´, `j´]

}
}
mata: mm_suregub(`neq´, "`eqlist´", "`sigma´")

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 8 / 50

SUR for an unbalanced panel

The last block of code displays the header, posts the coefficient vector
and VCE to the ereturn structure and uses ereturn display to
produce the standard estimation output.

display _newline "Seemingly unrelated regression for an unbalanced panel"
display _newline "Minimum observations per unit = `minn´"
display "Maximum observations per unit = `maxn´"
mat b = r(b)
mat V = r(V)
ereturn clear
ereturn post b V
ereturn local cmd "suregub"
ereturn local minobs `minn´
ereturn local maxobs `maxn´
ereturn display
end

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 9 / 50

SUR for an unbalanced panel

The “heavy lifting” in this command is performed within the Mata
routine. Its logic requires a number of matrices, but we cannot know
how many matrices are needed until the routine is invoked. Thus, we
make use of Mata’s pointers (in this case, rowvectors eq, xx, yy of
pointers to real matrices). The use of pointers is described in ITSP,
Section 13.8.

We also must work with the coefficient names and matrix stripes
attached to Stata matrices so that the display of estimation results will
work properly.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 10 / 50

SUR for an unbalanced panel

The “heavy lifting” in this command is performed within the Mata
routine. Its logic requires a number of matrices, but we cannot know
how many matrices are needed until the routine is invoked. Thus, we
make use of Mata’s pointers (in this case, rowvectors eq, xx, yy of
pointers to real matrices). The use of pointers is described in ITSP,
Section 13.8.

We also must work with the coefficient names and matrix stripes
attached to Stata matrices so that the display of estimation results will
work properly.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 10 / 50

SUR for an unbalanced panel

version 10.1
mata: mata clear
mata: mata set matastrict on
mata:
// mm_suregub 1.0.0 CFBaum 11aug2008
void mm_suregub(real scalar neq,

string scalar eqlist,
string scalar ssigma)

{
real matrix isigma, tt, eqq, iota, XX, YY, xi, xj, yj, vee
real vector beta
real scalar nrow, ncol, i, ii, i2, jj, j, j2
string scalar lt, touse, le, eqname, eqv
string vector v, vars, stripe
pointer (real matrix) rowvector eq
pointer (real matrix) rowvector xx
pointer (real matrix) rowvector yy

eq = xx = yy = J(1, neq, NULL)
isigma = invsym(st_matrix(ssigma))
nrow = 0
ncol = 0
string rowvector coefname, eqn
string matrix mstripe

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 11 / 50

SUR for an unbalanced panel

The first section of the function loops over equations, setting up the
appropriate contents of the dependent variable (yy[i]) and the
right-hand-side variables (xx[i]) for each equation in turn. A
constant term is assumed to be present in each equation.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 12 / 50

SUR for an unbalanced panel

// equation loop 1
for(i = 1; i <= neq; i++) {

lt = "touse" + strofreal(i)
touse = st_local(lt)
st_view(tt, ., touse)
le = "eq" + strofreal(i)
eqv = st_local(le)
vars = tokens(eqv)
v = vars[|1, .|]

// pull in full matrix, including missing values
st_view(eqq, ., v)
eq[i] = &(tt :* eqq)

// matrix eq[i] is [y|X] for ith eqn
eqname = v[1]
stripe = v[2::cols(v)], "_cons"
coefname = coefname, stripe
eqn = eqn, J(1, cols(v), eqname)

// form X, assuming constant term
nrow = nrow + rows(*eq[i])
iota = J(rows(*eq[i]), 1, 1)

xx[i] = &((*eq[i])[| 1,2 \ .,. |], iota)
ncol = ncol + cols(*xx[i])

// form y
yy[i] = &(*eq[i])[.,1]

}

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 13 / 50

SUR for an unbalanced panel

In the second loop over equations, the elements of the full X′X matrix
are computed as scalar multiples of an element of the inverse of
sigma times the cross-product of the i th and j th equations’ regressor
matrices. The full y′y vector is built up from scalar multiples of an
element of the inverse of sigma times the cross-product of the i th

equation’s regressors and the j th equation’s values of yy.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 14 / 50

SUR for an unbalanced panel

XX = J(ncol, ncol, 0)
YY = J(ncol, 1, 0)
ii = 0

// equation loop 2
for(i=1; i<=neq; i++) {
i2 = cols(*xx[i])
xi = *xx[i]
jj = 0
for(j=1; j<=neq; j++) {

xj = *xx[j]
j2 = cols(*xx[j])
yj = *yy[j]
XX[| ii+1, jj+1 \ ii+i2, jj+j2 |] = isigma[i, j] :* cross(xi, xj)
YY[| ii+1, 1 \ ii+i2, 1 |] = YY[| ii+1, 1 \ ii+i2, 1 |] + ///

isigma[i, j] :* cross(xi, yj)
jj = jj + j2

}
ii = ii + i2
}

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 15 / 50

SUR for an unbalanced panel

The least squares solution is obtained with invsym() and the
appropriate matrix row and column stripes are defined for the result
matrices r(b) and r(V).

