Report to Users

Alan Riley

Vice President, Software Development StataCorp LP

2006 German Stata Users Group meeting, Mannheim, Germany

A. Riley (StataCorp)

3 New development

- Stata 9.1
- Stata 9.2 Mata structures
- Stata 9.2 work faster

Most active year ever

- Stata Journal indexed
- Two revised editions of existing books
- Four new books published
- Seven books in progress

Stata Journal

- 6th year of publication
- Special edition Stata 20th anniversary
- Now indexed

Thomson Scientific citation indexes

- Science Citation Index Expanded
- CompuMath Citation index

Stata Journal

- 6th year of publication
- Special edition Stata 20th anniversary
- Now indexed

Thomson Scientific citation indexes

- Science Citation Index Expanded
- CompuMath Citation index

More than doubled number of books published

Revised editions, 2005

 Regression Models for Categorial Dependent Variables Using Stata, 2nd Edition
 by J. Scott Long, Jeremy Freese

• Maximum Likelihood Estimation with Stata, 3rd Edition by William Gould, Jeffrey Pitblado, William Sribney

More than doubled number of books published

Revised editions, 2005

 Regression Models for Categorial Dependent Variables Using Stata, 2nd Edition
 by J. Scott Long, Jeremy Freese

• Maximum Likelihood Estimation with Stata, 3rd Edition by William Gould, Jeffrey Pitblado, William Sribney

More than doubled number of books published

New books, 2005

- Data Analysis With Stata by Ulrich Kohler and Frauke Kreuter
- Multilevel and Longitudinal Modeling Using Stata by Sophia Rabe-Hesketh and Anders Skrondal
- A Gentle Introduction to Stata by Alan Acock
- An Introduction to Stata for Health Researchers by Svend Juul

Forthcoming books, 2006

- An Introduction to Modern Econometrics Using Stata by Christopher F. Baum
- Generalized Linear Models and Extensions, 2nd Edition by James Hardin, Joseph Hilbe
- A Guide to Stochastic Frontier Models: Specification and Estimation by Subal Kumbhakar, Hung-Jen Wang
- An Introduction to Forecasting Time Series Using Stata by Robert Yaffee
- The 123s of Survey Statistics with Stata by Nicholas Winter
- Applied Microeconometrics Using Stata by A. Colin Cameron, Pravin K. Trivedi

Forthcoming books, 2007

• Data Management Using Stata

by Michael Mitchell

A. Riley (StataCorp)

Report to Users

March 31, 2006 8 / 37

- Released April 2005
- 20th anniversary
- Largest release ever

A. Riley (StataCorp)

Report to Users

March 31, 2006 9 / 37

Stata 1, January 1985

- 44 commands
- 175 pages of documentation

Stata 8, January 2003

- over 600 commands
- 4652 pages of documentation

Stata 9, April 2005

- over 700 commands including new matrix language Mata
- 6413 pages of documentation

Stata 1, January 1985

- 44 commands
- 175 pages of documentation

Stata 8, January 2003

- over 600 commands
- 4652 pages of documentation

Stata 9, April 2005

- over 700 commands including new matrix language Mata
- 6413 pages of documentation

Stata 1, January 1985

- 44 commands
- 175 pages of documentation

Stata 8, January 2003

- over 600 commands
- 4652 pages of documentation

Stata 9, April 2005

- over 700 commands including new matrix language Mata
- 6413 pages of documentation

Ongoing development

- Continued release-as-we-go strategy
- Stata 9.1
- Stata 9.2
 - Mata structures
 - Work faster

- Multiple log files
- Faster survey linearization
- More stored estimation results
- \bullet New Mata functions (permutation, string, regular expression, binary I/O)
- Sized PNG and TIFF exported graphs
- adoupdate
- And more...

Mata structures

Set of variables tied together under a single name

struct structname {
 declaration(s)

}

Example

```
struct mystruct {
            real scalar n1, n2
            real matrix x
}
```


A. Riley (StataCorp)

< ロ > < 国 > < 国 > < 国 > < 国

Mata structures

Set of variables tied together under a single name

```
struct structname {
          declaration(s)
}
```

Example

```
struct mystruct {
    real scalar n1, n2
    real matrix x
}
```



```
struct myresult {
       real scalar yoverx
       real scalar
                       xovery
}
struct myresult scalar myfunc(real scalar x, real scalar y)
Ł
        struct myresult scalar
                                  res
        res.yoverx = y/x
        res.xovery = x/y
        return(res)
}
struct myresult scalar results
. . .
results = myfunc(3, 4)
```

