

Regression Diagnostics for Survey Data

Richard Valliant Joint Program in Survey Methodology, University of Maryland and University of Michigan USA

Jianzhu Li (Westat), Dan Liao (JPSM)

Introduction

• Topics—adaptations to survey data of ...

Leverages

DFBETAS

DFFITS

Cook's D

Collinearity measures

Forward search

• Comparisons to standard diagnostics

Linear Regression on Survey Data

• Weighted least squares estimates (fixed effects)

 $Y_{i} = \mathbf{x}_{i}^{T} \boldsymbol{\beta} + \varepsilon_{i}, \quad \varepsilon_{i} \sim \left(0, v_{i} \sigma^{2}\right) \text{ independent (no clustering but can be handled)}$ $\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^{T} \mathbf{W} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{W} \mathbf{V}^{-1} \mathbf{Y}$

If constant variance, $\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T \mathbf{W} \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{W} \mathbf{Y}$

W = diagonal matrix of survey weights

- $\hat{\beta}$ can be interpreted as an estimate of
 - (i) parameter in underlying model or of
 - (ii) "census fit" parameter

Reasons for Using Diagnostics

- Extreme points can affect regression parameter estimates, hypothesis tests, & confidence intervals
- Extremes can be due to
 - outlying X's or Y's (survey or non-survey data)
 - large weights (survey data)
 - interaction of weights with X's and Y's

A, B, and C are all influential. A, C may affect estimated slope.

C will not affect slope but may reduce SE of slope.

Generated data based on a survey of mental health organizations

The 5 points in the lower right may or may not be influential

depending on size of their survey weights.

Survey Weights

- Survey weights are intended to expand a sample to a finite population. They are <u>NOT</u> same as inverse-variance weights in usual WLS regression.
- Reasons for variation in size of weights due to sample design
 - Household surveys
 - Different sampling rates for demographic groups (e.g., to get equal sample sizes for groups)
 - Business/institution surveys
 - Varying sampling rates by type of business (retail, service, etc)
 - PPS sampling (probs \propto no. of employees)

- More reasons for variation in size of weights
 - Differential follow-up for nonresponse, i.e., subsampling of neighborhoods at different rates for nonresponse
 conversion, callbacks
 - Low response rates followed by large nonresponse adjustments in some groups
 - Use of auxiliary data in estimation—poststratification by age, race, sex; general regression estimation using no. of employees, prior year expenditures, etc.

Examples

 1999-2002 National Health & Nutrition Examination Survey (NHANES)

Weight range for Mexican-Americans: 698 – 103,831 (148:1)

• 1998 Survey of Mental Health Organizations

Weight range: 1 - 159

• 2002 Status of the Armed Forces Survey

Weight range: 2.3 – 384 (168:1)

Hat Matrix and Leverages

(Li & Valliant, Survey Methodology 2009)

• Predicted values: $\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$

$$\mathbf{H} = \mathbf{X}\mathbf{A}^{-1}\mathbf{X}^T\mathbf{W}$$
 with $\mathbf{A} = \mathbf{X}^T\mathbf{W}\mathbf{X}$

- Leverages on the diagonal of hat matrix are $h_{ii} = \mathbf{x}_i^T \mathbf{A}^{-1} \mathbf{x}_i w_i$
- When model has an intercept, leverage can be decomposed as

$$h_{ii} = \frac{1}{n} \frac{w_i}{\overline{w}} \bigg[1 + \hat{N} \big(\mathbf{x}_i - \overline{\mathbf{x}}_W \big)^T \, \mathbf{S}^{-1} \big(\mathbf{x}_i - \overline{\mathbf{x}}_W \big) \bigg],$$

S is a x-product matrix involving x's; $\overline{\mathbf{x}}_W$ wtd mean of x's

• A point has high leverage if its weight is >> average or \mathbf{x}_i is

toward edge of ellipsoid centered at $\overline{\mathbf{x}}_W$.

An Example

- 1998 Survey of Mental Health Organizations (SMHO). PPS sample
- Regress expenditures on no. of beds (BEDS), no. patients

added during years (ADDS)

Quantiles of Variables in SMHO Regression.

	Quantiles						
Variables	0%	25%	50%	75%	100%		
Expenditure (1000's)	17	2,932	6,240	11,842	519,863		
BEDS	0	6	36	93	2,405		
ADDS	0	558	1,410	2,406	79,808		
Weights	1	1.42	2.48	7.76	158.86		

Scatterplots of expenditures versus beds and additions. High leverage points based on OLS (SW) are highlighted in top (bottom) row.

