The -biplot- command and software development at StataCorp.

Magdalena Luniak

June 26, 2009
1. Introduction to biplots
 - Properties
 - Mathematical Background

2. Biplots in Stata
 - Biplot now
 - Forthcomming biplot

3. Software development by StataCorp
Outline

1. Introduction to biplots
 - Properties
 - Mathematical Background

2. Biplots in Stata
 - Biplot now
 - Forthcoming biplot

3. Software development by StataCorp
Biplot’s properties

- multivariate analysis feature
- graphical two-dimensional representation of dataset:
 - *arrows*: variables
 - *marker symbols*: observations

Biplot of 8 observations and 3 variables

Explained variance by component 1 0.6236
Explained variance by component 2 0.2761
Total explained variance 0.8997
Biplot’s properties

Helpful in understanding the relationship between variables and observations separately and jointly:

- the distance between observations is approximately preserved
- the cosine of the angle between arrows approximates the correlation between variables
- relation of observations to variables
Example: students

Students’ scores in mathematics, literature, and sports (1-10)

```
list
stud  sex  math  literat  sport
1.    Beth  female  1  5  1
2.    Cindy  female  5  10  5
3.    Kathy  female  7  10  2
4.    Shari  female  9  9  4
5.    Bill   male  2  1  10
6.    David  male  4  5  8
7.    John   male  8  3  7
8.    Kevin  male  8  5  5
```
Methods and formulas

1. Singular value decomposition of the centered data matrix X:
 \[X = U_{obs} \times L \times V_{var}' \]
 \[X = U_{obs} \times L^\alpha \times L^{1-\alpha} \times V_{var}' \quad \text{for} \quad \alpha \in [0, 1] \]

2. Coordinates for Observations and variables:
 \[X = G \times H' \]
 \[G = U_{obs} \times L^\alpha \]
 \[H' = L^{1-\alpha} \times V_{var}' \]

3. Coefficient α:
 - columns preserving biplot for $\alpha = 0$
 - rows preserving biplot for $\alpha = 1$
 - symmetric biplot for $\alpha = 0.5$
1 Introduction to biplots
 • Properties
 • Mathematical Background

2 Biplots in Stata
 • Biplot now
 • Forthcoming biplot

3 Software development by StataCorp
Biplot’s syntax

biplot varlist[if][in][, options]
Example of options:

- `rowopts()` affects rendition of observations

```
. biplot math literat sport,
rowopts(mlabel(stud) name(Students) msymbol(T) mcolor(red))
```

![Biplot](image)
Example of options:

- `dim()` affects dimensions
- `table` displays table showing biplot coordinates

```
.biplot math literat sport, table dim(2 3)
```

Biplot coordinates

<table>
<thead>
<tr>
<th>Observations</th>
<th>dim3</th>
<th>dim2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8859</td>
<td>2.1843</td>
</tr>
<tr>
<td>2</td>
<td>-1.2777</td>
<td>0.2776</td>
</tr>
<tr>
<td>3</td>
<td>-0.0345</td>
<td>0.2088</td>
</tr>
<tr>
<td>4</td>
<td>-0.0025</td>
<td>-0.8095</td>
</tr>
<tr>
<td>5</td>
<td>-0.4317</td>
<td>0.1207</td>
</tr>
<tr>
<td>6</td>
<td>-0.7672</td>
<td>-0.0600</td>
</tr>
<tr>
<td>7</td>
<td>0.8262</td>
<td>-1.1657</td>
</tr>
<tr>
<td>8</td>
<td>0.8016</td>
<td>-0.7562</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>dim3</th>
<th>dim2</th>
</tr>
</thead>
<tbody>
<tr>
<td>math</td>
<td>0.7354</td>
<td>-2.3513</td>
</tr>
<tr>
<td>literat</td>
<td>-1.4377</td>
<td>0.1390</td>
</tr>
<tr>
<td>sport</td>
<td>-1.3822</td>
<td>-1.3957</td>
</tr>
</tbody>
</table>

Biplot of 8 observations and 3 variables

- Explained variance by component 3 0.1003
- Explained variance by component 2 0.2761
- Total explained variance 0.3764
What will be new in biplot?