// compute SUR beta (X´ [Sigma^-1 # I] X)^-1 (X´ [Sigma^-1 # I] y)
vee = invsym(XX)
beta = vee * YY
st_matrix("r(b)", beta´)
mstripe=eqn´, coefname´
st_matrixcolstripe("r(b)", mstripe)
st_matrix("r(V)", vee)
st_matrixrowstripe("r(V)", mstripe)
st_matrixcolstripe("r(V)", mstripe)

}
end

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 16 / 50

SUR for an unbalanced panel

To validate the routine, we first apply it to a balanced panel, for which it
should replicate standard sureg results if it has been programmed
properly. As we have verified that suregub passes that test using a
version of the grunfeld.dta dataset that has been reshaped to the
wide format, we modify that dataset to create an unbalanced panel
and use suregub to estimate four companies’ investment equations.

webuse grunfeld, clear
drop in 75/80
drop in 41/43
drop in 18/20
keep if company <= 4
drop time
reshape wide invest mvalue kstock, i(year) j(company)

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 17 / 50

SUR for an unbalanced panel

. suregub (invest1 mvalue1 kstock1) (invest2 mvalue2 kstock2) ///
> (invest3 mvalue3 kstock3) (invest4 mvalue4 kstock4)

Seemingly unrelated regressions for an unbalanced panel

Min obs per unit = 14
Max obs per unit = 20

Coef. Std. Err. z P>|z| [95% Conf. Interval]

invest1
mvalue1 .0787979 .0220396 3.58 0.000 .035601 .1219948
kstock1 .245538 .044413 5.53 0.000 .1584901 .3325858
_cons 64.69007 96.85787 0.67 0.504 -125.1479 254.528

invest2
mvalue2 .1729584 .0640754 2.70 0.007 .047373 .2985439
kstock2 .4150819 .1279443 3.24 0.001 .1643156 .6658482
_cons -53.8353 128.2932 -0.42 0.675 -305.2853 197.6147

invest3
mvalue3 .0522683 .0191105 2.74 0.006 .0148124 .0897243
kstock3 .1071995 .0287962 3.72 0.000 .0507599 .163639

_cons -39.32897 37.37061 -1.05 0.293 -112.574 33.91607

invest4
mvalue4 .0632339 .0142336 4.44 0.000 .0353364 .0911313
kstock4 .1487322 .0825525 1.80 0.072 -.0130678 .3105321

_cons 12.50393 11.02009 1.13 0.257 -9.09504 34.1029

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 18 / 50

SUR for an unbalanced panel

As the results from this user-written routine have been stored in the
ereturn array, the normal post-estimation features are available:

. test [invest2]mvalue2 = [invest4]mvalue4

(1) [invest2]mvalue2 - [invest4]mvalue4 = 0

chi2(1) = 2.89
Prob > chi2 = 0.0892

A number of additional features could be added to suregub to more
closely match the behavior of sureg.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 19 / 50

SUR for an unbalanced panel

As the results from this user-written routine have been stored in the
ereturn array, the normal post-estimation features are available:

. test [invest2]mvalue2 = [invest4]mvalue4

(1) [invest2]mvalue2 - [invest4]mvalue4 = 0

chi2(1) = 2.89
Prob > chi2 = 0.0892

A number of additional features could be added to suregub to more
closely match the behavior of sureg.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 19 / 50

GMM-CUE for linear instrumental variables

We turn now to our second estimator: the continuously-updated
generalized method of moments estimator (GMM-CUE) of Hansen,
Heaton, Yaron (1996). This estimator is described in Baum, Schaffer,
Stillman, Stata Journal 7:4, 2007. This is an estimator of a linear
instrumental variables model that requires numerical optimization for
its solution.