Plot of survey weighted leverages versus OLS unweighted leverages.

Rule-of-thumb cutoff is 2 p/nA = detected by SW only; B = detected by OLS only OLS and SW parameter estimates of SMHO regression using all 875 sample cases.

Independent	OLS Estimation			SW Estimation		
Variables	Coefficient	SE	t	Coefficient	SE	t
Intercept	-1,201	526	-2.3	514	1,158	0.4
# of Beds	94	3	31	81	13	6.2
# of Additions	2.3	0.13	18	1.8	0.8	2.4

Deleting observations with leverages greater than 2p/n=0.007

			<u> </u>		- /		
Intercept	2,987	490	6	1,994	354	5.6	
# of Beds	69	4.4	16	76	6.7	11.2	
# of Additions	0.95	0.20	4.7	1.0	0.20	4.7	

- After deleting high leverage points, SEs reduced, OLS and WLS estimates closer to each other.
- Significance of coefficients unchanged (except for intercept)

Variance Estimators

- Estimators of $Var(\hat{\beta})$ are needed for several diagnostics
- Options are Binder sandwich (*ISR* 1983) or replication (jackknife, BRR, bootstrap)

These are both design- and model-consistent.

• Purely model-based estimator useful for setting cutoffs

$$v_M(\hat{\boldsymbol{\beta}}) = \hat{\sigma}^2 \mathbf{A}^{-1} \mathbf{X}^T \mathbf{W}^2 \mathbf{X} \mathbf{A}^{-1} \text{ with } \hat{\sigma}^2 = \sum_{i \in s} w_i e_i^2 / (\hat{N} - p)$$

$$e_i = Y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}} , \ \hat{N} = \sum_{i \in S} w_i$$

Standardized Residuals

- Standardizing so that residuals have (approximate) variance 1 makes interpretation easier.
- Use $e_i/\hat{\sigma}$
- Cutoff for large: 2 or 3 based on Gauss inequality

(No design-based, distribution theory for residuals, even asymptotically)

DFBETAS, **DFFITS**

(Li & Valliant 2009, submitted)

• Measure effect of single unit on each $\hat{\beta}_j$ separately

• DFBETAS_{ij} =
$$\frac{c_{ji}e_i/(1-h_{ii})}{\sqrt{v(\hat{\beta}_j)}}$$
 with $c_{ij} = (\mathbf{A}^{-1}\mathbf{x}_i e_i w_i)_j$, $i = \text{unit}, j = \text{parm}$

Based on
$$DFBETA_i = \hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}(i) = \mathbf{A}^{-1} \mathbf{x}_i e_i w_i / (1 - h_{ii})$$

Large if any of weight, residual, or leverage is large

A lot to look at: *np* values

• Measure effect of unit *i* on prediction

Multiply *DFBETA_i* by
$$\mathbf{x}_i^T$$
 to get *DFFITS_i* = $\frac{h_{ii}e_i/(1-h_{ii})}{\sqrt{v(\hat{\beta}_j)}}$

• Heuristic cutoffs

DFBETAS_{ij} z/\sqrt{n}

 $DFFITS_i \ z\sqrt{p/n}$, z = 2 or 3

(Bonferroni adjustment to cutoffs can be used)

Extended Cook's D

• Measures effect of single unit on vector estimate $\hat{\boldsymbol{\beta}}$

•
$$ED_i = \left(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}(i)\right)^T \left[v(\hat{\boldsymbol{\beta}})\right]^{-1} \left(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}(i)\right)$$

Compare to quantiles from $\chi^2(p)$ distribution. Influential units

are ones that define a "large" ellipsoid centered at $\hat{\beta}$.

- Per Atkinson (*JRSS-B* 1982), an alternative that detects more points is $MD_i = \sqrt{nED_i/p}$.
- Heuristic cutoff for MD_i is 2 or 3

SMHO Data: Regress expenditures on BEDS, ADDS

C & D are cases identified by OLS but not by SW

These are all cases with small weights.

OLS flags 57 cases; SW 9.

A = cases identified by SW only; B = OLS only

OLS flags 44; MD flags 10

OLS and SW Parameter Estimates after Deleting Observations with Large Modified Cook's Distance.

