Using and interpreting restricted cubic splines

Maarten L. Buis

Institut für Soziologie
Eberhard Karls Universität Tübingen
maarten.buis@ifsoz.uni-tuebingen.de
Outline

Introduction

Splines

Interpreting the results
The default is linear

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
The default is linear

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- The default is often to assume the relationships are linear.
The default is linear

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong.
The default is linear

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong but is still a very good thing:
The default is linear

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong but is still a very good thing:
 - The aim of a model is to simplify the situation such that mere mortals can understand the patterns present in the data.
The default is linear

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong but is still a very good thing:
 - The aim of a model is to simplify the situation such that mere mortals can understand the patterns present in the data.
 - Assuming that a relationship is linear is a very natural and useful simplification.
The default is linear

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong but is still a very good thing:
 - The aim of a model is to simplify the situation such that mere mortals can understand the patterns present in the data.
 - Assuming that a relationship is linear is a very natural and useful simplification.
- This talk deals with the rare situation where we want to consider non-linear effect.
The default is linear

- A large part of daily statistical practice consists of estimating the relationship between two or more variables.
- The default is often to assume the relationships are linear.
- This assumption is (almost) always wrong but is still a very good thing:
 - The aim of a model is to simplify the situation such that mere mortals can understand the patterns present in the data.
 - Assuming that a relationship is linear is a very natural and useful simplification.
- This talk deals with the rare situation where we want to consider non-linear effect.
- This could for example occur because:
 - the relationship is too non-linear to be meaningfully summarized by a linear relationship, or
 - we are substantively interested in the non-linearity.
Outline

Introduction

Splines

Interpreting the results
A linear association

![Graph showing a linear association between mileage (mpg) and price in 1000 dollars. The data points are scattered, with a fitted line indicating a negative correlation.]
How did I do that?

```
. sysuse auto, clear
(1978 Automobile Data)
. replace price = price / 1000
price was int now float
(74 real changes made)
. label variable price "price in 1000 dollars"
.
. reg price mpg

Source | SS       | df | MS
-------+---------+----+--
Model   | 139.44947| 1  | 139.44947
Residual| 495.61591| 72 | 6.88355432
Total   | 635.065382| 73 | 8.69952578

Number of obs = 74
F(  1,   72) = 20.26
Prob > F = 0.0000
R-squared = 0.2196
Adj R-squared = 0.2087
Root MSE = 2.6237

price | Coef.    | Std. Err. | t   | P>|t|    | [95% Conf. Interval]
-------+---------+-----------+-----+--------+-------------------------
mpg    | -.2388943| .0530767  | -4.50| 0.000  | -.3447008 -.1330879
_cons  | 11.25306 | 1.170813  | 9.61| 0.000  | 8.919088  13.58703

. predict y_lin
(option xb assumed; fitted values)
. twoway scatter price mpg || ///
>    line y_lin mpg, ///
>    sort clstyle(solid)
```
A linear spline
. mkspline linsp_mpg1 18 linsp_mpg2= mpg
. reg price linsp*

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>278.152833</td>
<td>2</td>
<td>139.076416</td>
</tr>
<tr>
<td>Residual</td>
<td>356.912549</td>
<td>71</td>
<td>5.02693731</td>
</tr>
<tr>
<td>Total</td>
<td>635.065382</td>
<td>73</td>
<td>8.69952578</td>
</tr>
</tbody>
</table>

| price | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------|--------------|-----------|-------|--------|---------------------|
| linsp_mpg1 | -1.20196 | .1888701 | -6.36 | 0.000 | -1.578556 - .8253636 |
| linsp_mpg2 | -.0592943 | .0568009 | -1.04 | 0.300 | -.1725521 .0539635 |
| _cons | 27.16221 | 3.189679 | 8.52 | 0.000 | 20.80217 33.52225 |

. test linsp_mpg1 = linsp_mpg2
(1) linsp_mpg1 - linsp_mpg2 = 0
 F(1, 71) = 27.59
 Prob > F = 0.0000

