
Slide 1

'

&

$

%

Transfering Data with outdat.ado

Ulrich Kohler, University of Mannheim, Germany

ukohler@sowi.uni-mannheim.de

May 23 2002

My presentation is about “outdat.ado”, a program to transfer data from Stata to other sta-
tistical software packages. I know that there are already software packages like Stat/Transfer
and that they do a pretty good job. I also know that it is a bad idea to transfer data from
Stata to another package as we usually don’t want to use another package than Stata to
analyze data. So let me say something for ustification:

At first I like to state that there are at least some reasons for using other software than
Stata. Some of my colleagues use Systat for graphs, for example, and I must admit that
Systat here is in some ways better than Stata.

My second justification has to do with my position as a lecturer at Mannheim University.
In Mannheim we use Stata as the main software. Sometimes our students want to share
their data with others who working with SPSS. They come to me and ask what they can do.
And I usually answer: “You can use that wonderful piece of software calling Stat/Transfer
for this”. And then they say: “Well we don’t have that wonderful piece of software calling
Stat/Transfer”. And then I say: “Ok, I am doing this for you”. So students go back to
their computers, send me the data and then I translate the data and send the data back to
the students. I really don’t like that.

Both points seems not be too important. But while discussing outdat with my college Frauke
Kreuter we realized two additional points, which we found much more compelling. Both
points have to do with the way ”outdat.ado” transfers the data. So let me first explain how
outdat works and then explain these points afterwards.

1



Slide 2

'

&

$

%

Structure of Presentation

1. Demonstration

2. General Idea

3. How to Expand

4. Why?

I will start to show how outdat works by doing an example.

Then I will introduce the general idea of outdat.ado.

Then I will give an impression what needs to be done to expand outdat.ado to other software
packages than those already implemented.

Finally I will talk about the two points, why a program like outdat may be useful in a
broader sense.

2



Slide 3

'

&

$

%

Syntax-Diagram and Example

outdat [varlist] using filename

[in range]

[if exp]

[, replace type(package)]

. use data1

. outdat gender area using data1, replace type(spss)

The Syntax of outdat is easy. The crucial part is the option type(). This option specifies
the software package into which the data should be transfered. Unfortunately at the time
being it is only possible to transfer to SPSS, Limdep and Stata. Note that Limdep is not
tested as I only have had access to the manuals not to the software. You may even wonder
about the silly thing to transfer data from Stata to Stata. But let us discuss thise after I
made the two points at the end of presentation.

Let me try to use outdat for SPSS. Lets use some data first

. use data1

and then try outdat:

. outdat gender area using data1, replace type(spss)

We are specifying the package by mention its name in the type()-option.

As a result of the command you get two files: data1.dat and data1.sps. Lets take a look at
them.

3



Slide 4

'

&

$

%

data1.dat

1 1

1 1

2 .

2 2

1 2

1 2

1 2

1 3

1 3

1 2

1 1

2 2

snip ✂

data1.dat is just a piece of ASCII data. To be more specific: it is ASCII data written by
outfile with the nolabel option.

Now lets take a look at data1.sps.

4



Slide 5

'

&

$

%

data1.sps

* SPSS-syntax to read and label data1.dat

DATA LIST FILE = "data1.dat" FREE / gender area .

VARIABLE LABELS

GENDER "Gender"

AREA "Neighborhodd" .

VALUE LABELS

GENDER

1 "men"

2 "women"

/AREA

1 "ancienty houses"

2 "new houses"

3 "mixed age"

4 "shops and houses"

5 "industrial area"

6 "other" .

exe.

data1.sps is a SPSS Syntax-File. It contains the command to read the data, the command
to define the variable label and the command to define the value labels. I will call a file like
this “dictionary” throughout this presentation. Note that in this specific dictionary there
is a slash in the front of the second variable in the value label command, as SPSS wants it
to be there. And yes, there is a point at the end of each command which SPSS really loves
to have there.

