Implementing econometric estimators with Mata

Christopher F Baum and Mark E. Schaffer

Boston College and DIW Berlin / Heriot-Watt University

DC09 & UKSUG15, July-September 2009

Christopher F Baum and Mark E. Schaffer ()

.

In this talk we will describe the development of two econometric estimators using the capabilities of Mata, stressing how the combined Stata ado-file / Mata function environment is very well suited to performing such tasks.

The first estimator, an extension of Stata's sureg for linear seemingly unrelated regressions, might have been implemented in the same way if we had access to Stata 11.

The second, a nonlinear GMM (generalized method of moments) extension of the linear IV (instrumental variables) estimator, might be able to take advantage of some of Stata 11's new capabilities if we had written it with Stata 11 at hand. What we present today is based upon what is feasible in the Stata 10.1 environment, and is described at greater length in sections 14.8 and 14.9 of *An Introduction to Stata Programming* (ITSP), Stata Press, 2009.

In this talk we will describe the development of two econometric estimators using the capabilities of Mata, stressing how the combined Stata ado-file / Mata function environment is very well suited to performing such tasks.

The first estimator, an extension of Stata's sureg for linear seemingly unrelated regressions, might have been implemented in the same way if we had access to Stata 11.

The second, a nonlinear GMM (generalized method of moments) extension of the linear IV (instrumental variables) estimator, might be able to take advantage of some of Stata 11's new capabilities if we had written it with Stata 11 at hand. What we present today is based upon what is feasible in the Stata 10.1 environment, and is described at greater length in sections 14.8 and 14.9 of *An Introduction to Stata Programming* (ITSP), Stata Press, 2009.

In this talk we will describe the development of two econometric estimators using the capabilities of Mata, stressing how the combined Stata ado-file / Mata function environment is very well suited to performing such tasks.

The first estimator, an extension of Stata's sureg for linear seemingly unrelated regressions, might have been implemented in the same way if we had access to Stata 11.

The second, a nonlinear GMM (generalized method of moments) extension of the linear IV (instrumental variables) estimator, might be able to take advantage of some of Stata 11's new capabilities if we had written it with Stata 11 at hand. What we present today is based upon what is feasible in the Stata 10.1 environment, and is described at greater length in sections 14.8 and 14.9 of *An Introduction to Stata Programming* (ITSP), Stata Press, 2009.

Stata's seemingly unrelated regression (SUR) estimator (sureg) estimates a set of equations, employing the matrix of residual correlations for each equation to produce a refined estimate of its parameter vector.

The sureg estimator can be considered as a panel data estimator that operates in the *wide form*. It is common for panel data to be *unbalanced*, and Stata's xt commands handle unbalanced panels without difficulty. However, sureg discards any observation that is missing in *any* of its equations.

・ロン ・四 と ・ ヨン

Stata's seemingly unrelated regression (SUR) estimator (sureg) estimates a set of equations, employing the matrix of residual correlations for each equation to produce a refined estimate of its parameter vector.

The sureg estimator can be considered as a panel data estimator that operates in the *wide form*. It is common for panel data to be *unbalanced*, and Stata's xt commands handle unbalanced panels without difficulty. However, sureg discards any observation that is missing in *any* of its equations.

We would like to use sureg without losing these observations. If we use correlate *varlist*, observations missing for *any* of the variables in the *varlist* will be dropped from the calculation. In contrast, the pairwise correlation command pwcorr *varlist* will compute correlations from all available observations for each pair of variables in turn.

The logic of sureg is that of correlate; but the correlations of residuals employed by sureg may be, as in pwcorr, calculated on a pairwise basis, allowing the estimator to be applied to a set of equations which may cover different time periods (as long as there is meaningful overlap).

I illustrate how Mata may be used to handle this quite sophisticated estimation problem. I worked with the code of official Stata's reg3 to extract the parsing commands that set up the problem, and then wrote my own ado-file to perform the computations. It calls a Mata function that produces the estimates.

э

We would like to use sureg without losing these observations. If we use correlate *varlist*, observations missing for *any* of the variables in the *varlist* will be dropped from the calculation. In contrast, the pairwise correlation command pwcorr *varlist* will compute correlations from all available observations for each pair of variables in turn.

The logic of sureg is that of correlate; but the correlations of residuals employed by sureg may be, as in pwcorr, calculated on a pairwise basis, allowing the estimator to be applied to a set of equations which may cover different time periods (as long as there is meaningful overlap).

I illustrate how Mata may be used to handle this quite sophisticated estimation problem. I worked with the code of official Stata's reg3 to extract the parsing commands that set up the problem, and then wrote my own ado-file to perform the computations. It calls a Mata function that produces the estimates.

э

We would like to use sureg without losing these observations. If we use correlate *varlist*, observations missing for *any* of the variables in the *varlist* will be dropped from the calculation. In contrast, the pairwise correlation command pwcorr *varlist* will compute correlations from all available observations for each pair of variables in turn.