. predict y_linsp
(option xb assumed; fitted values)
. twoway scatter price mpg || line y_linsp mpg, sort clstyle(solid)
A cubic spline
How did I do that?

```
. mkspline cubsp_mpg1 18 cubsp_mpg2 = mpg, marginal
. foreach var of varlist cubsp* {   
    2.   qui replace `var' = `var'^3
    3. }
. gen cubsp_sq = mpg^2
. gen cubsp_lin = mpg
. reg price cubsp*
```

```
<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>249.529494</td>
<td>4</td>
<td>62.3823734</td>
<td>F( 4, 69) = 11.16</td>
</tr>
<tr>
<td>Residual</td>
<td>385.535888</td>
<td>69</td>
<td>5.58747664</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>635.065382</td>
<td>73</td>
<td>8.69952578</td>
<td>R-squared = 0.3929</td>
</tr>
</tbody>
</table>

| price       | Coef. | Std. Err. | t   | P>|t|  | [95% Conf. Interval] |
|-------------|-------|-----------|-----|------|---------------------|
| cubsp_mpg1  | -.0175977 | .0136154 | -1.29 | 0.201 | -.0447597 - .0095643 |
| cubsp_mpg2  | .0169481 | .0143188 | 1.18  | 0.241 | -.0116172 - .0455134 |
| cubsp_sq    | .9787628 | .7142946 | 1.37  | 0.175 | -.446216 - 2.403742 |
| cubsp_lin   | -18.52005 | 12.34361 | -1.50 | 0.138 | -43.14487 - 6.104773 |
| _cons       | 125.2162 | 70.09313 | 1.79  | 0.078 | -14.61577 - 265.0482 |
```

```
. predict y_cubsp (option xb assumed; fitted values)
. twoway scatter price mpg || line y_cubsp mpg, sort clstyle(solid)
```
A restricted cubic spline

Maarten L. Buis
Using and interpreting restricted cubic splines
How did I do that?

```
mkspline2 rc = mpg, cubic knots(15 20 25)
.reg price rc*

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>242.090418</td>
<td>2</td>
<td>121.045209</td>
</tr>
<tr>
<td>Residual</td>
<td>392.974964</td>
<td>71</td>
<td>5.53485864</td>
</tr>
<tr>
<td>Total</td>
<td>635.065382</td>
<td>73</td>
<td>8.69952578</td>
</tr>
</tbody>
</table>

| price   | Coef.  | Std. Err. | t     | P>|t|  | [95% Conf. Interval] |
|---------|--------|-----------|-------|------|---------------------|
| rc1     | -.8567 | .151159   | -5.67 | 0.000 | -1.158129 - .5553242|
| rc2     | .5791  | .1344838  | 4.31  | 0.000 | .3109781 .8472842   |
| _cons   | 21.793 | 2.663314  | 8.18  | 0.000 | 16.48297 27.10397   |

adjustrcspline , noci addplot(scatter price mpg, msymbol(Oh))
```
Outline

Introduction

Splines

Interpreting the results
The `postrcspline` package

- Available from SSC
- consists of three programs:

 - `mkspline2`
 The same as `mkspline` except that it leaves information behind that can be used by the other commands.

 - `adjustrcspline`
 Displays the adjusted predictions.

 - `mfxrcspline`
 Displays marginal effects.
Adjusted predictions

- Show the predicted outcome against the spline variable.
Adjusted predictions

- Show the predicted outcome against the spline variable.
- What if we have other covariates?
Adjusted predictions

- Show the predicted outcome against the spline variable.
- What if we have other covariates?
- Predicted outcome for an observation with typical values on the other covariates
Adjusted predictions

- Show the predicted outcome against the spline variable.
- What if we have other covariates?
- Predicted outcome for an observation with typical values on the other covariates

```stata
reg price rc* rep78 foreign

Source | SS    df | MS
------ |------- |----
Model  | 230.45919 | 4  | 57.6114798
Residual | 346.351028 | 64 | 5.41173481
Total  | 576.796947 | 68 | 8.48230805

Number of obs = 69
F(  4,  64) = 10.65
Prob > F    = 0.0000
R-squared   = 0.3995
Adj R-squared = 0.3620
Root MSE    = 2.3263

price | Coef.  Std. Err.  t    P>|t|       [95% Conf. Interval]
------ |-------- |-------- |------ |------------ |------------------
rc1    | -0.8688077 0.1627389 -5.34 0.000  -1.193916 -0.5436995
rc2    | 0.543387 0.1444228 3.76 0.000  0.2548693 0.8319048
rep78  | -0.0172764 0.379311 -0.05 0.964 -0.7750371 0.7404844
foreign| 1.607754 0.8049689 2.00 0.050 -0.0003563 3.215864
_cons  | 21.75074 3.289008 6.61 0.000 15.18019 28.32128
```

```stata
adjustrcspline, at(foreign=0)
```
Predicted price for domestic cars with average repair status
Marginal effects

- Effect is how much does the predicted outcome change for a unit change in the explanatory variable.
Marginal effects

- Effect is how much does the predicted outcome change for a unit change in the explanatory variable.
- This is the first derivative.
Marginal effects

- Effect is how much does the predicted outcome change for a unit change in the explanatory variable.
- This is the first derivative.