Now, lets load the data into SPSS. This can be done by starting SPSS, loading data1.sps
and run it. Note that SPSS gives some warning messages while running. This is, because
SPSS doesn’t understand that the points in data1.dat are missing values. But as SPSS
doesn’t understand the points at all, it assigns missing values to them, which is just fine.

5



Slide 6

'

&

$

%

The General Idea

outdat.ado

snip ✂

quietly outfile ‘varlist’ using ‘using’.dat, nolabel ‘replace’

snip ✂

outdat ‘type’ ‘varlist’ using ‘using’

snip ✂

The Basic Idea of outdat.ado is to split the process into two parts. The first part is to simply
write the data into an ASCII-File.

quietly outfile ‘varlist’ using ‘using’.dat, nolabel ‘replace’

The second part is to create the dictionary. In outdat.ado this part is done with the command

outdat ‘type’ ‘varlist’ using ‘using’

where ‘type’ is replaced with the name given in the type option. That is: outdat calls
a subprogram which wrote the dictionary. Therefore, if there is an ado-file called “out-
dat whatever.ado” somewhere around the path, we could specify outdat with the type()

option “whatever” and outdat would call this Ado to write the dictionary.

Given, that all statistical software packages can read ASCII-Files, the first part of transfer-
ring Stata-data to another format always stays the same. We only need to worry about the
second part.

It is possible to write modules for various software packages without changing outdat.ado at
all. This is very much like the possibility to expand “egen” with self-made egen-functions.
To add another outdat-type one has to write an ado calling outdat ‘whatever’. For example
to add an interface for SAS, one may write outdat sas.ado.

To write such an ado isn’t too hard. To do it one should rely onb the newly added file

command. With this command one can write arbitrary text to arbitrary files within a Stata
session. Therefore we can use this command to write software specific commands to a file.

6



Slide 7

'

&

$

%

Tools to Expand outdat.ado

• Number of Observations: N

• Number of Variables: local nvar: word count ‘varlist’

• Variable Names: ‘varlist’

• Variables Labels: local varlab: variable label varname

• Value Labels: local vallab: label (varname) #

Here you can see the list of informations one usually needs, to load ASCII-Data into a
software package and the means to get this information in an ado.

Before calling the subprogram outdat.ado keeps only the cases included in If - or In-Conditions.
Therefore one can get the number of cases with the build-in variable N.

The variables to be transfered are passed as a varlist from outdat.ado to the subprogram.
The number of words of that varlist equals the number of variables. The varlist also contains
the names of the variables.

To get the variable labels for each variable of the varlist one has to loop over the varlist and
catch the variable label with the extended macro function variable label.

Finally to get the value label for each variable one has to loop over each category of each
variable and to catch the labels with the extended macro function label (varname) #.

Albeit it seems not possible to present a general framework for expanding outdat, it may
be helpful to look at outdat spss.ado as one example.

7



Slide 8

'

&

$

%

Syntax of outdat spss.ado

outdat calls outdat spss with:

. outdat spss varlist using filename

outdat spss catches the varlist and the filename with its own
syntax-statement:

outdat spss.ado

version 7.0

program define outdat spss

syntax [varlist] using/

snip ✂

As you can see here outdat calls outdat spss with outdat spss ‘varlist’ using filename

and outdat spss caches the varlist and the filename with its own syntax-statement. Now
lets see, how outdat spss uses the varlist and the filename:

8



Slide 9

'

&

$

%

Building the Data-List

outdat spss.ado

snip ✂

file open spsfile using ‘using’.sps, replace text write

file write spsfile ‘"* SPSS-Syntax to read and label ‘using’.dat"’

file write spsfile /*

*/ n n ‘"DATA LIST FILE = "‘using’.dat" FREE / ‘varlist’ ."’

snip ✂

We first use file to open a text file with the name specified by the using-part of ouddat

and the extension “sps”. This file is going to be the data dictionary. SPS happens to be
the standard extension of SPSS-Syntax-Files, so I decided to hard-code this extension to
“outdat spss”.

