Double-Hurdle Models with Dependent Errors and Heteroscedasticity

Julian Fennema and Mathias Sinning

Heriot-Watt University and RWI-Essen

Essen, April 2nd 2007

Tobit model

Model

Censoring of the dependent variable is traditionally dealt with using the Tobit model

$$y_i = y_i^* = x_i \beta + \varepsilon_1$$
 if $y_i^* > 0$ otherwise $y_i = 0$

Likelihood function

$$\textit{L} = \mathop{\textstyle\prod}_{0} \left(1 - \Phi \left(\frac{\textit{x}_{\textit{i}} \textit{\beta}}{\sigma_{\varepsilon_{1}}} \right) \right) + \mathop{\textstyle\prod}_{+} \left(\frac{1}{\sigma_{\varepsilon_{1}}} \phi \left(\frac{\textit{y}_{\textit{i}} - \textit{x}_{\textit{i}} \textit{\beta}}{\sigma_{\varepsilon_{1}}} \right) \right)$$

Cragg's formulation

Model

Cragg (1971) proposed the extension that the probability of a zero realisation, $1 - \Phi(.)$, is not directly to the density for a continuous realisation, $\phi(.)$, but instead governed by some other process

$$\begin{array}{lll} y_i &= y_i^* = x_i\beta + \varepsilon_{1i} & \text{if} & x_i\beta + \varepsilon_{1i} > 0 \text{ and } z_i\alpha + \varepsilon_{2i} > 0 \\ &= 0 & \text{if} & x_i\beta + \varepsilon_{1i} \leq 0 \text{ and } z_i\alpha + \varepsilon_{2i} > 0 \\ & \text{or} & x_i\beta + \varepsilon_{1i} > 0 \text{ and } z_i\alpha + \varepsilon_{2i} \leq 0 \\ & \text{or} & x_i\beta + \varepsilon_{1i} \leq 0 \text{ and } z_i\alpha + \varepsilon_{2i} \leq 0 \end{array}$$

Cragg's formulation - errors

Independent

The original model made the assumption that the two error terms were jointly normal,

$$\left(\begin{array}{c} \varepsilon_{1} \\ \varepsilon_{2} \end{array}\right) \sim \textit{N}\left(0,\Sigma\right) \text{, and uncorrelated, } \Sigma = \left(\begin{array}{cc} \sigma_{\varepsilon_{1}}^{2} & 0 \\ 0 & 1 \end{array}\right)$$

Likelihood function

$$L = \prod_{0} \left(1 - \Phi\left(\frac{x_{i}\beta}{\sigma_{\varepsilon_{1}}}\right) \cdot 1 - \Phi\left(z_{i}\alpha\right) \right) \prod_{+} \left(\Phi\left(z_{i}\alpha\right) \frac{1}{\sigma_{\varepsilon_{1}}} \phi\left(\frac{y_{i} - x_{i}\beta}{\sigma_{\varepsilon_{1}}}\right) \right)$$

Estimation

Separability

Similar to that demonstrated by McDowell (2003) for count models in Stata, the separability of the likelihood function permits the use of a combination of Stata command to estimate this model: truncreg and probit

Jones' extension

Correlated errors

This assumption has been relaxed in later work, e.g. Jones (1992), $(\sigma^2, \sigma, \sigma)$

where
$$\Sigma = \left(egin{array}{cc} \sigma_{arepsilon_1}^2 & \sigma_{arepsilon_1}
ho \\ \sigma_{arepsilon_1}
ho & 1 \end{array}
ight)$$

Likelihood function

$$L = \prod_{0} \left[1 - F_2 \left(z_i \alpha, x_i \beta / \sigma, \rho \right) \right] \prod_{+} \Phi \left(\frac{z_i \alpha + \frac{\rho}{\sigma} (y - x_i \beta)}{\sqrt{1 - \rho^2}} \right) \frac{1}{\sigma} \phi \left(\frac{(y - x_i \beta)}{\sigma} \right)$$

Estimation

Non-separable

Both parts of this likelihood function must, however, be maximised simultaneously; there is no two-step equivalent. This has been available in Stata, on an *ad hoc* basis since 2004 using the dhurdle command written for Stata 7.

Syntax

dhurdle y x1 x2, sel(d x1 t1)

Comparison to Flood and Gråsjö

		Stata		Gauss	
	True value	Bias(%)	RMSE	Bias(%)	RMSE
β_0	-0.2	-23.3	.665	-18.0	.836
eta_{1}	0.2	-17.6	.152	3.7	.085
β_2	1	.34	.081	2.7	.182
$lpha_{0}$	0.7	49.0	1.25	175	8.065
$lpha_{ extsf{1}}$	0.2	24.6	.881	-44.7	1.325
α_{2}	-0.2	27.3	.392	-80.7	.570
σ	2	1.38	.256	2	.227
ρ	-0.5	-26.3	.261	31.2	.447

Assumptions on the error terms

There is, by now, a wide variety of literature demonstrating that if the assumption of homoscedatic, normally-distributed, errors is violated then ML parameter estimates are inconsistent.

Solutions

Two extensions

- Heteroscdastic errors
- Non-normal errors

dhurdle now can incorporate variance dependent on a set of independent variables.

Syntax

dhurdle y x1 x2, sel(d x1 t1) het(.)

Non-normality

Non-normality

Robinson (1982) showed that ML estimation of LDV models leads to inconsistent parameter estimates if the assumption of normally distributed errors does not hold.

Syntax

dhurdle y x1 x2, sel(d x1 t1) ihs

Pipeline

Work in progress

The final steps to complete the estimation package that are currently underway are

- 1. Finalise predict options for the double hurdle.
- Code a series of LR tests to test model specification post-estimation.

Testing 1, 2, 3

Using the IHS as the general form, the imposition of the following restrictions is feasible

- 1. If $\gamma = 0$ then conventional formulation without transformation.
- 2. If σ is constant then homoscedastic errors.
- 3. If $\rho = 0$ then independent double hurdle.
- 4. If $\prod_{i=1}^{n} \Phi(z_i \alpha)$ then no censoring present and model simplifies to a Heckman.
- 5. If $\Phi(z_i\alpha)$ and $\rho=0$ then no censoring or selection present and model simplifies to a Tobit.