. mfxrcspline, yline(0)
Change in predicted price for a unit change in mpg

\[
\frac{\partial \text{price}}{\partial \text{mpg}}
\]

Maarten L. Buis
Using and interpreting restricted cubic splines
Only *regress*?

- No, restricted cubic splines are just a transformation of an explanatory variable.
Only `regress`?

- No, restricted cubic splines are just a transformation of an explanatory variable.
- This transformed variable can be entered in any regression command like `logit` or `glm`.
Only \textit{regress}? \\

- No, restricted cubic splines are just a transformation of an explanatory variable. \\
- This transformed variable can be entered in any regression command like \texttt{logit} or \texttt{glm}. \\
- This does influence how the adjusted prediction and marginal effects should be computed.
Only *regress*?

- No, restricted cubic splines are just a transformation of an explanatory variable.
- This transformed variable can be entered in any regression command like `logit` or `glm`.
- This does influence how the adjusted prediction and marginal effects should be computed.
- The `postrcspline` package will automatically recognize `regress`, `logit`, `logistic`, `betafit`, `probit`, `poisson`, `cloglog`, and `glm`.
Example of a non-linear model (1)

```
. glm price rc* rep78 foreign, link(log) eform
Iteration 0: log likelihood = -154.66296
Iteration 1: log likelihood = -151.66685
Iteration 2: log likelihood = -151.50983
Iteration 3: log likelihood = -151.50982

Generalized linear models
No. of obs = 69
Optimization : ML
Residual df = 64
Scale parameter = 5.098444
(1/df) Deviance = 5.098444
(1/df) Pearson = 5.098444

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = ln(u) [Log]

Log likelihood = -151.5098231
AIC = 4.536517
BIC = 55.31761

<table>
<thead>
<tr>
<th></th>
<th>OIM</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>exp(b)</td>
<td>Std. Err.</td>
<td>z</td>
<td>P&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[95% Conf. Interval]</td>
</tr>
<tr>
<td>rc1</td>
<td>.8763127</td>
<td>.0185517</td>
<td>-6.24</td>
<td>0.000</td>
</tr>
<tr>
<td>rc2</td>
<td>1.082826</td>
<td>.0224177</td>
<td>3.84</td>
<td>0.000</td>
</tr>
<tr>
<td>rep78</td>
<td>.9569288</td>
<td>.0559123</td>
<td>-0.75</td>
<td>0.451</td>
</tr>
<tr>
<td>foreign</td>
<td>1.445238</td>
<td>.2078801</td>
<td>2.56</td>
<td>0.010</td>
</tr>
</tbody>
</table>

. adjstrcspline, at(foreign=0) name(a) title(Adjusted predictions)
. mfxrcspline, at(foreign=0) yline(0) name(b) title(Marginal effects)
. graph combine a b, ysize(3)
```
Example of a non-linear model (2)

Adjusted predictions

Marginal effects
Syntax `adjustrcspline`

```
adjustrcspline [if] [in], [ at(var = #) var = #[, [...]]) link(linkname)
custominvlink(inv_link_specification)
ciopts(rarea_options) noci level(#) linelimits(line_options) addplot(plot)
generate(newvar1 [newvar2 newvar3]) ]
```
Syntax `mfxrcspline`

```
mfxrcspline [if] [in], [ at(var = #[var = #[...]]))
link(linkname) customdydxb(dydxb_specification)
showknots ciopts(rarea_options) noci level(#)
lineopts(line_options) addplot(plot)
generate(newvar1 [newvar2 newvar3]) ]
```
Restricted cubic spline are an easy way of including an explanatory variable in a smooth non-linear way in a wide variety of models.
Conclusion

- Restricted cubic splines are an easy way of including an explanatory variable in a smooth non-linear way in a wide variety of models.
- The `postrcspline` package provides tools for interpreting the results:
 - `adjustrcspline` graphs the adjusted predictions
 - `mfxrcspline` graphs the marginal effects
Restricted cubic spline are an easy way of including an explanatory variable in a smooth non-linear way in a wide variety of models.

The `postrcspline` package provides tools for interpreting the results:

- `adjustrcspline` graphs the adjusted predictions
- `mfxrcspline` graphs the marginal effects

These commands will work after `regress`, `logit`, `logistic`, `betafit`, `probit`, `poisson`, `cloglog`, `and` `glm`.

conclusion