The logic of sureg is that of correlate; but the correlations of residuals employed by sureg may be, as in pwcorr, calculated on a pairwise basis, allowing the estimator to be applied to a set of equations which may cover different time periods (as long as there is meaningful overlap).

I illustrate how Mata may be used to handle this quite sophisticated estimation problem. I worked with the code of official Stata's reg3 to extract the parsing commands that set up the problem, and then wrote my own ado-file to perform the computations. It calls a Mata function that produces the estimates.

For brevity, I do not reproduce the parsing code taken from reg3.ado. The syntax of my program, suregub, is identical to that of sureg but does not support all of its options. The basic syntax is:

suregub (depvar1 varlist1) (depvar2 varlist2) ... (depvarN varlistN)

The parsing code defines a local macro eqlist of equations to be estimated and a set of local macros indl ...indN which contains the right-hand-side variables for each of the N equations.

We first generate the OLS residuals for each equation by running regress and predict, residual. We find the maximum and minimum observation indices for each set of residuals with the max() and min() functions, respectively.

For brevity, I do not reproduce the parsing code taken from reg3.ado. The syntax of my program, suregub, is identical to that of sureg but does not support all of its options. The basic syntax is:

suregub (depvar1 varlist1) (depvar2 varlist2) ... (depvarN varlistN)

The parsing code defines a local macro eqlist of equations to be estimated and a set of local macros ind1 ...indN which contains the right-hand-side variables for each of the *N* equations.

We first generate the OLS residuals for each equation by running regress and predict, residual. We find the maximum and minimum observation indices for each set of residuals with the max() and min() functions, respectively.

For brevity, I do not reproduce the parsing code taken from reg3.ado. The syntax of my program, suregub, is identical to that of sureg but does not support all of its options. The basic syntax is:

```
suregub (depvar1 varlist1) (depvar2 varlist2) ... (depvarN varlistN)
```

The parsing code defines a local macro eqlist of equations to be estimated and a set of local macros ind1 ...indN which contains the right-hand-side variables for each of the *N* equations.

We first generate the OLS residuals for each equation by running regress and predict, residual. We find the maximum and minimum observation indices for each set of residuals with the max() and min() functions, respectively.


```
// generate residual series
local minn = .
local maxn = 0
forvalues i = 1/`neq´ {
    local dv : word `i´ of `eqlist´
    local eq`i´ = "`dv´ `ind`i´´"
    qui {
        regress `dv´ `ind`i´´
        tempvar touse`i´ es eps`i´
        predict double `eps`i´´ if e(sample), resid
        generate byte `touse`i´´ = cond(e(sample), 1, .)
        summarize `eps`i´´, meanonly
        local maxn = max(`maxn´, r(N))
        local minn = min(`minn´, r(N))
        }
```


Temporary matrix sigma contains the pairwise correlations of the equations' residuals. They are produced with calls to correlate. We then invoke the Mata function mm_suregub, passing it the number of equations (neq), the list of equations (eqlist) and the computed sigma matrix.


```
tempname sigma
matrix `sigma' = J(`neq', `neq', 0)
// generate pairwise correlation matrix of residuals;
// for comparison with sureg, use divisor N
local neq1 = `neq' - 1
forvalues i = 1/`neq1' {
        forvalues j = 2/`neq' {
            qui correlate `eps`i'` `eps`j'', cov
            mat `sigma'[`i', `i'] = r(Var_1) * (r(N) - 1) / (r(N))
            mat `sigma'[`j', `j'] = r(Var_2) * (r(N) - 1) / (r(N))
            mat `sigma'[`i', `i'] = r(cov_12) * (r(N) - 1) / (r(N))
            mat `sigma'[`j', `i'] = `sigma'[`i', `j']
    }
mata: mm_suregub(`neq', "`eqlist'", "`sigma'")
```


The last block of code displays the header, posts the coefficient vector and VCE to the ereturn structure and uses ereturn display to produce the standard estimation output.

```
display _newline "Seemingly unrelated regression for an unbalanced panel"
display _newline "Minimum observations per unit = `minn'"
display "Maximum observations per unit = `maxn'"
mat b = r(b)
mat V = r(V)
ereturn clear
ereturn post b V
ereturn local cmd "suregub"
ereturn local minobs `minn'
ereturn local maxobs `maxn'
ereturn display
end
```


The "heavy lifting" in this command is performed within the Mata routine. Its logic requires a number of matrices, but we cannot know how many matrices are needed until the routine is invoked. Thus, we make use of Mata's *pointers* (in this case, rowvectors eq, xx, yy of pointers to real matrices). The use of pointers is described in ITSP, Section 13.8.

We also must work with the coefficient names and *matrix stripes* attached to Stata matrices so that the display of estimation results will work properly.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The "heavy lifting" in this command is performed within the Mata routine. Its logic requires a number of matrices, but we cannot know how many matrices are needed until the routine is invoked. Thus, we make use of Mata's *pointers* (in this case, rowvectors eq, xx, yy of pointers to real matrices). The use of pointers is described in ITSP, Section 13.8.

We also must work with the coefficient names and *matrix stripes* attached to Stata matrices so that the display of estimation results will work properly.