We have implemented this estimator for ivreg2 in Stata’s ado-file
language using the maximum likelihood commands of the ml suite.
Although that is a workable solution, it can be very slow for large
datasets with many regressors and instruments. In Stata versions 10
and 11, a full-featured suite of optimization commands are available in
Mata as optimize(). We implement a simple IV-GMM estimator in
Mata and use that as a model for implementing GMM-CUE.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 20 / 50

GMM-CUE for linear instrumental variables

We turn now to our second estimator: the continuously-updated
generalized method of moments estimator (GMM-CUE) of Hansen,
Heaton, Yaron (1996). This estimator is described in Baum, Schaffer,
Stillman, Stata Journal 7:4, 2007. This is an estimator of a linear
instrumental variables model that requires numerical optimization for
its solution.

We have implemented this estimator for ivreg2 in Stata’s ado-file
language using the maximum likelihood commands of the ml suite.
Although that is a workable solution, it can be very slow for large
datasets with many regressors and instruments. In Stata versions 10
and 11, a full-featured suite of optimization commands are available in
Mata as optimize(). We implement a simple IV-GMM estimator in
Mata and use that as a model for implementing GMM-CUE.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 20 / 50

GMM-CUE for linear instrumental variables

The following ado-file, mygmm2s.ado, accepts a dependent variable
and three additional optional variable lists: for endogenous variables,
included instruments and excluded instruments. A constant is
automatically included in the regression and in the instrument matrix.

There is a single option, robust, which specifies whether we are
assuming i.i.d. errors or allowing for arbitrary heteroskedasticity. The
routine calls Mata function m_mygmm2s() and receives results back in
the return list. Estimation results are assembled and posted to the
official locations so that we may make use of Stata’s ereturn
display command and enable the use of post-estimation commands
such as test and lincom.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 21 / 50

GMM-CUE for linear instrumental variables

The following ado-file, mygmm2s.ado, accepts a dependent variable
and three additional optional variable lists: for endogenous variables,
included instruments and excluded instruments. A constant is
automatically included in the regression and in the instrument matrix.

There is a single option, robust, which specifies whether we are
assuming i.i.d. errors or allowing for arbitrary heteroskedasticity. The
routine calls Mata function m_mygmm2s() and receives results back in
the return list. Estimation results are assembled and posted to the
official locations so that we may make use of Stata’s ereturn
display command and enable the use of post-estimation commands
such as test and lincom.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 21 / 50

GMM-CUE for linear instrumental variables

*! mygmm2s 1.0.2 MES/CFB 11aug2008
program mygmm2s, eclass

version 10.1
/*
Our standard syntax:
mygmm2s y, endog(varlist1) inexog(varlist2) exexog(varlist3) [robust]
where varlist1 contains endogenous regressors

varlist2 contains exogenous regressors (included instruments)
varlist3 contains excluded instruments

Without robust, efficient GMM is IV. With robust, efficient GMM is 2-step
efficient GMM, robust to arbitrary heteroskedasticity.
To accommodate time-series operators in the options, add the "ts"

*/
syntax varname(ts) [if] [in] [, endog(varlist ts) inexog(varlist ts) ///

exexog(varlist ts) robust]

local depvar `varlist´

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 22 / 50

GMM-CUE for linear instrumental variables

/*
marksample handles the variables in `varlist´ automatically, but not the
variables listed in the options `endog´, `inexog´ and so on. -markout- sets
`touse´ to 0 for any observations where the variables listed are missing.

*/
marksample touse
markout `touse´ `endog´ `inexog´ `exexog´

// These are the local macros that our Stata program will use
tempname b V omega

// Call the Mata routine. All results will be waiting for us in "r()" macros.
mata: m_mygmm2s("`depvar´", "`endog´", "`inexog´", ///

"`exexog´", "`touse´", "`robust´")

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 23 / 50

GMM-CUE for linear instrumental variables

// Move the basic results from r() macros into Stata matrices.
mat `b´ = r(beta)
mat `V´ = r(V)
mat `omega´ = r(omega)

// Prepare row/col names.
// Our convention is that regressors are [endog included exog]
// and instruments are [excluded exog included exog]
// Constant is added by default and is the last column.

local vnames `endog´ `inexog´ _cons
matrix rownames `V´ = `vnames´
matrix colnames `V´ = `vnames´
matrix colnames `b´ = `vnames´
local vnames2 `exexog´ `inexog´ _cons
matrix rownames `omega´ = `vnames2´
matrix colnames `omega´ = `vnames2´

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 24 / 50

GMM-CUE for linear instrumental variables

// We need the number of observations before we post our results.
local N = r(N)
ereturn post `b´ `V´, depname(`depvar´) obs(`N´) esample(`touse´)