Afterwards we write a comment line to have a nice caption in the Dictionary-File.

The next command first adds two new lines and then wrote the SPSS-command Data List

File = using.dat free / varlist into the growing dictionary. This is the SPSS command
to read ASCII-Files. The command requires to specify variable names. I put them into the
Data-List command with the local macro varlist, which expands to the variable names.

Now lets turn to the definition of variable-labels.

9



Slide 10

'

&

$

%

Definition of Variable-Labels

outdat sav.ado

snip ✂

file write spsfile _n "VARIABLE LABELS"

foreach var of varlist ‘varlist’ {
local varlab: variable label ‘var’

file write spsfile _n (upper("‘var’")) ‘" "‘varlab’" "’

}
file write spsfile "."

snip ✂

We start by writing the command “Variable labels” to the Dictionary. Then we loop over
each variable of the varlist by using foreach—the Stata 7 way of saying while. Inside the
loop we catch the variable label and write down this variable label in SPSS-Syntax to the
sps-file.

Finally let me show you the crucial part of the code for the value labels:

10



Slide 11

'

&

$

%

Definition of Value-Labels

outdat sav.ado

snip ✂

if ‘i’ == 1 {
file write spsfile _n (upper("‘var’"))

local i = ‘i’ +1

}
else {

file write spsfile _n "/" (upper("‘var’"))

}
forvalues j = 1/‘K’ {

summarize ‘var’ if ‘kvar’ == ‘j’, meanonly

local k = r(mean)

local vallab: label (‘var’) ‘k’

if "‘k’" ~= "." {
file write spsfile _n ‘"‘k’ "‘vallab’" "’

}
}

This is slightly more complicated. The part you can see here is inside a loop over the
variables. Before starting the loop I have already wrote the SPSS-Command “VALUE
LABEL” to the dictionary.

Inside the loop the first step is to write the name of the variable—without leading slash for
the first name and with leading slash for any other names.

Afterwards I start to loop over the values of the variable and write the label attached to the
value in question in SPSS-Syntax to the dictionary.

There is an additional complication in doing this as there may be gaps between the values.
My solution for this is to construct a variable which numbers the categories of the variable
in question. I summarize the variable in question for each category of this variable and use
the mean to find my value label. If there are better solutions for this, I would be happy to
hear about them.

Finally I have to answer the main question: Why do we need yet another transfer program.

11



Slide 12

'

&

$

%

Why?

• The dictionary-files produced with outdat can be easily edited
to fit ones personal requirements

• It is better to archive data as ASCII-Files together with an
dictionary than as system-files

As I said before I have two points to make here. The first one is that the dictionary files
produced with outdat can be easily edited to fit ones personal requirements. This way one
can most easily make different dictionaries for different purposes.

My second justification is a more general one. I believe that reproducibility should be a
main feature of data analysis. That’s why I think one should archive data. Archiving means
archiving it for perpetuity and therefore one should not archive system-files. Do you know
what happens with your Stata data-sets in—say—30 years? Will Stata Corp still exist?
Will there still be a computer program which can read Stata System Files? I hope so,
but I won’t bet on it. Instead I think we should archive data in a form which is as much
human-readable as possible. Therefore we should archive data-sets as ASCII-Files together
with a complete description of the data. One way to design the complete description are
the software specific commands to read and label the ASCII-Files: the dictionaries. If we
store dictionaries for several software packages our data stays readily accessible for users
of each of the software packages. The storing of the data would be parsimonious, as one
need to store the data only once and dictionaries are small. And our data set would be
accessible forever as historians of coming centuries should be wise enough to understand
the logic of the dictionaries. Mankind have managed to understand the hyroglyphes so they
should manage to understand some SPSS commands, don’t they.

I will send outdat.ado to Kit Baum shortly, but not before I have implemented your com-
ments, if any. Thank you for listening.

12