∃ ► < ∃ ►</p>

```
version 10.1
mata: mata clear
mata: mata set matastrict on
mata:
// mm_suregub 1.0.0 CFBaum 11aug2008
void mm_suregub(real scalar neq,
                string scalar eqlist,
                string scalar ssigma)
        real matrix isigma, tt, eqq, iota, XX, YY, xi, xj, yj, vee
        real vector beta
        real scalar nrow, ncol, i, ii, i2, jj, j, j2
        string scalar lt, touse, le, egname, eqv
        string vector v, vars, stripe
        pointer (real matrix) rowvector eq
        pointer (real matrix) rowvector xx
        pointer (real matrix) rowvector vy
        eq = xx = yy = J(1, neq, NULL)
        isigma = invsym(st matrix(ssigma))
        nrow = 0
        ncol = 0
        string rowvector coefname, egn
        string matrix mstripe
```


The first section of the function loops over equations, setting up the appropriate contents of the dependent variable (yy[i]) and the right-hand-side variables (xx[i]) for each equation in turn. A constant term is assumed to be present in each equation.

A B F A B F

```
// equation loop 1
        for(i = 1; i <= neg; i++) {
                lt = "touse" + strofreal(i)
                touse = st local(lt)
                st view(tt, ., touse)
                le = "eq" + strofreal(i)
                eqv = st_local(le)
                vars = tokens(eqv)
                v = vars[|1, .|]
// pull in full matrix, including missing values
                st view(eqq, ., v)
                eq[i] = \&(tt :* eqq)
// matrix eq[i] is [y|X] for ith eqn
                eqname = v[1]
                stripe = v[2::cols(v)], "_cons"
                coefname = coefname, stripe
                eqn = eqn, J(1, cols(v), eqname)
// form X, assuming constant term
                nrow = nrow + rows(*eq[i])
                iota = J(rows(*eq[i]), 1, 1)
                xx[i] = \&((*eq[i])[| 1,2 \setminus ... |], iota)
                ncol = ncol + cols(*xx[i])
// form v
                vv[i] = & (*eq[i])[.,1]
```


イロト イポト イヨト イヨト

In the second loop over equations, the elements of the full **X'X** matrix are computed as scalar multiples of an element of the inverse of sigma times the cross-product of the *i*th and *j*th equations' regressor matrices. The full **y'y** vector is built up from scalar multiples of an element of the inverse of sigma times the cross-product of the *i*th equation's regressors and the *j*th equation's values of yy.


```
XX = J(ncol, ncol, 0)
        YY = J(ncol, 1, 0)
        ii = 0
// equation loop 2
        for(i=1; i<=neq; i++) {</pre>
        i2 = cols(*xx[i])
        xi = *xx[i]
        ii = 0
        for(j=1; j<=neq; j++) {</pre>
                 xj = *xx[j]
                 j2 = cols(*xx[j])
                 vi = *vv[i]
                 XX[| ii+1, jj+1 \ ii+i2, jj+j2 |] = isigma[i, j] :* cross(xi, xj)
                 YY[| ii+1, 1 \ ii+i2, 1 |] = YY[| ii+1, 1 \ ii+i2, 1 |] + ///
                                                    isigma[i, j] :* cross(xi, yj)
                 jj = jj + j2
        ii = ii + i2
```


3

イロト イヨト イヨト イヨト

The least squares solution is obtained with invsym() and the appropriate matrix row and column stripes are defined for the result matrices r(b) and r(V).

```
// compute SUR beta (X' [Sigma^-1 # I] X)^-1 (X' [Sigma^-1 # I] y)
    vee = invsym(XX)
    beta = vee * YY
    st_matrix("r(b)", beta')
    mstripe=eqn', coefname'
    st_matrixcolstripe("r(b)", mstripe)
    st_matrix("r(V)", vee)
    st_matrixrowstripe("r(V)", mstripe)
    st_matrixcolstripe("r(V)", mstripe)
```


To validate the routine, we first apply it to a balanced panel, for which it should replicate standard sureg results if it has been programmed properly. As we have verified that suregub passes that test using a version of the grunfeld.dta dataset that has been reshaped to the wide format, we modify that dataset to create an unbalanced panel and use suregub to estimate four companies' investment equations.

```
webuse grunfeld, clear
drop in 75/80
drop in 41/43
drop in 18/20
keep if company <= 4
drop time
reshape wide invest mvalue kstock, i(year) j(company)
```


	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
invest1						
mvalue1	.0787979	.0220396	3.58	0.000	.035601	.1219948
kstock1	.245538	.044413	5.53	0.000	.1584901	.3325858
_cons	64.69007	96.85787	0.67	0.504	-125.1479	254.528
invest2						
mvalue2	.1729584	.0640754	2.70	0.007	.047373	.2985439
kstock2	.4150819	.1279443	3.24	0.001	.1643156	.6658482
_cons	-53.8353	128.2932	-0.42	0.675	-305.2853	197.6147
invest3						
mvalue3	.0522683	.0191105	2.74	0.006	.0148124	.0897243
kstock3	.1071995	.0287962	3.72	0.000	.0507599	.163639
_cons	-39.32897	37.37061	-1.05	0.293	-112.574	33.91607
invest4						
mvalue4	.0632339	.0142336	4.44	0.000	.0353364	.0911313
kstock4	.1487322	.0825525	1.80	0.072	0130678	.3105321
cons	12.50393	11.02009	1.13	0.257	-9.09504	34.1029

Christopher F Baum and Mark E. Schaffer ()

DC09 & UKSUG15 18 / 50

As the results from this user-written routine have been stored in the ereturn array, the normal post-estimation features are available:

A number of additional features could be added to suregub to more closely match the behavior of sureg.