// Store remaining estimation results as e() macros accessible to the user.
ereturn matrix omega `omega´
ereturn local depvar = "`depvar´"
ereturn scalar N = r(N)
ereturn scalar j = r(j)
ereturn scalar L = r(L)
ereturn scalar K = r(K)
if "`robust´" != "" {

ereturn local vcetype "Robust"
}
display _newline "Two-step GMM results" _col(60) "Number of obs = " e(N)
ereturn display
display "Sargan-Hansen J statistic: " %7.3f e(j)
display "Chi-sq(" %3.0f e(L)-e(K) ") P-val = " ///

%5.4f chiprob(e(L)-e(K), e(j)) _newline
end

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 25 / 50

GMM-CUE for linear instrumental variables

The Mata function receives the names of variables to be included in
the regression and creates view matrices for Y (the dependent
variable), X1 (the endogenous variables), X2 (the exogenous
regressors or included instruments) and Z1 (the excluded
instruments). The st_tsrevar() function is used to deal with Stata’s
time series operators in any of the variable lists.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 26 / 50

GMM-CUE for linear instrumental variables

mata:mata clear
version 10.1
mata: mata set matastrict on
mata:
// m_mygmm2s 1.0.0 MES/CFB 11aug2008
void m_mygmm2s(string scalar yname,

string scalar endognames,
string scalar inexognames,
string scalar exexognames,
string scalar touse,
string scalar robust)

{
real matrix Y, X1, X2, Z1, X, Z, QZZ, QZX, W, omega, V
real vector cons, beta_iv, beta_gmm, e, gbar
real scalar K, L, N, j

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 27 / 50

GMM-CUE for linear instrumental variables

// Use st_tsrevar in case any variables use Stata´s time-series operators.
st_view(Y, ., st_tsrevar(tokens(yname)), touse)
st_view(X1, ., st_tsrevar(tokens(endognames)), touse)
st_view(X2, ., st_tsrevar(tokens(inexognames)), touse)
st_view(Z1, ., st_tsrevar(tokens(exexognames)), touse)

// Our convention is that regressors are [endog included exog]
// and instruments are [excluded exog included exog]
// Constant is added by default and is the last column.

cons = J(rows(X2), 1, 1)
X2 = X2, cons
X = X1, X2
Z = Z1, X2
K = cols(X)
L = cols(Z)
N = rows(Y)
QZZ = 1/N * quadcross(Z, Z)
QZX = 1/N * quadcross(Z, X)

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 28 / 50

GMM-CUE for linear instrumental variables

// First step of 2-step feasible efficient GMM: IV (2SLS). Weighting matrix
// is inv of Z´Z (or QZZ).

W = invsym(QZZ)
beta_iv = (invsym(X´Z * W * Z´X) * X´Z * W * Z´Y)

// By convention, Stata parameter vectors are row vectors
beta_iv = beta_iv´

// Use first-step residuals to calculate optimal weighting matrix for 2-step FE GMM
omega = m_myomega(beta_iv, Y, X, Z, robust)

// Second step of 2-step feasible efficient GMM: IV (2SLS). Weighting matrix
// is inv of Z´Z (or QZZ).

W = invsym(omega)
beta_gmm = (invsym(X´Z * W * Z´X) * X´Z * W * Z´Y)

// By convention, Stata parameter vectors are row vectors
beta_gmm = beta_gmm´

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 29 / 50

GMM-CUE for linear instrumental variables

// Sargan-Hansen J statistic: first we calculate the second-step residuals
e = Y - X * beta_gmm´

// Calculate gbar = 1/N * Z´*e
gbar = 1/N * quadcross(Z, e)
j = N * gbar´ * W * gbar

// Sandwich var-cov matrix (no finite-sample correction)
// Reduces to classical var-cov matrix if Omega is not robust form.
// But the GMM estimator is "root-N consistent", and technically we do
// inference on sqrt(N)*beta. By convention we work with beta, so we adjust
// the var-cov matrix instead:

V = 1/N * invsym(QZX´ * W * QZX)
// Easiest way of returning results to Stata: as r-class macros.

st_matrix("r(beta)", beta_gmm)
st_matrix("r(V)", V)
st_matrix("r(omega)", omega)
st_numscalar("r(j)", j)
st_numscalar("r(N)", N)
st_numscalar("r(L)", L)
st_numscalar("r(K)", K)

}
end

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 30 / 50

GMM-CUE for linear instrumental variables

This function in turn calls an additional Mata function, m_myomega(),
to compute the appropriate covariance matrix. This is a real matrix
function, as it will return its result, the real matrix omega, to the calling
function.