Independent OLS Estim			ion SW Estimation		n	
Variables	Coefficient	SE	t	Coefficient	SE	t
Intercept	-1,201	526	-2.3	514	1,158	0.4
# of Beds	94	3	31	81	13	6.2
# of Additions	2.3	0.13	18	1.8	0.8	2.4
			-	1		
No. units deleted	44			10		
Independent Variables	Coefficient	SE	t	Coefficient	SE	t
Intercept	1660	335	4.9	932	345	2.7
# of Beds	81	2.4	33	83	5.7	14.5
# of Additions	1.2	0.12	9.7	1.4	0.3	5.4

Forward Search

(Atkinson & Riani book 2000), Li & Valliant 2009, draft)

- One outlier can mask effect of another
- Identify groups of influential observations to avoid masking effect

- Method
 - Fit a robust regression (e.g., least median of squares) to subsample of full sample
 - Choose subsample that minimizes $median(e_{OLS,i}^2)$
 - Subsample m = p
 - Find m+1 cases with smallest squared residuals
 - Track $\hat{\sigma}^2$
 - Look for point at which $\hat{\sigma}^2$ makes abrupt change. All cases after that are called outliers.

(No abrupt changes \Rightarrow no outliers)

• Adaptations made for survey data

SMHO Data again

Plots of Parameter Estimates from Forward Search

83 points identified as influential; 20 never identified by single-

case deletion methods (DFBETAS, DFFITS, modified Cook, etc)

Method may have promise but more work needed.

Collinearity

- Collinearity is worrisome for both numerical and statistical reasons.
- Estimates of slopes can be numerically unstable, i.e., small changes in the X's or the Y's can produce large changes in estimates.
- Correlation among predictors can lead to slope estimates with large variances.
- When X's are strongly correlated, R^2 can be large while the individual slope estimates are not statistically significant.
- Even if slope estimates are significant, they may have opposite sign of what is expected.

• Variance inflation factor (VIF)

Measure of how much $var(\hat{\beta}_j)$ is inflated compared to what it

would be if *x*'s were <u>orthogonal</u>.

$$\operatorname{Var}_{M}\left(\hat{\beta}_{k}\right) = \frac{1}{\underbrace{1-R_{k}^{2}}_{VIF}} \frac{\sigma^{2}}{\sum_{i \in s} x_{ik}^{2}}$$

 R_k^2 is the R-square from regressing $\dot{\mathbf{x}}_k$ on the other x's.

 $\dot{\mathbf{x}}_k$ = column *k* of **X**

• For survey weighted regression estimator, if $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, $\boldsymbol{\epsilon} \sim (\mathbf{0}, \mathbf{V})$

$$\operatorname{Var}_{M}\left(\hat{\beta}_{k}\right) = \frac{\zeta_{k}\eta_{k}}{\underbrace{1-R_{SW(k)}^{2}}_{VIF}} \left(\operatorname{Var} \text{ if } \dot{\mathbf{x}}_{k} \perp \text{ others}\right)$$

 $R_{SW(k)}^2$ = R-square from SW of regression of $\dot{\mathbf{x}}_k$ on other x's

$$\zeta_k = \frac{\mathbf{e}_{(k)}^T \mathbf{W} \mathbf{W} \mathbf{e}_{(k)}}{\mathbf{e}_{(k)}^T \mathbf{W} \mathbf{e}_{(k)}}, \qquad \eta_k = \frac{\dot{\mathbf{x}}_k^T \mathbf{W} \dot{\mathbf{x}}_k}{\dot{\mathbf{x}}_k^T \mathbf{W} \mathbf{W} \dot{\mathbf{x}}_k},$$

 $\mathbf{e}_{(k)}$ = vector of residuals from regressing $\dot{\mathbf{x}}_k$ on other x's

- Approaches to estimation
 - Purely model-based

- Think of census value of
$$rac{\zeta_k\eta_k}{1-R_{SW(k)}^2}$$
; fill in design-based

estimates of each component.

- Variance decomposition using SVD: use to identify pairs of x's that are collinear (ala Belsley, Kuh, Welsch 1980)
- Work is in progress on this

Conclusion

- Different points can be influential in OLS and SW regression.
 Specialized diagnostics needed for survey data (assuming survey weighted LS used).
 - If you adopt OLS regression, use OLS diagnostics; if you adopt SW regression, use SW diagnostics.
- Little formal distribution theory available
- Packages do not currently include diagnostics for survey regressions

- Implications of dropping points based on diagnostics
 - "Core" model being fitted: one that fits for the portion of population that excludes influential points
 - Idea of estimating census parameter is lost

- What if mechanical procedure used that automatically drops points?
 - SE's too small, CI's cover at less than nominal rate,

hypothesis tests reject too often

- Similar to problems known for stepwise regression (Zhang *BMKA* 1992, Hurvich & Tsai *TAS* 1990)
- Collinearity has similar effects on survey estimators as in regular regression
 - Same inference problems may exist as above if automatic

procedure used.