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The Decomposition Problem

Explanation of the difference in (mean) outcome
between two groups.

Popular example: Male–Female wage differential.
Research questions

How much of the differential can be explained by group
differences in characteristics?
How much of the differential may be due to, e.g.,
discrimination?
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The Three-Fold Division (Winsborough/Dickinson 1971)

Based on the regression model

Yj = Xjβj + εj , E(εj) = 0, j ∈ {1, 2}

the mean outcome difference R = Ȳ1 − Ȳ2 = X̄ ′
1β̂1 − X̄ ′

2β̂2

can be decomposed as

R = (X̄1 − X̄2)
′β̂2

differences in
endowments

+ X̄ ′
2(β̂1 − β̂2)

differences in
coefficients

+ (X̄1 − X̄2)
′(β̂1 − β̂2)

interaction

Ȳ : sample mean of outcome variable (e.g. log wages)
X̄ : mean vector of regressors (e.g. education, experience, etc.)
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The Two-Fold Division

R = (X̄1 − X̄2)
′β∗

"explained"
part (Q)

+
[
X̄ ′

1(β̂1 − β∗) + X̄ ′
2(β

∗ − β̂2)
]

"unexplained" part (U)

where β∗ is a set of benchmark coefficients (i.e. the
coefficients from the non-discriminatory wage structure).
Examples for β∗ are:

β∗ = β̂1 or β∗ = β̂2 (Oaxaca 1973; Blinder 1973)

β∗ = 0.5β̂1 + 0.5β̂2 (Reimers 1983)

coefficients from the pooled sample (Neumark 1988)

Ben Jann Standard Errors for the Blinder–Oaxaca Decomposition



Motivation
Results

Summary

The Econometrics of Discrimination
What about Standard Errors?

Alternative Specification (Oaxaca/Ransom 1994)

The two-fold decomposition can also be expressed as

R = (X̄1 − X̄2)
′[W β̂1 + (I −W )β̂2] (explained part)

+ [X̄ ′
1(I −W ) + X̄ ′

2W ](β̂1 − β̂2) (unexplained part)

where W represents a matrix of relative weights given to
the coefficients of the first group (I = identity matrix).
Examples:

W = I corresponds to β∗ = β̂1, W = 0 to β∗ = β̂2

W = 0.5I corresponds to β∗ = 0.5β̂1 + 0.5β̂2

W = (X ′
1X1 + X ′

2X2)
−1X ′

1X1 is equivalent to using the
coefficients from the pooled sample as β∗
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Sampling Variances?

The computation of the decomposition components is
straight forward: Estimate OLS models and insert the
coefficients and the means of the regressors into the
formulas.

However, deriving standard errors for the
decomposition components seems to cause problems.
At least, hardly any paper applying these methods
reports standard errors or confidence intervals.

This is problematic because it is hard to evaluate the
significance of reported decomposition results without
knowing anything about their sampling distribution.
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Approaches to Estimating the Standard Errors

An obvious solution is to use the bootstrap technique.

However, bootstrap is slow and it would be desirable to
have easy to compute asymptotic formulas.

Previously proposed estimators (Oaxaca/Ransom 1998;
Greene 2003:53–54) produce biased results in most
applications because they assume fixed regressors (as
will be shown below).

Thus, new unbiased variance estimators for the
components of the three-fold and the two-fold
decomposition the will be presented in the following.
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Step I: Variance of Mean Prediction

How can the sampling variance of the mean prediction
Ȳ = X̄ ′β̂ be estimated?

If the regressors are fixed, then X̄ is constant. Thus:

V̂ (X̄ ′β̂) = X̄ ′V̂ (β̂)X̄

In most applications, however, the regressors and
therefore X̄ are stochastic. Fortunately, X̄ and β̂ are
uncorrelated (as long as Cov(ε,X ) = 0 holds). Thus:

V̂ (X̄ ′β̂) = X̄ ′V̂ (β̂)X̄ + β̂′V̂ (X̄ )β̂ + tr
(
V̂ (X̄ )V̂ (β̂)

)
(proof in the Appendix).
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Step II: Variance of Difference in Mean Prediction

As long as the two samples are independent, the variance
estimator for the group difference in mean predictions
immediately follows as:

V̂ (R) = V̂ (X̄ ′
1β̂1 − X̄ ′

2β̂2)

= V̂ (X̄ ′
1β̂1) + V̂ (X̄ ′

2β̂2)

= X̄ ′
1V̂ (β̂1)X̄1 + β̂′

1V̂ (X̄1)β̂1 + tr
(
V̂ (X̄1)V̂ (β̂1)

)
+ X̄ ′

2V̂ (β̂2)X̄2 + β̂′
2V̂ (X̄2)β̂2 + tr

(
V̂ (X̄2)V̂ (β̂2)

)
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Step III: Three-Fold Decomposition

Similarly:

V̂ ([X̄1 − X̄2]
′β̂2) = (X̄1 − X̄2)

′V̂ (β̂2)(X̄1 − X̄2)

+ β̂′
2

[
V̂ (X̄1) + V̂ (X̄2)

]
β̂2 + tr(.)

V̂ (X̄ ′
2[β̂1 − β̂2]) = X̄ ′

2

[
V̂ (β̂1) + V̂ (β̂2)

]
X̄2

+ (β̂2 − β̂2)
′V̂ (X̄2)(β̂2 − β̂2) + tr(.)

V̂ ([X̄1−X̄2][β̂1−β̂2]) = (X̄1−X̄2)
′
[
V̂ (β̂1) + V̂ (β̂2)

]
(X̄1−X̄2)

+ (β̂1 − β̂2)
′
[
V̂ (X̄1) + V̂ (X̄2)

]
(β̂1 − β̂2) + tr(.)
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Step IV: Two-Fold Decomposition

Finally:

V̂ (Q) = tr(.)+

+ (X̄1 − X̄2)
′
[
WV̂ (β̂1)W ′ + (I −W )V̂ (β̂2)(I −W )′

]
(X̄1 − X̄2)

+
[
W β̂1 + (I −W )β̂2

]′ [
V̂ (X̄1) + V̂ (X̄2)

] [
W β̂1 + (I −W )β̂2

]
V̂ (U) = tr(.)+

+
[
(I −W )′X̄1 +W ′X̄2

]′ [V̂ (β̂1) + V̂ (β̂2)
] [

(I −W )′X̄1 +W ′X̄2
]

+ (β̂1 − β̂2)
′
[
(I −W )′V̂ (X̄1)(I −W ) +W ′V̂ (X̄2)W

]
(β̂1 − β̂2)

(Note: W is assumed fixed.)
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The oaxaca Command

The proposed formulas are implemented in a new
post-estimation command called oaxaca. The syntax is:

oaxaca est1 est2 [, se fixed[(varlist)] eform
other options ]

where est1 and est2 are the names of stored estimates.

se requests standard errors

fixed identifies fixed regressors

eform transforms all results to exponentiated form

Other options: detailed decomposition for individual
regressors/groups of regressors, specify W , use β∗ from
pooled model, adjust for selection terms
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running C:\Program Files\Stata8\profile.do ...

. do D:\Home\ado\winedtstata\_temp

. version 8.2

. clear

. discard

. qui set memory 100m

. set more off

. capture log close

. qui cd D:\Home\jannb\Projekte\tools\stata\decompose

. use paper/sake00, clear

. gen exp2 = exp^2/100

. 

. 

. quietly regress lnwage educyrs exp exp2 tenure boss if female==0

. estimates store male

. quietly regress lnwage educyrs exp exp2 tenure boss if female==1

. estimates store female

. oaxaca male female, se
(high estimates: male; low estimates: female)
Results of linear decomposition:

      lnwage     Pred. H    Pred. L      R=H-L          E          C         CE

       Total    3.725382   3.483212   .2421702   .0950089   .1330691   .0140922
  Std. error     .006801   .0106372   .0126255   .0088171   .0112131   .0068167
H: mean prediction high model; L: mean prediction low model
R: raw differential; E: differential due to endowments
C: diff. due to coefficients; CE: diff. due to interaction

Explained (Q = E + W*CE):

      lnwage         W=0        W=1       W=.5

       Total    .0950089   .1091011    .102055
  Std. error    .0088171   .0075205    .007452

Unexplained (U = C + [I-W]*CE):

      lnwage         W=0        W=1       W=.5

       Total    .1471613   .1330691   .1401152
  Std. error     .012253   .0112131   .0112391

. 
end of do-file

. 
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Empirical Application

The accuracy of the proposed estimators can be
demonstrated by Monte-Carlo experiments under ideal
conditions.