Because we will reuse the m_myomega() function in our GMM-CUE
program, we place it in a separate file, m_myomega.mata, with
instructions to compile it into a .mo file.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 31 / 50

GMM-CUE for linear instrumental variables

This function in turn calls an additional Mata function, m_myomega(),
to compute the appropriate covariance matrix. This is a real matrix
function, as it will return its result, the real matrix omega, to the calling
function.

Because we will reuse the m_myomega() function in our GMM-CUE
program, we place it in a separate file, m_myomega.mata, with
instructions to compile it into a .mo file.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 31 / 50

GMM-CUE for linear instrumental variables

mata: mata clear
version 10.1
mata: mata set matastrict on
mata:
// m_myomega 1.0.0 MES/CFB 11aug2008
real matrix m_myomega(real rowvector beta,

real colvector Y,
real matrix X,
real matrix Z,
string scalar robust)

{
real matrix QZZ, omega
real vector e, e2
real scalar N, sigma2

// Calculate residuals from the coefficient estimates
N = rows(Z)
e = Y - X * beta´

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 32 / 50

GMM-CUE for linear instrumental variables

if (robust=="") {
// Compute classical, non-robust covariance matrix

QZZ = 1/N * quadcross(Z, Z)
sigma2 = 1/N * quadcross(e, e)
omega = sigma2 * QZZ

}
else {

// Compute heteroskedasticity-consistent covariance matrix
e2 = e:^2
omega = 1/N * quadcross(Z, e2, Z)

}
_makesymmetric(omega)
return (omega)

}
end

mata: mata mosave m_myomega(), dir(PERSONAL) replace

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 33 / 50

GMM-CUE for linear instrumental variables

This gives us a working Mata implementation of an instrumental
variables estimator and an IV-GMM estimator (accounting for arbitrary
heteroskedasticity), and we can verify that its results match those of
ivregress or our own ivreg2. To implement the GMM-CUE
estimator, we clone mygmm2s.ado to mygmmcue.ado. The ado-file
code is very similar:

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 34 / 50

GMM-CUE for linear instrumental variables

*! mygmmcue 1.0.2 MES/CFB 11aug2008
program mygmmcue, eclass

version 10.1
syntax varname(ts) [if] [in] [, endog(varlist ts) ///

inexog(varlist ts) exexog(varlist ts) robust]
local depvar `varlist´

marksample touse
markout `touse´ `endog´ `inexog´ `exexog´
tempname b V omega

mata: m_mygmmcue("`depvar´", "`endog´", "`inexog´", ///
"`exexog´", "`touse´", "`robust´")

mat `b´ = r(beta)
mat `V´ = r(V)
mat `omega´=r(omega)

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 35 / 50

GMM-CUE for linear instrumental variables

local vnames `endog´ `inexog´ _cons
matrix rownames `V´ = `vnames´
matrix colnames `V´ = `vnames´
matrix colnames `b´ = `vnames´
local vnames2 `exexog´ `inexog´ _cons
matrix rownames `omega´ = `vnames2´
matrix colnames `omega´ = `vnames2´

local N = r(N)
ereturn post `b´ `V´, depname(`depvar´) obs(`N´) esample(`touse´)
ereturn matrix omega `omega´
ereturn local depvar = "`depvar´"
ereturn scalar N = r(N)
ereturn scalar j = r(j)
ereturn scalar L = r(L)
ereturn scalar K = r(K)

if "`robust´" != "" ereturn local vcetype "Robust"

display _newline "GMM-CUE estimates" _col(60) "Number of obs = " e(N)
ereturn display
display "Sargan-Hansen J statistic: " %7.3f e(j)
display "Chi-sq(" %3.0f e(L)-e(K) ") P-val = " ///

%5.4f chiprob(e(L)-e(K), e(j)) _newline

end

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 36 / 50

GMM-CUE for linear instrumental variables

We now consider how the Mata function must be modified to
incorporate the numerical optimization routines. We must first make
use of Mata’s external declaration to specify that the elements
needed within our objective function evaluator are visible to that
routine. We could also pass those arguments to the evaluation routine,
but treating them as external requires less housekeeping. As in the
standard two-step GMM routine, we derive first-step estimates of the
regression parameters from a standard GMM estimation.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 37 / 50

GMM-CUE for linear instrumental variables

We then use Mata’s optimize() functions to set up the optimization
problem. The optimize_init() call, as described in Gould, Stata
Journal 7:4, sets up a Mata structure named S containing all elements
of the problem. In a call to optimize_init_evaluator(), we
specify that the evaluation routine is a Mata function,
m_mycuecrit(), by providing a pointer to the function (see ITSP,
Section 13.8).