As the results from this user-written routine have been stored in the ereturn array, the normal post-estimation features are available:

A number of additional features could be added to suregub to more closely match the behavior of sureg.

We turn now to our second estimator: the continuously-updated generalized method of moments estimator (GMM-CUE) of Hansen, Heaton, Yaron (1996). This estimator is described in Baum, Schaffer, Stillman, *Stata Journal* 7:4, 2007. This is an estimator of a linear instrumental variables model that requires numerical optimization for its solution.

We have implemented this estimator for ivreg2 in Stata's ado-file language using the maximum likelihood commands of the ml suite. Although that is a workable solution, it can be very slow for large datasets with many regressors and instruments. In Stata versions 10 and 11, a full-featured suite of optimization commands are available in Mata as optimize(). We implement a simple IV-GMM estimator in Mata and use that as a model for implementing GMM-CUE.

イロト イヨト イヨト イヨト

We turn now to our second estimator: the continuously-updated generalized method of moments estimator (GMM-CUE) of Hansen, Heaton, Yaron (1996). This estimator is described in Baum, Schaffer, Stillman, *Stata Journal* 7:4, 2007. This is an estimator of a linear instrumental variables model that requires numerical optimization for its solution.

We have implemented this estimator for ivreg2 in Stata's ado-file language using the maximum likelihood commands of the ml suite. Although that is a workable solution, it can be very slow for large datasets with many regressors and instruments. In Stata versions 10 and 11, a full-featured suite of optimization commands are available in Mata as optimize(). We implement a simple IV-GMM estimator in Mata and use that as a model for implementing GMM-CUE.

∃ → < ∃ →</p>

The following ado-file, mygmm2s.ado, accepts a dependent variable and three additional optional variable lists: for endogenous variables, included instruments and excluded instruments. A constant is automatically included in the regression and in the instrument matrix.

There is a single option, robust, which specifies whether we are assuming *i.i.d.* errors or allowing for arbitrary heteroskedasticity. The routine calls Mata function m_mygmm2s() and receives results back in the return list. Estimation results are assembled and posted to the official locations so that we may make use of Stata's ereturn display command and enable the use of post-estimation commands such as test and lincom.

イロト イヨト イヨト イヨト

The following ado-file, mygmm2s.ado, accepts a dependent variable and three additional optional variable lists: for endogenous variables, included instruments and excluded instruments. A constant is automatically included in the regression and in the instrument matrix.

There is a single option, robust, which specifies whether we are assuming *i.i.d.* errors or allowing for arbitrary heteroskedasticity. The routine calls Mata function m_mygmm2s() and receives results back in the return list. Estimation results are assembled and posted to the official locations so that we may make use of Stata's ereturn display command and enable the use of post-estimation commands such as test and lincom.


```
*! mygmm2s 1.0.2 MES/CFB 11aug2008
program mygmm2s, eclass
       version 10.1
/*
  Our standard syntax:
  mygmm2s y, endog(varlist1) inexog(varlist2) exexog(varlist3) [robust]
  where varlist1 contains endogenous regressors
        varlist2 contains exogenous regressors (included instruments)
        varlist3 contains excluded instruments
  Without robust, efficient GMM is IV. With robust, efficient GMM is 2-step
  efficient GMM, robust to arbitrary heteroskedasticity.
  To accommodate time-series operators in the options, add the "ts"
*/
        syntax varname(ts) [if] [in] [, endog(varlist ts) inexog(varlist ts) ///
                 exexog(varlist ts) robust ]
        local depvar `varlist'
```



```
/*
```

marksample handles the variables in `varlist' automatically, but not the variables listed in the options `endog', `inexog' and so on. -markout- sets `touse' to 0 for any observations where the variables listed are missing. */

```
marksample touse
       markout `touse' `endog' `inexog' `exexog'
// These are the local macros that our Stata program will use
       tempname b V omega
// Call the Mata routine. All results will be waiting for us in "r()" macros.
       mata: m_mygmm2s("`depvar'", "`endog'", "`inexog'", ///
                        "`exexoq'", "`touse'", "`robust'")
```



```
// Move the basic results from r() macros into Stata matrices.
       mat b' = r(beta)
       mat V' = r(V)
       mat `omega' = r(omega)
// Prepare row/col names.
// Our convention is that regressors are [endog included exog]
// and instruments are
                                         [excluded exog included exog]
// Constant is added by default and is the last column.
        local vnames `endog' `inexog' _cons
       matrix rownames `V' = `vnames'
        matrix colnames `V' = `vnames'
       matrix colnames `b' = `vnames'
        local vnames2 `exexog' `inexog' _cons
       matrix rownames `omega' = `vnames2'
       matrix colnames `omega' = `vnames2'
```


