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Definition

y = Xβ + Zu + ε

where

y is the n × 1 vector of responses

X is the n × p fixed-effects design matrix

β are the fixed effects

Z is the n × q random-effects design matrix

u are the random effects

ε is the n × 1 vector of errors such that

[

u

ε

]

∼ N

(

0,

[

G 0

0 σ2
ε
In

])
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Variance components

Random effects are not directly estimated, but instead characterized
by the elements of G, known as variance components

You can, however “predict” random effects

As such, you fit a mixed model by estimating β, σ2
ε
, and the variance

components in G
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Panel representation

Classical representation has roots in the design literature, but can
make model specification hard

When the data can be thought of as M independent panels, it is more
convenient to express the mixed model as (for i = 1, ...,M)

yi = Xiβ + Ziui + εi

where ui ∼ N(0,S), for q × q variance S, and

Z =











Z1 0 · · · 0

0 Z2 · · · 0
...

...
. . .

...
0 0 0 ZM











; u =







u1
...

uM






; G = IM ⊗ S
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Using the panel representation

For example, take a random intercept model. In the classical
framework, the random intercepts are random coefficients on
indicator variables identifying each panel

It is better to just think at the panel level and consider M realizations
of a random intercept

This generalizes to more than one level of nested panels

Issue of terminology for multi-level models
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One-level models

Example

Consider the Junior School Project data which compares math scores
of various schools in the third and fifth years

Data on n = 887 pupils in M = 48 schools

Let’s fit the model

math5ij = β0 + β1math3ij + ui + εij

for i = 1, ..., 48 schools and j = 1, ..., ni pupils. ui is a random effect
(intercept) at the school level
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. xtmixed math5 math3 || school:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -2770.5233
Iteration 1: log restricted-likelihood = -2770.5233

Computing standard errors:

Mixed-effects REML regression Number of obs = 887

Group variable: school Number of groups = 48

Obs per group: min = 5
avg = 18.5
max = 62

Wald chi2(1) = 347.21
Log restricted-likelihood = -2770.5233 Prob > chi2 = 0.0000

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6088557 .0326751 18.63 0.000 .5448137 .6728978
_cons 30.36506 .3531615 85.98 0.000 29.67287 31.05724

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Identity
sd(_cons) 2.038896 .3017985 1.525456 2.72515

sd(Residual) 5.306476 .1295751 5.058495 5.566614

LR test vs. linear regression: chibar2(01) = 57.59 Prob >= chibar2 = 0.0000
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Adding a random slope

For the most part, the previous is what you would get using xtreg

Consider instead the model

math5ij = β0 + β1math3ij + u0i + u1imath3ij + εij

In essence, each school has its own random regression line such that
the intercept is N(β0, σ

2
0) and the slope on math3 is N(β1, σ

2
1)
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. xtmixed math5 math3 || school: math3

(output omitted )

Mixed-effects REML regression Number of obs = 887
Group variable: school Number of groups = 48

Obs per group: min = 5

avg = 18.5
max = 62

Wald chi2(1) = 192.62
Log restricted-likelihood = -2766.6442 Prob > chi2 = 0.0000

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6135888 .0442106 13.88 0.000 .5269377 .7002399
_cons 30.36542 .3596906 84.42 0.000 29.66044 31.0704

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Independent
sd(math3) .1911842 .0509905 .113352 .3224593

sd(_cons) 2.073863 .3078237 1.550372 2.774112

sd(Residual) 5.203947 .1309477 4.953521 5.467034

LR test vs. linear regression: chi2(2) = 65.35 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference
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Predict

Random effects are not estimated, but the can be predicted (BLUPs)

. predict r1 r0, reffects

. describe r*

storage display value
variable name type format label variable label

r1 float %9.0g BLUP r.e. for school: math3
r0 float %9.0g BLUP r.e. for school: _cons

. gen b0 = _b[_cons] + r0

. gen b1 = _b[math3] + r1

. bysort school: gen tolist = _n==1
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Predict

. list school b0 b1 if school<=10 & tolist

school b0 b1

1. 1 27.52259 .5527437

26. 2 30.35573 .5036528
36. 3 31.49648 .5962557
44. 4 28.08686 .7505417

68. 5 30.29471 .5983001

93. 6 31.04652 .5532793
106. 7 31.93729 .6756551

116. 8 30.83009 .6885387
142. 9 27.90685 .6950143
163. 10 31.31212 .7024184
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Option fitted

We could use these intercepts and slopes to plot the estimated lines for
each school. Equivalently, we could just plot the “fitted” values

. predict math5hat, fitted

. sort school math3

. twoway connected math5hat math3 if school<=10, connect(L)
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Covariance structures

In our previous model, it was assumed that u0i and u1i are independent.
That is,

S =

[

σ2
0 0
0 σ2

1

]

But, what if we also wanted to estimate a covariance?
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. xtmixed math5 math3 || school: math3, cov(unstructured) var mle

Mixed-effects ML regression Number of obs = 887
Group variable: school Number of groups = 48

Obs per group: min = 5
avg = 18.5

max = 62

Wald chi2(1) = 204.24
Log likelihood = -2757.0803 Prob > chi2 = 0.0000

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6123977 .0428514 14.29 0.000 .5284104 .696385

_cons 30.34799 .374883 80.95 0.000 29.61323 31.08274

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Unstructured

var(math3) .0343031 .0176068 .012544 .0938058
var(_cons) 4.872801 1.384916 2.791615 8.505537

cov(math3,_cons) -.3743092 .1273684 -.6239466 -.1246718

var(Residual) 26.96459 1.346082 24.45127 29.73624

LR test vs. linear regression: chi2(3) = 78.01 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

R. Gutierrez (StataCorp) Linear Mixed Models in Stata March 31, 2006 16 / 30



Notes

We also added options variance and mle to fully reproduce the
results found in the gllamm manual

Again, we can compare this model with previous using lrtest

Available covariance structures are Independent (default), Identity,
Exchangeable, and Unstructured
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ML vs. REML

ML is based on standard normal theory

With REML, the likelihood is that of a set of linear constrasts of y

that do not depend on the fixed effects

REML variance components are less biased in small samples, since
they incorporate degrees of freedom used to estimated fixed effects

REML estimates are unbiased in balanced data

LR tests are always valid with ML, not so with REML

Very much a matter of personal taste
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Two-level models

Example

Baltagi et al. (2001) estimate a Cobb-Douglas production function
examining the productivity of public capital in each state’s private output.

For y equal to the log of the gross state product measured each year from
1970-1986, the model is

yij = Xijβ + ui + vj(i) + εij

for j = 1, ...,Mi states nested within i = 1, ..., 9 regions. X consists of
various economic factors treated as fixed effects.
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Estimated fixed effects

. xtmixed gsp private emp hwy water other unemp || region: || state:

Mixed-effects REML regression Number of obs = 816

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

region 9 51 90.7 136

state 48 17 17.0 17

Wald chi2(6) = 18382.39
Log restricted-likelihood = 1404.7101 Prob > chi2 = 0.0000

gsp Coef. Std. Err. z P>|z| [95% Conf. Interval]

private .2660308 .0215471 12.35 0.000 .2237993 .3082624
emp .7555059 .0264556 28.56 0.000 .7036539 .8073579

hwy .0718857 .0233478 3.08 0.002 .0261249 .1176464
water .0761552 .0139952 5.44 0.000 .0487251 .1035853
other -.1005396 .0170173 -5.91 0.000 -.1338929 -.0671862

unemp -.0058815 .0009093 -6.47 0.000 -.0076636 -.0040994
_cons 2.126995 .1574864 13.51 0.000 1.818327 2.435663
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Estimated variance components

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Identity
sd(_cons) .0435471 .0186292 .0188287 .1007161

state: Identity
sd(_cons) .0802737 .0095512 .0635762 .1013567

sd(Residual) .0368008 .0009442 .034996 .0386987

LR test vs. linear regression: chi2(2) = 1162.40 Prob > chi2 = 0.0000
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Constraints on variance components

We begin by adding some random coefficients at the region level

. xtmixed gsp private emp hwy water other unemp || region: hwy unemp || state:,
> nolog nogroup nofetable

Mixed-effects REML regression Number of obs = 816
Wald chi2(6) = 16803.51

Log restricted-likelihood = 1423.3455 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Independent

sd(hwy) .0052752 .0108846 .0000925 .3009897
sd(unemp) .0052895 .001545 .002984 .0093764
sd(_cons) .0596008 .0758296 .0049235 .721487

state: Identity

sd(_cons) .0807543 .009887 .0635259 .1026551

sd(Residual) .0353932 .000914 .0336464 .0372307

LR test vs. linear regression: chi2(4) = 1199.67 Prob > chi2 = 0.0000
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Constraints on variance components

We can constrain the variance components on hwy and unemp to be equal
with

. xtmixed gsp private emp hwy water other unemp || region: hwy unemp, cov(ident

> ity) || region: || state:, nolog nogroup nofetable

Mixed-effects REML regression Number of obs = 816
Wald chi2(6) = 16803.41

Log restricted-likelihood = 1423.3455 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Identity
sd(hwy unemp) .0052896 .0015446 .0029844 .0093752

region: Identity
sd(_cons) .0595029 .0318238 .0208589 .1697401

state: Identity

sd(_cons) .080752 .0097453 .0637425 .1023006

sd(Residual) .0353932 .0009139 .0336465 .0372306

LR test vs. linear regression: chi2(3) = 1199.67 Prob > chi2 = 0.0000
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Factor Notation

Sometimes random effects are crossed rather than nested

Example

Consider a dataset consisting of weight measurements on 48 pigs at each
of 9 weeks. We wish to fit the following model

weightij = β0 + β1weekij + ui + vj + εij

for i = 1, ..., 48 pigs and j = 1, ..., 9 weeks

Note that the week random effects vj are not nested within pigs, they are
assumed to be the same for each pig
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Fitting the model

One approach to fitting this model is to consider the data as a whole and
treat the random effects as random coefficients on lots of indicator
variables, that is

u =





















u1
...

u48

v1
...
v9





















∼ N(0,G); G =

[

σ2
uI48 0

0 σ2
v I9

]

We could generate these indicator variables, but luckily xtmixed has
factor notation to avoid this

R. Gutierrez (StataCorp) Linear Mixed Models in Stata March 31, 2006 25 / 30



Fitting the model

One approach to fitting this model is to consider the data as a whole and
treat the random effects as random coefficients on lots of indicator
variables, that is

u =





















u1
...

u48

v1
...
v9





















∼ N(0,G); G =

[

σ2
uI48 0

0 σ2
v I9

]

We could generate these indicator variables, but luckily xtmixed has
factor notation to avoid this

R. Gutierrez (StataCorp) Linear Mixed Models in Stata March 31, 2006 25 / 30



. xtmixed weight week || _all: R.id || _all: R.week

Mixed-effects REML regression Number of obs = 432
Group variable: _all Number of groups = 1

Obs per group: min = 432

avg = 432.0
max = 432

Wald chi2(1) = 11516.16
Log restricted-likelihood = -1015.4214 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0578669 107.31 0.000 6.096479 6.323313

_cons 19.35561 .6493996 29.81 0.000 18.08281 20.62841

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.id) 3.892648 .4141707 3.15994 4.795252

_all: Identity
sd(R.week) .3337581 .1611824 .1295268 .8600111

sd(Residual) 2.072917 .0755915 1.929931 2.226496

LR test vs. linear regression: chi2(2) = 476.10 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference
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Some notes

all tells xtmixed to treat the whole data as one big panel

R.varname is the random-effects analog of xi. It creates an
(overparameterized) set of indicator variables, but unlike xi, does this
behind the scenes

When you use R.varname, covariance structure reverts to Identity

There are alternate ways to fit this model with lower dimension

The trick is to realize that all effects are nested within the data as a
whole
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. xtmixed weight week || _all: R.id || week:

Mixed-effects REML regression Number of obs = 432

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 432 432.0 432
week 9 48 48.0 48

Wald chi2(1) = 11516.16
Log restricted-likelihood = -1015.4214 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0578669 107.31 0.000 6.096479 6.323313
_cons 19.35561 .6493996 29.81 0.000 18.08281 20.62841

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.id) 3.892648 .4141707 3.15994 4.795252

week: Identity
sd(_cons) .3337581 .1611824 .1295268 .8600112

sd(Residual) 2.072917 .0755915 1.929931 2.226496

LR test vs. linear regression: chi2(2) = 476.10 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference
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A glimpse at the future

You can welcome Stata to the game. We hope you like the syntax and
output.

Some things to look for in future versions

Correlated errors and heteroskedasticity

Exploiting matrix sparsity/very large problems

Factor variables

Degrees of freedom calculations

Generalized linear mixed models. Adding family() and link()

options to what we have here
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