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 38 / 50

GMM-CUE for linear instrumental variables

mata:
// m_mygmmcue 1.0.0 MES/CFB 11aug2008
void m_mygmmcue(string scalar yname,

string scalar endognames,
string scalar inexognames,
string scalar exexognames,
string scalar touse,
string scalar robust)

{
real matrix X1, X2, Z1, QZZ, QZX, W, V
real vector cons, beta_iv, beta_cue
real scalar K, L, N, S, j

// In order for the optimization objective function to find various variables
// and data they have to be set as externals. This means subroutines can
// find them without having to have them passed to the subroutines as arguments
> .
// robustflag is the robust argument recreated as an external Mata scalar.

external Y, X, Z, e, omega, robustflag
robustflag = robust

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 39 / 50

GMM-CUE for linear instrumental variables

st_view(Y, ., st_tsrevar(tokens(yname)), touse)
st_view(X1, ., st_tsrevar(tokens(endognames)), touse)
st_view(X2, ., st_tsrevar(tokens(inexognames)), touse)
st_view(Z1, ., st_tsrevar(tokens(exexognames)), touse)

// Our convention is that regressors are [endog included exog]
// and instruments are [excluded exog included exog]
// The constant is added by default and is the last column.

cons = J(rows(X2), 1, 1)
X2 = X2, cons
X = X1, X2
Z = Z1, X2

K = cols(X)
L = cols(Z)
N = rows(Y)

QZZ = 1/N * quadcross(Z, Z)
QZX = 1/N * quadcross(Z, X)

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 40 / 50

GMM-CUE for linear instrumental variables

// First step of CUE GMM: IV (2SLS). Use beta_iv as the initial values for
// the numerical optimization.

W = invsym(QZZ)
beta_iv = invsym(X´Z * W *Z´X) * X´Z * W * Z´Y

// Stata convention is that parameter vectors are row vectors, and optimizers
// require this, so must conform to this in what follows.

beta_iv = beta_iv´

// What follows is how to set out an optimization in Stata. First, initialize
// the optimization structure in the variable S. Then tell Mata where the
// objective function is, that it´s a minimization, that it´s a "d0" type of
// objective function (no analytical derivatives or Hessians), and that the
// initial values for the parameter vector are in beta_iv. Finally, optimize.

S = optimize_init()
optimize_init_evaluator(S, &m_mycuecrit())

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 41 / 50

GMM-CUE for linear instrumental variables

We call optimize_init_which() to indicate that we are minimizing
(rather than maximizing) the objective function, and use
optimize_init_evaluatortype() that our evaluation routine is a
type d0 evaluator. Finally, we call optimize_init_params() to
provide starting values for the parameters from the instrumental
variables coefficient vector beta_iv.

The optimize() function invokes the optimization routine, returning
its results in the parameter rowvector beta_cue. The optimal value of
the objective function is retrieved with optimize_result_value().

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 42 / 50

GMM-CUE for linear instrumental variables

We call optimize_init_which() to indicate that we are minimizing
(rather than maximizing) the objective function, and use
optimize_init_evaluatortype() that our evaluation routine is a
type d0 evaluator. Finally, we call optimize_init_params() to
provide starting values for the parameters from the instrumental
variables coefficient vector beta_iv.

The optimize() function invokes the optimization routine, returning
its results in the parameter rowvector beta_cue. The optimal value of
the objective function is retrieved with optimize_result_value().

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 42 / 50

GMM-CUE for linear instrumental variables

optimize_init_which(S, "min")
optimize_init_evaluatortype(S, "d0")
optimize_init_params(S, beta_iv)
beta_cue = optimize(S)

// The last omega is the CUE omega, and the last evaluation of the GMM
// objective function is J.

W = invsym(omega)
j = optimize_result_value(S)

V = 1/N * invsym(QZX´ * W * QZX)

st_matrix("r(beta)", beta_cue)
st_matrix("r(V)", V)
st_matrix("r(omega)", omega)
st_numscalar("r(j)", j)
st_numscalar("r(N)", N)
st_numscalar("r(L)", L)
st_numscalar("r(K)", K)

}
end

mata: mata mosave m_mygmmcue(), dir(PERSONAL) replace

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 43 / 50

GMM-CUE for linear instrumental variables

Let us now examine the evaluation routine. Given values for the
parameter vector beta, it computes a new value of the omega matrix
(Ω, the covariance matrix of orthogonality conditions) and a new set of
residuals e, which are also a function of beta.