- No limits for number of observations: matrix computations implemented in Mata
- New options:
 - `rowover()` and `row#opts()`
 - `rowlabel`
 - `generate()`

Rows

- `rowopts(row_options)` affect rendition of rows (observations) in the #th group of varlist defined in `rowover();` available only with `rowover()`
- `row#opts(row_options)`
- `rowlabel(varname)` specify label variable for rows (observations)
- `norow` suppress row points; may not be combined with `rowover()`
- `generate(newvar_x newvar_y)` store biplot coordinates for observations in variables `newvar_x` and `newvar_y`
Example

. biplot math literat sport, rowover(sex) norowlabel
row1opts(msymbol(X) mcolor(red))
row2opts(msymbol(T) mcolor(green))
genrate(coord1 coord2)
```plaintext
.generate(coord1 coord2)

.list coord1 coord2

<table>
<thead>
<tr>
<th></th>
<th>coord1</th>
<th>coord2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0121763</td>
<td>2.184314</td>
</tr>
<tr>
<td>2</td>
<td>-0.861408</td>
<td>0.2775752</td>
</tr>
<tr>
<td>3</td>
<td>-1.590056</td>
<td>0.2087832</td>
</tr>
<tr>
<td>4</td>
<td>-1.260582</td>
<td>-0.8095006</td>
</tr>
<tr>
<td>5</td>
<td>2.28588</td>
<td>0.1207452</td>
</tr>
<tr>
<td>6</td>
<td>0.8493378</td>
<td>-0.0600475</td>
</tr>
<tr>
<td>7</td>
<td>0.6690965</td>
<td>-1.165671</td>
</tr>
<tr>
<td>8</td>
<td>-0.104445</td>
<td>-0.7561985</td>
</tr>
</tbody>
</table>
```

Biplot

- Variables: female, male
- Dimension 1
- Dimension 2

The `biplot` command and software development at StataCorp.
Outline

1. Introduction to biplots
 - Properties
 - Mathematical Background

2. Biplots in Stata
 - Biplot now
 - Forthcomming biplot

3. Software development by StataCorp
The story of one option `rowover()`

<table>
<thead>
<tr>
<th>Variables</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biplot</td>
<td></td>
</tr>
</tbody>
</table>

- `math`
- `literat`
- `sport`

- `math`
- `literat`
- `sport`

- `female`
- `male`

Magdalena Luniak

The `-biplot-` command and software development at StataCorp.
The story of one option `rowover()`

Before

![Before Biplot]

After

![After Biplot]
The story of one option `rowover()`
Name "rowover"

The choice of the new option’s name:

- "by"
 - generic
 - in context of graphs means separate graph for every group
Name "rowover"

The choice of the new option’s name:

- "by"
 - generic
 - in context of graphs means separate graph for every group

- "over"
 - over different groups
 - overlay graphs
 - still too general
Name "rowover"

The choice of the new option’s name:

- "by"
 - generic
 - in context of graphs means separate graph for every group
- "over"
 - over different groups
 - overlay graphs
 - still too general
- "rowover"
 - over different groups in rows
 - overlay graphs
 - concerns rows
Name "rowover"

The choice of the new option's name:

- "by"
 - generic
 - in context of graphs means separate graph for every group
- "over"
 - over different groups
 - overlay graphs
 - still too general
- "rowover"
 - over different groups in rows
 - overlay graphs
 - concerns rows

1st lesson learned
Names used in Stata must suit the whole system of commands
New option has to accept all syntactically correct input.

For example:

- unbalanced parentheses
- unbalanced quotes
- special characters

```
. biplot math literat sport, rowover(sex) row1opts(name(""""'))
```
New option has to accept all syntactically correct input.