イロト イヨト イヨト イヨト

```
// We need the number of observations before we post our results.
       local N = r(N)
       ereturn post `b' `V', depname (`depvar') obs (`N') esample (`touse')
// Store remaining estimation results as e() macros accessible to the user.
       ereturn matrix omega `omega'
       ereturn local depvar = "`depvar'"
       ereturn scalar N = r(N)
       ereturn scalar j = r(j)
       ereturn scalar L = r(L)
       ereturn scalar K = r(K)
       if "`robust'" != "" {
            ereturn local vcetvpe "Robust"
        display newline "Two-step GMM results" col(60) "Number of obs = " e(N)
        ereturn displav
       display "Sargan-Hansen J statistic: " %7.3f e(j)
       display "Chi-sq(" %3.0f e(L)-e(K) " ) P-val = " ///
                %5.4f chiprob(e(L)-e(K), e(j)) newline
end
```

0

The Mata function receives the names of variables to be included in the regression and creates view matrices for Y (the dependent variable), X1 (the endogenous variables), X2 (the exogenous regressors or included instruments) and Z1 (the excluded instruments). The st_tsrevar() function is used to deal with Stata's time series operators in any of the variable lists.


```
// Use st tsrevar in case any variables use Stata's time-series operators.
        st_view(Y, ., st_tsrevar(tokens(yname)), touse)
        st view(X1, ., st tsrevar(tokens(endognames)), touse)
        st_view(X2, ., st_tsrevar(tokens(inexognames)), touse)
        st view(Z1, ., st tsrevar(tokens(exexognames)), touse)
// Our convention is that regressors are [endog included exog]
// and instruments are
                                          [excluded exog included exog]
// Constant is added by default and is the last column.
        cons = J(rows(X2), 1, 1)
        X2 = X2, cons
        X = X1, X2
        Z = Z1, X2
       K = cols(X)
       L = cols(Z)
       N = rows(Y)
        QZZ = 1/N * quadcross(Z, Z)
       QZX = 1/N \star quadcross(Z, X)
```


イロト イポト イヨト イヨト

```
// First step of 2-step feasible efficient GMM: IV (2SLS). Weighting matrix
// is inv of Z'Z (or QZZ).
        W = invsym(QZZ)
        beta_iv = (invsym(X'Z * W * Z'X) * X'Z * W * Z'Y)
// By convention, Stata parameter vectors are row vectors
        beta_iv = beta_iv'
// Use first-step residuals to calculate optimal weighting matrix for 2-step FE GMM
        omega = m_myomega(beta_iv, Y, X, Z, robust)
// Second step of 2-step feasible efficient GMM: IV (2SLS). Weighting matrix
// is inv of Z'Z (or QZZ).
        W = invsym(omega)
        beta_gmm = (invsym(X'Z * W * Z'X) * X'Z * W * Z'Y)
// By convention, Stata parameter vectors are row vectors
        beta gmm = beta gmm'
```



```
// Sargan-Hansen J statistic: first we calculate the second-step residuals
        e = Y - X * beta gmm'
// Calculate gbar = 1/N * Z'*e
        gbar = 1/N * guadcross(Z, e)
        i = N * gbar' * W * gbar
// Sandwich var-cov matrix (no finite-sample correction)
// Reduces to classical var-cov matrix if Omega is not robust form.
// But the GMM estimator is "root-N consistent", and technically we do
// inference on sqrt(N) *beta. By convention we work with beta, so we adjust
// the var-cov matrix instead:
        V = 1/N * invsvm(OZX' * W * OZX)
// Easiest way of returning results to Stata: as r-class macros.
        st_matrix("r(beta)", beta_gmm)
        st matrix("r(V)", V)
        st matrix("r(omega)", omega)
        st numscalar("r(j)", j)
        st numscalar("r(N)", N)
        st numscalar("r(L)", L)
        st numscalar("r(K)", K)
end
```

۲

This function in turn calls an additional Mata function, $m_myomega()$, to compute the appropriate covariance matrix. This is a real matrix function, as it will return its result, the real matrix omega, to the calling function.

Because we will reuse the m_myomega() function in our GMM-CUE program, we place it in a separate file, m_myomega.mata, with instructions to compile it into a .mo file.

This function in turn calls an additional Mata function, m_myomega(), to compute the appropriate covariance matrix. This is a real matrix function, as it will return its result, the real matrix omega, to the calling function.