The j statistic, which is the minimized value of the objective function,
is then computed, depending on the updated residuals e and the
weighting matrix W = Ω−1, a function of the updated estimates of
beta.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 44 / 50

GMM-CUE for linear instrumental variables

Let us now examine the evaluation routine. Given values for the
parameter vector beta, it computes a new value of the omega matrix
(Ω, the covariance matrix of orthogonality conditions) and a new set of
residuals e, which are also a function of beta.

The j statistic, which is the minimized value of the objective function,
is then computed, depending on the updated residuals e and the
weighting matrix W = Ω−1, a function of the updated estimates of
beta.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 44 / 50

GMM-CUE for linear instrumental variables

mata:
// GMM-CUE evaluator function.
// Handles only d0-type optimization; todo, g and H are just ignored.
// beta is the parameter set over which we optimize, and
// j is the objective function to minimize.
// m_mycuecrit 1.0.0 MES/CFB 11aug2008
void m_mycuecrit(todo, beta, j, g, H)
{

external Y, X, Z, e, omega, robustflag
real matrix W
real vector gbar
real scalar N
omega = m_myomega(beta, Y, X, Z, robustflag)
W = invsym(omega)
N = rows(Z)
e = Y - X * beta´

// Calculate gbar=Z´*e/N
gbar = 1/N * quadcross(Z,e)
j = N * gbar´ * W * gbar

}
end

mata: mata mosave m_mycuecrit(), dir(PERSONAL) replace

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 45 / 50

GMM-CUE for linear instrumental variables

Our Mata-based GMM-CUE routine is now complete. To validate both
the two-step GMM routine and its GMM-CUE counterpart, we write a
simple certification script for each routine. First, let’s check to see that
our two-step routine works for both i.i.d. and heteroskedastic errors.
Our mygmm2s routine returns the same results as ivreg2 from SSC
for the several objects included in the savedresults compare
validation command, and these functions of ivreg2 have been
certified against official Stata’s ivregress.

Now we construct and run a similar certification script to validate the
GMM-CUE routine:

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 46 / 50

GMM-CUE for linear instrumental variables

Our Mata-based GMM-CUE routine is now complete. To validate both
the two-step GMM routine and its GMM-CUE counterpart, we write a
simple certification script for each routine. First, let’s check to see that
our two-step routine works for both i.i.d. and heteroskedastic errors.
Our mygmm2s routine returns the same results as ivreg2 from SSC
for the several objects included in the savedresults compare
validation command, and these functions of ivreg2 have been
certified against official Stata’s ivregress.

Now we construct and run a similar certification script to validate the
GMM-CUE routine:

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 46 / 50

GMM-CUE for linear instrumental variables

. quietly ivreg2 lw s expr tenure rns smsa (iq=med kww age mrt), cue
r; t=7.18 9:39:41

. savedresults save ivreg2cue e()
r; t=0.00 9:39:41

. mygmmcue lw, endog(iq) inexog(s expr tenure rns smsa) ///
> exexog(med kww age mrt)
Iteration 0: f(p) = 61.136598
Iteration 1: f(p) = 32.923655
Iteration 2: f(p) = 32.83694
Iteration 3: f(p) = 32.832195
Iteration 4: f(p) = 32.831616
Iteration 5: f(p) = 32.831615

GMM-CUE estimates Number of obs = 758

lw Coef. Std. Err. z P>|z| [95% Conf. Interval]

iq -.0755427 .0132447 -5.70 0.000 -.1015018 -.0495837
s .3296909 .0430661 7.66 0.000 .245283 .4140989

expr .0098901 .0184522 0.54 0.592 -.0262755 .0460558
tenure .0679955 .0224819 3.02 0.002 .0239317 .1120594

rns -.3040223 .0896296 -3.39 0.001 -.4796931 -.1283515
smsa .2071594 .0797833 2.60 0.009 .050787 .3635318
_cons 8.907018 .8754361 10.17 0.000 7.191194 10.62284

Sargan-Hansen J statistic: 32.832
Chi-sq(3) P-val = 0.0000

r; t=0.57 9:39:42

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 47 / 50

GMM-CUE for linear instrumental variables

. savedresults compare ivreg2cue e(), include(macros: depvar scalar: N j matrix
> : b V) ///
> tol(1e-4) verbose
comparing macro e(depvar)
comparing scalar e(N)
comparing scalar e(j)
comparing matrix e(b)
comparing matrix e(V)
r; t=0.01 9:39:42

.