But how do the estimators perform on „real“ data
compared to, e.g., bootstrap estimators?

Application: Decomposition of the gender wage gap
using data from the Swiss Labor Force Survey 2000
(SLFS; Swiss Federal Statistical Office).

Sample: Employees aged 20–62, working fulltime, only one
job. Dependent variable: Log hourly wages.
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Men Women

Log wages Coef. Mean Coef. Mean

Education 0.0754 12.0239 0.0762 11.6156
(0.0023) (0.0414) (0.0044) (0.0548)

Experience 0.0221 19.1641 0.0247 14.0429
(0.0017) (0.2063) (0.0031) (0.2616)

Exp.2/100 −0.0319 5.1125 −0.0435 3.0283
(0.0036) (0.0932) (0.0079) (0.1017)

Tenure 0.0028 10.3077 0.0063 7.6729
(0.0007) (0.1656) (0.0014) (0.2013)

Supervisor 0.1502 0.5341 0.0709 0.3737
(0.0113) (0.0086) (0.0193) (0.0123)

Constant 2.4489 2.3079
(0.0332) (0.0564)

R2 0.3470 0.2519
N. of cases 3383 1544
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Decomposition and Standard Errors

Value BS STO FIX

Differential (R) 0.2422 0.0122 0.0126 0.0107
Explained (Q):

W = 0 0.0950 0.0094 0.0088 0.0059
W = I 0.1091 0.0076 0.0075 0.0031
W = 0.5I 0.1021 0.0078 0.0075 0.0033
W = W ∗ 0.1144 0.0081 0.0076 0.0026

Unexplained (U):
W = 0 0.1472 0.0122 0.0123 0.0122
W = I 0.1331 0.0113 0.0112 0.0111
W = 0.5I 0.1401 0.0112 0.0112 0.0112
W = W ∗ 0.1277 0.0104 0.0104 0.0103

BS = bootstrap standard errors, STO = stochastic regressors assumed,
FIX = fixed regressors assumed
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Standard errors for the Blinder–Oaxaca decomposition
are rarely reported in the literature. However, relatively
simple estimators do exist.

These estimators seem to work quite all right on real
data (using bootstrap estimates as a benchmark).

Neglecting the stochastic nature of the regressors
yields a considerable underestimation of the standard
errors for the „explained“ part of the differential.

Outlook
Unsolved problem: The estimates may be biased if W
is stochastic.
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Proof I

LEMMA: The variance of the product of two uncorrelated
random vectors is:

V (u′1u2) = µ′
1Σ2µ1 + µ′

2Σ1µ2 + tr(Σ1Σ2)

where uj ∼ (µj ,Σj), j = 1, 2

PROOF:

E(x + y) = E(x) + E(y), E(xy) = E(x)E(y) + Cov(x , y)

Thus, if u1 and u2 are uncorrelated:

E(u′1u2) = µ′
1µ2, E(uju

′
j) = µjµ

′
j +Σj
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Proof II

and

E([u′1u2]
2) = E(u′1u2u

′
2u1) = tr

(
E(u1u′1u2u

′
2)

)
= tr

(
E(u1u′1)E(u2u

′
2)

)
= tr

(
(µ1µ

′
1 +Σ1)(µ2µ

′
2 +Σ2)

)
= tr

(
µ1µ

′
1µ2µ

′
2
)
+ tr

(
µ1µ

′
1Σ2

)
+ tr

(
Σ1µ2µ

′
2
)
+ tr(Σ1Σ2)

= (µ′
1µ2)

2 + µ′
1Σ2µ1 + µ′

2Σ1µ2 + tr(Σ1Σ2)

Finally:

V (u′1u2) = E([u′1u2]
2)− [E(u′1u2)]

2

= µ′
1Σ2µ1 + µ′

2Σ1µ2 + tr(Σ1Σ2)
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