Because we will reuse the m_myomega() function in our GMM-CUE program, we place it in a separate file, m_myomega.mata, with instructions to compile it into a .mo file.


```
mata: mata clear
version 10.1
mata: mata set matastrict on
mata:
// m_myomega 1.0.0 MES/CFB 11aug2008
real matrix m myomega(real rowvector beta,
                      real colvector Y.
                      real matrix X.
                      real matrix Z,
                      string scalar robust)
{
        real matrix QZZ, omega
        real vector e, e2
        real scalar N, sigma2
// Calculate residuals from the coefficient estimates
                N = rows(Z)
                e = Y - X * beta'
```


イロト イヨト イヨト イヨト

This gives us a working Mata implementation of an instrumental variables estimator and an IV-GMM estimator (accounting for arbitrary heteroskedasticity), and we can verify that its results match those of ivregress or our own ivreg2. To implement the GMM-CUE estimator, we clone mygmm2s.ado to mygmmcue.ado. The ado-file code is very similar:

3

イロト イポト イヨト イヨト

```
local vnames `endog' `inexog' _cons
matrix rownames `V' = `vnames'
matrix colnames 'V' = 'vnames'
matrix colnames `b' = `vnames'
local vnames2 `exexog' `inexog' _cons
matrix rownames `omega' = `vnames2'
matrix colnames `omega' = `vnames2'
local N = r(N)
ereturn post `b' `V', depname(`depvar') obs(`N') esample(`touse')
ereturn matrix omega `omega'
ereturn local depvar = "`depvar'"
ereturn scalar N = r(N)
ereturn scalar j = r(j)
ereturn scalar L = r(L)
ereturn scalar K = r(K)
if "`robust'" != "" ereturn local vcetvpe "Robust"
display _newline "GMM-CUE estimates" _col(60) "Number of obs = " e(N)
ereturn displav
display "Sargan-Hansen J statistic: " %7.3f e(j)
display "Chi-sq(" %3.0f e(L)-e(K) " ) P-val = " ///
        %5.4f chiprob(e(L)-e(K), e(j)) newline
```

end

イロト イヨト イヨト イヨト

We now consider how the Mata function must be modified to incorporate the numerical optimization routines. We must first make use of Mata's external declaration to specify that the elements needed within our objective function evaluator are visible to that routine. We could also pass those arguments to the evaluation routine, but treating them as external requires less housekeeping. As in the standard two-step GMM routine, we derive first-step estimates of the regression parameters from a standard GMM estimation.

We then use Mata's <code>optimize()</code> functions to set up the optimization problem. The <code>optimize_init()</code> call, as described in Gould, *Stata Journal* 7:4, sets up a Mata *structure* named s containing all elements of the problem. In a call to <code>optimize_init_evaluator()</code>, we specify that the evaluation routine is a Mata function, <code>m_mycuecrit()</code>, by providing a *pointer* to the function (see ITSP, Section 13.8).

프 > + 프 >

```
mata:
   m mygmmcue 1.0.0 MES/CFB 11aug2008
11
void m mygmmcue(string scalar yname,
                string scalar endognames,
                string scalar inexognames,
                string scalar exexognames,
                string scalar touse,
                string scalar robust)
        real matrix X1, X2, Z1, OZZ, OZX, W, V
        real vector cons, beta_iv, beta_cue
        real scalar K, L, N, S, i
// In order for the optimization objective function to find various variables
// and data they have to be set as externals. This means subroutines can
// find them without having to have them passed to the subroutines as arguments
> .
// robustflag is the robust argument recreated as an external Mata scalar.
        external Y, X, Z, e, omega, robustflag
        robustflag = robust
```



```
st_view(Y, ., st_tsrevar(tokens(yname)), touse)
        st view(X1, ., st tsrevar(tokens(endognames)), touse)
        st_view(X2, ., st_tsrevar(tokens(inexognames)), touse)
        st view(Z1, ., st tsrevar(tokens(exexognames)), touse)
// Our convention is that regressors are [endog
                                                          included exog]
// and instruments are
                                          [excluded exog included exog]
// The constant is added by default and is the last column.
        cons = J(rows(X2), 1, 1)
        X2 = X2, cons
        X = X1, X2
        Z = Z1, X2
       K = cols(X)
       L = cols(Z)
       N = rows(Y)
        QZZ = 1/N \star quadcross(Z, Z)
       QZX = 1/N \star quadcross(Z, X)
```


(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

// First step of CUE GMM: IV (2SLS). Use beta_iv as the initial values for // the numerical optimization.

W = invsym(QZZ)

beta_iv = invsym(X'Z * W *Z'X) * X'Z * W * Z'Y

// Stata convention is that parameter vectors are row vectors, and optimizers
// require this, so must conform to this in what follows.

beta_iv = beta_iv'

// What follows is how to set out an optimization in Stata. First, initialize // the optimization structure in the variable S. Then tell Mata where the // objective function is, that it's a minimization, that it's a "d0" type of // objective function (no analytical derivatives or Hessians), and that the // initial values for the parameter vector are in beta_iv. Finally, optimize. S = optimize_init() optimize_init_evaluator(S, &m_mycuecrit())

イロト イポト イヨト イヨト

We call optimize_init_which() to indicate that we are minimizing (rather than maximizing) the objective function, and use optimize_init_evaluatortype() that our evaluation routine is a type d0 evaluator. Finally, we call optimize_init_params() to provide starting values for the parameters from the instrumental variables coefficient vector beta_iv.

