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The aim

The aim is to find the size of the
indirect effect relative to the total
effect.
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Estimation

I When using regress:
1. college = class + performance
2. college = class

I The direct effect is the effect of class in model 1.
I The total effect is the effect of class in model 2.
I The indirect effect is the total effect - direct effect.
I This won’t work when using logit

Maarten L. Buis Direct and indirect effects in a logit model



The aim
The problem
The solution

example

Estimation

I When using regress:
1. college = class + performance
2. college = class

I The direct effect is the effect of class in model 1.

I The total effect is the effect of class in model 2.
I The indirect effect is the total effect - direct effect.
I This won’t work when using logit

Maarten L. Buis Direct and indirect effects in a logit model



The aim
The problem
The solution

example

Estimation

I When using regress:
1. college = class + performance
2. college = class

I The direct effect is the effect of class in model 1.
I The total effect is the effect of class in model 2.

I The indirect effect is the total effect - direct effect.
I This won’t work when using logit

Maarten L. Buis Direct and indirect effects in a logit model



The aim
The problem
The solution

example

Estimation

I When using regress:
1. college = class + performance
2. college = class

I The direct effect is the effect of class in model 1.
I The total effect is the effect of class in model 2.
I The indirect effect is the total effect - direct effect.

I This won’t work when using logit

Maarten L. Buis Direct and indirect effects in a logit model



The aim
The problem
The solution

example

Estimation

I When using regress:
1. college = class + performance
2. college = class

I The direct effect is the effect of class in model 1.
I The total effect is the effect of class in model 2.
I The indirect effect is the total effect - direct effect.
I This won’t work when using logit

Maarten L. Buis Direct and indirect effects in a logit model



The aim
The problem
The solution

example

Why the naive method doesn’t work

I Easiest explained when there is no indirect effect.

I The total effect = the direct effect + the indirect effect.
I So, the total effect should be the same as the direct effect

when there is no indirect effect.
I So, the effect of class in a model that controls for

performance (the ‘direct effect’) should be the same as the
effect of class in a model that does not control for
performance (the ‘total effect’).
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Effect while controlling for performance
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Averaging the proportions
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Effect while not controlling for performance
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Indirect effect present
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Direct and indirect effects in logit
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The logic can be reversed
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Extension
I Erikson et al. (2005) propose to compute the average

proportions given the observed and counterfactual
distribution of performance by assuming that performance
is normally distributed, and then integrate over this normal
distribution.

I Alternatively, these averages can be computed by
predicting the observed and counterfactual proportions,
add them up and divide by the number of respondents in
that group.

I The latter method has the advantage of making less
assumptions about the distribution of performance, as it
integrates over the empirical distribution of performance
instead of over a normal distribution.
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Descriptives

. table ocf57 if !missing(hsrankq, college) , ///
> contents(mean college mean hsrankq freq) ///
> format(%9.3g) stubwidth(15)

occupation of r
father in 1957 mean(college) mean(hsrankq) Freq.

lower .284 48.2 5,218
middle .38 50.6 868
higher .619 56.2 2,837
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The ldecomp package

ldecomp depvar
[

if
] [

in
] [

weight
]
, direct(varname)

indirect(varlist)
[
obspr predpr predodds or

rindirect normal range(##) nip(#) interactions

nolegend nodecomp nobootstrap bootstrap_options
]
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Decomposition of log odds ratios
. ldecomp college , direct(ocf57) indirect(hsrankq) rind nolegend
(running _ldecomp on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 8923
Replications = 50

Observed Bootstrap Normal-based

Coef. Std. Err. z P>|z| [95% Conf. Interval]

2/1
total .4367997 .0689983 6.33 0.000 .3015655 .5720339

indirect1 .0593679 .0274903 2.16 0.031 .0054878 .1132479
direct1 .3774319 .0729045 5.18 0.000 .2345416 .5203221

indirect2 .0586611 .0277894 2.11 0.035 .0041949 .1131272
direct2 .3781386 .0731829 5.17 0.000 .2347028 .5215744

3/1
total 1.410718 .0486595 28.99 0.000 1.315347 1.506088

indirect1 .2058881 .0176897 11.64 0.000 .1712169 .2405594
direct1 1.204829 .0471822 25.54 0.000 1.112354 1.297305

indirect2 .2012494 .0186496 10.79 0.000 .1646968 .237802
direct2 1.209468 .0472203 25.61 0.000 1.116918 1.302018

3/2
total .9739179 .0775048 12.57 0.000 .8220112 1.125825

indirect1 .1461109 .0303069 4.82 0.000 .0867104 .2055115
direct1 .8278069 .0730737 11.33 0.000 .684585 .9710288

indirect2 .1432144 .0317941 4.50 0.000 .080899 .2055297
direct2 .8307035 .073588 11.29 0.000 .6864737 .9749333
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Relative effects

2/1r
method1 .1359155 .0684536 1.99 0.047 .0017489 .2700821
method2 .1342975 .0691401 1.94 0.052 -.0012147 .2698096
average .1351065 .0687727 1.96 0.049 .0003144 .2698986

3/1r
method1 .1459457 .0121411 12.02 0.000 .1221496 .1697418
method2 .1426575 .0127593 11.18 0.000 .1176498 .1676652
average .1443016 .0123863 11.65 0.000 .1200249 .1685782

3/2r
method1 .1500239 .0290461 5.17 0.000 .0930946 .2069532
method2 .1470497 .0307503 4.78 0.000 .0867803 .2073192
average .1485368 .0298296 4.98 0.000 .0900718 .2070018
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Decomposition of odds ratios
. ldecomp college , direct(ocf57) indirect(hsrankq) or nolegend
(running _ldecomp on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 8923
Replications = 50

Observed Bootstrap Normal-based

Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

2/1
total 1.547746 .1206692 5.60 0.000 1.328423 1.80328

indirect1 1.061166 .0267866 2.35 0.019 1.009942 1.114987
direct1 1.458534 .1116674 4.93 0.000 1.2553 1.694672

indirect2 1.060416 .0264864 2.35 0.019 1.009754 1.11362
direct2 1.459565 .1118132 4.94 0.000 1.256074 1.696023

3/1
total 4.098896 .1715291 33.71 0.000 3.776123 4.449258

indirect1 1.228616 .0194388 13.01 0.000 1.191101 1.267312
direct1 3.33619 .1467056 27.40 0.000 3.060695 3.636483

indirect2 1.22293 .0201835 12.19 0.000 1.184004 1.263136
direct2 3.351702 .1467947 27.62 0.000 3.075992 3.652124

3/2
total 2.6483 .2089437 12.34 0.000 2.26887 3.091182

indirect1 1.157325 .031425 5.38 0.000 1.097343 1.220585
direct1 2.288295 .1853601 10.22 0.000 1.952368 2.682022

indirect2 1.153977 .0309939 5.33 0.000 1.094802 1.216351
direct2 2.294933 .1868413 10.20 0.000 1.956454 2.69197
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Does it matter?

Table: Comparing different estimates of the size of indirect effect
relative to the size of the total effect

generalization (Erikson et al. 2005) naive
middle v. low
method1 .1359 .1107
method2 .1343 .1088
average .1351 .1098 .0087
high v. low
method1 .1459 .1107
method2 .1427 .0990
average .1443 .1048 .0142
high v. middle
method1 .1500 .1075
method2 .1470 .0968
average .1485 .1021 .0167
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Discussion

This is “an area of active research”

I The need to take the average indirect effect is less than
elegant.

I How does it relate to the alternative method proposed by
Fairlie (2005) and implemented by Ben Jann as the
fairlie package?
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