For example:

- unbalanced parentheses
- unbalanced quotes
- special characters

```
. biplot math literat sport,
   rowover(sex) row1opts(name(""""'))
```

2nd lesson learned

Stata commands must be robust
Certification of the command

New option has to pass certification.
Certification script tests the quality of program:

- covers many possible use cases
- contains the prediction of the correct output
- checks the conformity between obtained and expected results

Example

. local expectedResult = 1.233
. biplot math literat sport, generate(coord1 coord2)
. assert ‘expectedResult’ == coord1[1]
Certification of the command

New option has to pass certification.
Certification script tests the quality of program:

- covers many possible use cases
- contains the prediction of the correct output
- checks the conformity between obtained and expected results

Example

. local expectedResult = 1.233
. biplot math literat sport, generate(coord1 coord2)
. assert `expectedResult' == coord1[1]

3rd lesson learned

The quality of the program must be sufficiently tested
The new option has to be documented:

- information for users (help files and manuals)
- information for developers (internal documentation)

Description

`biplot` displays a two-dimensional biplot of a dataset. A biplot simultaneously displays the observations (rows) and the relative positions of the variables (columns). Marker symbols (points) are displayed for observations and arrows are displayed for variables. Observations are projected to two dimensions such that the distance between the observations is approximately preserved. The cosine of the angle between arrows approximates the correlation between the variables.

Options

- `rowover(varlist)` distinguishes groups among observations (rows) by highlighting observations on the plot for each group identified by equal values of the variables in varlist. By default, the graph contains a legend that consists of group names. `rowover()` may not be combined with `separate` or `norow`.

- `dim(# #)` identifies the dimensions to be displayed. For instance, `dim(3 2)` plots the third dimension (vertically) versus the second dimension (horizontally). The dimension numbers cannot exceed the number of variables. The default is `dim(2 1)`.
The new option has to be documented:
- information for users (help files and manuals)
- information for developers (internal documentation)

Description

`biplot` displays a two-dimensional biplot of a dataset. A biplot simultaneously displays the observations (rows) and the relative positions of the variables (columns). Marker symbols (points) are displayed for observations and arrows are displayed for variables. Observations are projected to two dimensions such that the distance between the observations is approximately preserved. The cosine of the angle between arrows approximates the correlation between the variables.

Options

- `rowover(varlist)` distinguishes groups among observations (rows) by highlighting observations on the plot for each group identified by equal values of the variables in `varlist`. By default, the graph contains a legend that consists of group names. `rowover()` may not be combined with `separate` or `norow`.

- `dim(# #)` identifies the dimensions to be displayed. For instance, `dim(3 2)` plots the third dimension (vertically) versus the second dimension (horizontally). The dimension numbers cannot exceed the number of variables. The default is `dim(2 1)`.

4th lesson learned

Good documentation is as important as a good program
New option has to be added to the dialog box in the proper way.
Graphical User Interface

New option has to be added to the dialog box in the proper way.

5th lesson learned
Do not forget about usability
Certification script tests the quality of program:

- Proof that the command works as a part of the system
- Proof that the command does not have any undesirable side effects on the system
- Proof that the command works on different platforms and in different editions of Stata
Certification script tests the quality of program:

- Proof that the command works as a part of the system
- Proof that the command does not have any undesirable side effects on the system
- Proof that the command works on different platforms and in different editions of Stata

6th lesson learned

A command is always a part of the system
Lessons learned:

1. Names used in Stata must suit the whole system of commands
2. Stata commands must be robust
3. The quality of the program must be sufficiently tested
4. Good documentation is as important as a good program
5. Do not forget about usability
6. A command is always a part of the system
Conclusions

Lessons learned:

1. Names used in Stata must suit the whole system of commands
2. Stata commands must be robust
3. The quality of the program must be sufficiently tested
4. Good documentation is as important as a good program
5. Do not forget about usability
6. A command is always a part of the system