The optimize() function invokes the optimization routine, returning its results in the parameter rowvector beta_cue. The optimal value of the objective function is retrieved with optimize_result_value().

イロン イロン イヨン イヨン 二日

We call optimize_init_which() to indicate that we are minimizing (rather than maximizing) the objective function, and use optimize_init_evaluatortype() that our evaluation routine is a type d0 evaluator. Finally, we call optimize_init_params() to provide starting values for the parameters from the instrumental variables coefficient vector beta_iv.

The optimize() function invokes the optimization routine, returning its results in the parameter rowvector beta_cue. The optimal value of the objective function is retrieved with optimize_result_value().


```
optimize init which(S, "min")
        optimize_init_evaluatortype(S, "d0")
        optimize init params(S, beta iv)
        beta_cue = optimize(S)
// The last omega is the CUE omega, and the last evaluation of the GMM
   objective function is J.
        W = invsym(omega)
        j = optimize result value(S)
        V = 1/N * invsym(OZX' * W * OZX)
        st_matrix("r(beta)", beta_cue)
        st matrix("r(V)", V)
        st matrix("r(omega)", omega)
        st_numscalar("r(j)", j)
        st numscalar("r(N)", N)
        st_numscalar("r(L)", L)
        st numscalar("r(K)", K)
}
end
mata: mata mosave m_mygmmcue(), dir(PERSONAL) replace
```


Let us now examine the evaluation routine. Given values for the parameter vector beta, it computes a new value of the omega matrix (Ω , the covariance matrix of orthogonality conditions) and a new set of residuals e, which are also a function of beta.

The j statistic, which is the minimized value of the objective function, is then computed, depending on the updated residuals e and the weighting matrix $w = \Omega^{-1}$, a function of the updated estimates of beta.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let us now examine the evaluation routine. Given values for the parameter vector beta, it computes a new value of the omega matrix (Ω , the covariance matrix of orthogonality conditions) and a new set of residuals e, which are also a function of beta.

The j statistic, which is the minimized value of the objective function, is then computed, depending on the updated residuals ${\rm e}$ and the weighting matrix ${\rm W}~=~\Omega^{-1}$, a function of the updated estimates of beta.


```
mata:
// GMM-CUE evaluator function.
// Handles only d0-type optimization; todo, g and H are just ignored.
// beta is the parameter set over which we optimize, and
// j is the objective function to minimize.
// m_mycuecrit 1.0.0 MES/CFB 11aug2008
void m mycuecrit (todo, beta, j, g, H)
        external Y, X, Z, e, omega, robustflag
        real matrix W
        real vector gbar
        real scalar N
        omega = m myomega(beta, Y, X, Z, robustflag)
        W = invsym(omega)
       N = rows(Z)
       e = Y - X + beta'
// Calculate gbar=Z'*e/N
        gbar = 1/N * guadcross(Z,e)
        i = N * gbar' * W * gbar
end
mata: mata mosave m mycuecrit(), dir(PERSONAL) replace
```


Our Mata-based GMM-CUE routine is now complete. To validate both the two-step GMM routine and its GMM-CUE counterpart, we write a simple certification script for each routine. First, let's check to see that our two-step routine works for both *i.i.d.* and heteroskedastic errors. Our mygmm2s routine returns the same results as ivreg2 from SSC for the several objects included in the savedresults compare validation command, and these functions of ivreg2 have been certified against official Stata's ivregress.

Now we construct and run a similar certification script to validate the GMM-CUE routine:

Our Mata-based GMM-CUE routine is now complete. To validate both the two-step GMM routine and its GMM-CUE counterpart, we write a simple certification script for each routine. First, let's check to see that our two-step routine works for both *i.i.d.* and heteroskedastic errors. Our mygmm2s routine returns the same results as ivreg2 from SSC for the several objects included in the savedresults compare validation command, and these functions of ivreg2 have been certified against official Stata's ivregress.

Now we construct and run a similar certification script to validate the GMM-CUE routine:


```
. quietly ivreg2 lw s expr tenure rns smsa (iq=med kww age mrt), cue
r; t=7.18 9:39:41
. savedresults save ivreg2cue e()
r; t=0.00 9:39:41
. mygmmcue lw, endog(iq) inexog(s expr tenure rns smsa) ///
> exexog(med kww age mrt)
Iteration 0: f(p) = 61.136598
Iteration 1: f(p) = 32.923655
Iteration 1: f(p) = 32.923655
Iteration 2: f(p) = 32.83694
Iteration 3: f(p) = 32.831616
Iteration 5: f(p) = 32.831615
GMM-CUE estimates Number of obs = 758
```

lw	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
iq	0755427	.0132447	-5.70	0.000	1015018	0495837
S	.3296909	.0430661	7.66	0.000	.245283	.4140989
expr	.0098901	.0184522	0.54	0.592	0262755	.0460558
tenure	.0679955	.0224819	3.02	0.002	.0239317	.1120594
rns	3040223	.0896296	-3.39	0.001	4796931	1283515
smsa	.2071594	.0797833	2.60	0.009	.050787	.3635318
_cons	8.907018	.8754361	10.17	0.000	7.191194	10.62284