. quietly ivreg2 lw s expr tenure rns smsa (iq=med kww age mrt), cue robust
r; t=13.46 9:39:55

. savedresults save ivreg2cue e()
r; t=0.00 9:39:55

. mygmmcue lw, endog(iq) inexog(s expr tenure rns smsa) ///
exexog(med kww age mrt) robust

Iteration 0: f(p) = 52.768916
Iteration 1: f(p) = 28.946591 (not concave)
Iteration 2: f(p) = 27.417939 (not concave)
Iteration 3: f(p) = 27.041838
Iteration 4: f(p) = 26.508996
Iteration 5: f(p) = 26.420853
Iteration 6: f(p) = 26.420648
Iteration 7: f(p) = 26.420637
Iteration 8: f(p) = 26.420637

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 48 / 50

GMM-CUE for linear instrumental variables

GMM-CUE estimates Number of obs = 758

Robust
lw Coef. Std. Err. z P>|z| [95% Conf. Interval]

iq -.0770701 .0147825 -5.21 0.000 -.1060433 -.048097
s .3348492 .0469881 7.13 0.000 .2427542 .4269441

expr .0197632 .0199592 0.99 0.322 -.019356 .0588825
tenure .0857848 .0242331 3.54 0.000 .0382888 .1332807

rns -.3209864 .091536 -3.51 0.000 -.5003937 -.1415791
smsa .255257 .0837255 3.05 0.002 .091158 .419356
_cons 8.943698 .9742228 9.18 0.000 7.034257 10.85314

Sargan-Hansen J statistic: 26.421
Chi-sq(3) P-val = 0.0000

r; t=0.68 9:39:56

. savedresults compare ivreg2cue e(), include(macros: depvar scalar: N j matrix
> : b V) ///
> tol(1e-4) verbose
comparing macro e(depvar)
comparing scalar e(N)
comparing scalar e(j)
comparing matrix e(b)
comparing matrix e(V)

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 49 / 50

GMM-CUE for linear instrumental variables

We find that the estimates produced by mygmmcue are reasonably
close to those produced by the ml-based optimization routine
employed by ivreg2. As we sought to speed up the calculation of
GMM-CUE estimates, we are pleased to see the timings displayed by
set rmsg on. For the non-robust estimates, ivreg2 took 6.07
seconds, while mygmmcue took 0.51 seconds: a twelve-fold speedup.

For the robust CUE estimates, ivreg2 required 12.69 seconds,
compared to 0.64 seconds for mygmmcue: an amazing twenty times
faster. Calculation of the robust covariance matrix using Mata’s matrix
operations is apparently much more efficient from a computational
standpoint.

We look forward to further improvements in our ability to implement
estimators such as GMM-CUE in Stata version 11, with its support for
a general-purpose GMM command.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 50 / 50

GMM-CUE for linear instrumental variables

We find that the estimates produced by mygmmcue are reasonably
close to those produced by the ml-based optimization routine
employed by ivreg2. As we sought to speed up the calculation of
GMM-CUE estimates, we are pleased to see the timings displayed by
set rmsg on. For the non-robust estimates, ivreg2 took 6.07
seconds, while mygmmcue took 0.51 seconds: a twelve-fold speedup.

For the robust CUE estimates, ivreg2 required 12.69 seconds,
compared to 0.64 seconds for mygmmcue: an amazing twenty times
faster. Calculation of the robust covariance matrix using Mata’s matrix
operations is apparently much more efficient from a computational
standpoint.

We look forward to further improvements in our ability to implement
estimators such as GMM-CUE in Stata version 11, with its support for
a general-purpose GMM command.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 50 / 50

GMM-CUE for linear instrumental variables

We find that the estimates produced by mygmmcue are reasonably
close to those produced by the ml-based optimization routine
employed by ivreg2. As we sought to speed up the calculation of
GMM-CUE estimates, we are pleased to see the timings displayed by
set rmsg on. For the non-robust estimates, ivreg2 took 6.07
seconds, while mygmmcue took 0.51 seconds: a twelve-fold speedup.

For the robust CUE estimates, ivreg2 required 12.69 seconds,
compared to 0.64 seconds for mygmmcue: an amazing twenty times
faster. Calculation of the robust covariance matrix using Mata’s matrix
operations is apparently much more efficient from a computational
standpoint.

We look forward to further improvements in our ability to implement
estimators such as GMM-CUE in Stata version 11, with its support for
a general-purpose GMM command.

Christopher F Baum and Mark E. Schaffer () Estimation with Mata DC09 & UKSUG15 50 / 50

	Introduction
	SUR for an unbalanced panel
	GMM-CUE for linear instrumental variables