You can have vectors and matrices of structures

struct mystruct scalar t struct mystruct vector t struct mystruct rowvector t struct mystruct colvector t struct mystruct matrix t

t[2,3].n1

Structures can contain vectors and matrices

t[2,3].x[9,2]

A. Riley (StataCorp)

Image: A math a math

You can have vectors and matrices of structures

struct mystruct scalar t struct mystruct vector t struct mystruct rowvector t struct mystruct colvector t struct mystruct matrix t

t[2,3].n1

Structures can contain vectors and matrices

t[2,3].x[9,2]

A. Riley (StataCorp)

Structures can contain other structures

```
struct myresult {
    real scalar yoverx
    real scalar xovery
}
struct someresults {
    struct myresult scalar res1, res2
}
...
struct someresults scalar myres
...
myres.res1 = myfunc(3, 4)
myres.res2 = myfunc(5, 6)
```


A. Riley (StataCorp)

Advantages of structures

- Organization
- Convenience (return multiple results)
- Abstraction (handles)

Moore's Law

- Computer processing power doubles every 18 months
- Max transistors per chip has doubled every 24 months
- $\bullet\,$ To maintain, industry must improve at rate of $1\%\,$ per week

Work faster – work in parallel

- new 'flavor' of Stata capable of performing symmetric multiprocessing (SMP)
- same capabilities as Stata/SE, but faster due to parallelization of central routines
- for dual core, multicore, or multiprocessor computers
- http://www.stata.com/statamp/

Difference between 'processor' and 'core

- processor: central processing unit, or CPU
- core: computation engine of a CPU with integer and floating point processing units

Work faster – work in parallel

- new 'flavor' of Stata capable of performing symmetric multiprocessing (SMP)
- same capabilities as Stata/SE, but faster due to parallelization of central routines
- for dual core, multicore, or multiprocessor computers
- http://www.stata.com/statamp/

Difference between 'processor' and 'core'

- processor: central processing unit, or CPU
- core: computation engine of a CPU with integer and floating point processing units

Design requirements

- $\bullet~100\%$ compatible with Stata/SE, Intercooled Stata, and Small Stata
- No end-user programming necessary to obtain speed ups
- No changes necessary to do-files, user-written programs, or datasets
- Priority given to estimation commands

Supports 2 to 32 processors or cores on

- Macintosh OSX (Intel)
- 32-bit Windows
- 64-bit Windows (x86-64)
- 64-bit Windows (Itanium)
- 32-bit Linux
- 64-bit Linux (x86-64)
- 64-bit Linux (Itanium)
- 64-bit Solaris (Sparc)

Perfection, in theory

- 100% efficiency is twice as fast on 2 processors/cores
- Speed doubles for every doubling of number of processors
- Execution time halves for every doubling of number of processors

Amdahl's Law

F: sequential/non-parallelizable fraction N: number of processors Maximum speed up: $\frac{1}{F + \frac{1-F}{N}}$

stata

Perfection, in theory

- 100% efficiency is twice as fast on 2 processors/cores
- Speed doubles for every doubling of number of processors
- Execution time halves for every doubling of number of processors

Amdahl's Law

- F: sequential/non-parallelizable fraction
- *N*: number of processors

Maximum speed up: $\frac{1}{F + \frac{1-F}{N}}$

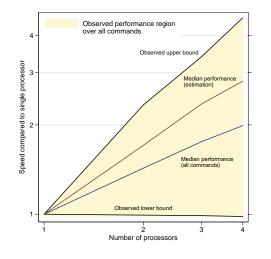
How much faster?

- Median speed up (overall)
 - 72% efficiency
 - 2 CPUs: 1.4
 - 3 CPUs: 1.75
 - 4 CPUs: 2.0

Median speed up (estimation comands)

- 88% efficiency
- 2 CPUs: 1.7
- 3 CPUs: 2.3
- 4 CPUs: 2.8

► 4 Ξ ►

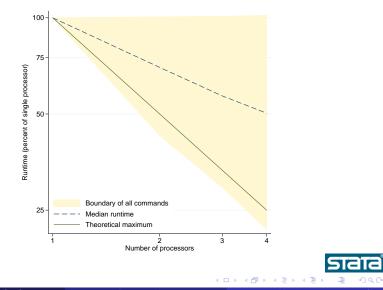

How much faster?

- Median speed up (overall)
 - 72% efficiency
 - 2 CPUs: 1.4
 - 3 CPUs: 1.75
 - 4 CPUs: 2.0

• Median speed up (estimation comands)

- 88% efficiency
- 2 CPUs: 1.7
- 3 CPUs: 2.3
- 4 CPUs: 2.8

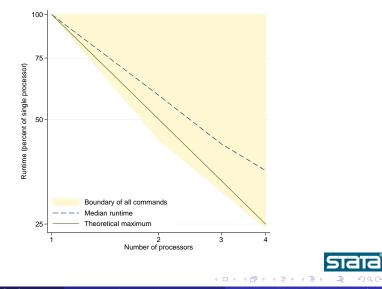
A. Riley (StataCorp)


March 31, 2006 24 / 37

(ロ) (部) (目) (日) (日)

stata

2


Stata/MP - All commands

A. Riley (StataCorp)

March 31, 2006 25 / 37

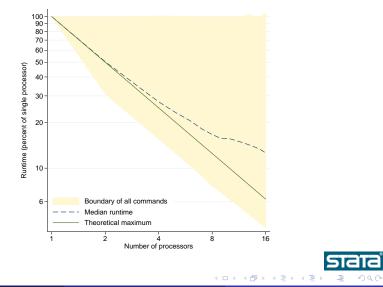
Stata/MP - Estimation commands

A. Riley (StataCorp)

March 31, 2006 26 / 37

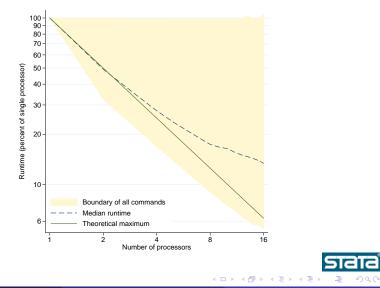
Comments on median results

- half of commands run faster
- some even faster than theory due to cache effects
- half of commands run slower
- some not sped up at all
 - inherently sequential/impossible to parallelize (time series)
 - no effort made to parallelize (graph, xtmixed)



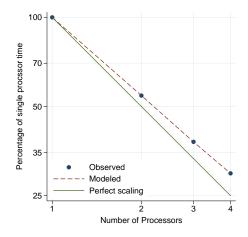
Methods

- Open/MP API
- Core algorithms
 - generate, replace
 - X'X
 - Inverses
 - Summers'
 - Solvers
- Modifications to individual important internal routines
- Almost 400 sections of code modified


Stata/MP - All commands

A. Riley (StataCorp)

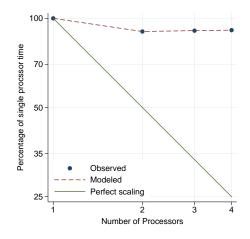
March 31, 2006 29 / 37


Stata/MP - Estimation commands

A. Riley (StataCorp)

March 31, 2006 30 / 37

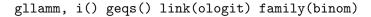
Stata/MP - regress

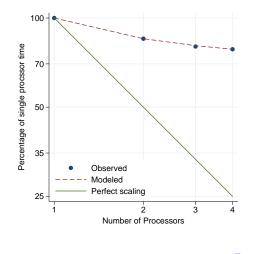


A. Riley (StataCorp)

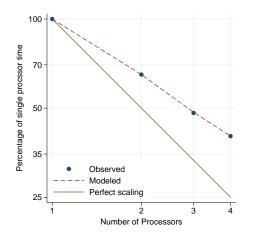
March 31, 2006 31 / 37

stata


Stata/MP - arima

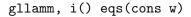


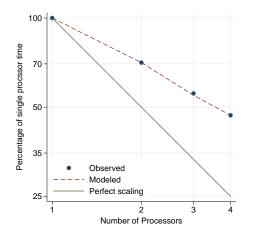
A. Riley (StataCorp)


March 31, 2006 32 / 37

stata

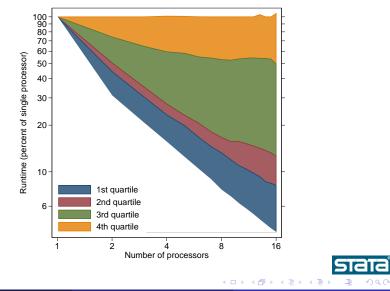
gllamm, i() geqs() link(logit) family(binom) nocons


Stata/MP - gllamm


gllamm, i() 100-Percentage of single procssor time 70-50 35 Observed Modeled Perfect scaling 25 ż ż 4 Number of Processors

March 31, 2006 35 / 37

Siaia


Stata/MP - gllamm

March 31, 2006 36 / 37

Stata/MP

A. Riley (StataCorp)

Report to Users

March 31, 2006 37 / 37