Sargan-Hansen J statistic: 32.832 Chi-sq(3) P-val = 0.0000 r; t=0.57 9:39:42

イロト イポト イヨト イヨト 二日

```
. savedresults compare ivreg2cue e(), include (macros: depvar scalar: N j matrix
> : b V) ///
>
              tol(le-4) verbose
comparing macro e(depvar)
comparing scalar e(N)
comparing scalar e(j)
comparing matrix e(b)
comparing matrix e(V)
r; t=0.01 9:39:42
. guietly ivreg2 lw s expr tenure rns smsa (ig=med kww age mrt), cue robust
r; t=13.46 9:39:55
. savedresults save ivreg2cue e()
r; t=0.00 9:39:55
. mygmmcue lw, endog(ig) inexog(s expr tenure rns smsa) ///
           exexog(med kww age mrt) robust
Iteration 0: f(p) = 52.768916
Iteration 1: f(p) = 28.946591 (not concave)
Iteration 2: f(p) = 27.417939 (not concave)
Iteration 3: f(p) = 27.041838
Iteration 4: f(p) = 26.508996
Iteration 5: f(p) = 26.420853
Iteration 6: f(p) = 26.420648
Iteration 7: f(p) = 26.420637
Iteration 8: f(p) = 26.420637
```


3

イロン イ理 とく ヨン イヨン

GMM-CUE estimates

Number of obs = 758

lw	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
iq	0770701	.0147825	-5.21	0.000	1060433	048097
s	.3348492	.0469881	7.13	0.000	.2427542	.4269441
expr	.0197632	.0199592	0.99	0.322	019356	.0588825
tenure	.0857848	.0242331	3.54	0.000	.0382888	.1332807
rns	3209864	.091536	-3.51	0.000	5003937	1415791
smsa	.255257	.0837255	3.05	0.002	.091158	.419356
_cons	8.943698	.9742228	9.18	0.000	7.034257	10.85314

```
Sargan-Hansen J statistic: 26.421
Chi-sq( 3 ) P-val = 0.0000
r; t=0.68 9:39:56
. savedresults compare ivreg2cue e(), include(macros: depvar scalar: N j matrix
> : b V) ///
> tol(1e-4) verbose
comparing macro e(depvar)
comparing scalar e(N)
comparing scalar e(j)
comparing matrix e(b)
comparing matrix e(V)
```


э

<ロ> <問> <問> < 回> < 回> 、

We find that the estimates produced by mygmmcue are reasonably close to those produced by the ml-based optimization routine employed by ivreg2. As we sought to speed up the calculation of GMM-CUE estimates, we are pleased to see the timings displayed by set rmsg on. For the non-robust estimates, ivreg2 took 6.07 seconds, while mygmmcue took 0.51 seconds: a twelve-fold speedup.

For the robust CUE estimates, ivreg2 required 12.69 seconds, compared to 0.64 seconds for mygmmcue: an amazing twenty times faster. Calculation of the robust covariance matrix using Mata's matrix operations is apparently much more efficient from a computational standpoint.

We look forward to further improvements in our ability to implement estimators such as GMM-CUE in Stata version 11, with its support for a general-purpose GMM command.

э

We find that the estimates produced by mygmmcue are reasonably close to those produced by the ml-based optimization routine employed by ivreg2. As we sought to speed up the calculation of GMM-CUE estimates, we are pleased to see the timings displayed by set rmsg on. For the non-robust estimates, ivreg2 took 6.07 seconds, while mygmmcue took 0.51 seconds: a twelve-fold speedup.

For the robust CUE estimates, ivreg2 required 12.69 seconds, compared to 0.64 seconds for mygmmcue: an amazing twenty times faster. Calculation of the robust covariance matrix using Mata's matrix operations is apparently much more efficient from a computational standpoint.

We look forward to further improvements in our ability to implement estimators such as GMM-CUE in Stata version 11, with its support for a general-purpose GMM command.

э

We find that the estimates produced by mygmmcue are reasonably close to those produced by the ml-based optimization routine employed by ivreg2. As we sought to speed up the calculation of GMM-CUE estimates, we are pleased to see the timings displayed by set rmsg on. For the non-robust estimates, ivreg2 took 6.07 seconds, while mygmmcue took 0.51 seconds: a twelve-fold speedup.

For the robust CUE estimates, ivreg2 required 12.69 seconds, compared to 0.64 seconds for mygmmcue: an amazing twenty times faster. Calculation of the robust covariance matrix using Mata's matrix operations is apparently much more efficient from a computational standpoint.

We look forward to further improvements in our ability to implement estimators such as GMM-CUE in Stata version 11, with its support for a general-purpose GMM command.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >