xtfeis.ado: Linear Fixed Effects Models with Individual Slopes

Volker Ludwig¹

¹University of Mannheim, Mannheim Centre for European Social Research (MZES) vludwig@mail.uni-mannheim.de

> 8th German Stata Users Group Meeting June 25, 2010

UNIVERSITÄT

イロト イヨト イヨト イヨト

MANNHEIM

Outline

The Problem. Consider growth curves A straightforward and Simple Solution. FE with individual Slopes Implementation in Stata. xtfeis.ado Monte Carlo Simulation. Compare models. Real world example. The male marriage wage premium Conclusions

Outline

The Problem. Consider growth curves

A straightforward and Simple Solution. FE with individual Slopes

Implementation in Stata. xtfeis.ado

Monte Carlo Simulation. Compare models.

Real world example. The male marriage wage premium

Conclusions

UNIVERSITÄT

The Problem. Consider growth curves

 Fixed Effect framework: the ultimate method for causal analysis with non-experimental data

The Problem. Consider growth curves

- Fixed Effect framework: the ultimate method for causal analysis with non-experimental data
- But many applications where conventional FE models fail because strict exogeneity is violated

UNIVERSITÄT

The Problem. Consider growth curves

- Fixed Effect framework: the ultimate method for causal analysis with non-experimental data
- But many applications where conventional FE models fail because strict exogeneity is violated
 - here: time-constant unobserved factors correlate with observed factors
 - major example: unobserved effect changes over time

UNIVERSITÄT

The Problem. Consider growth curves

- Fixed Effect framework: the ultimate method for causal analysis with non-experimental data
- But many applications where conventional FE models fail because strict exogeneity is violated
 - here: time-constant unobserved factors correlate with observed factors
 - major example: unobserved effect changes over time
- Problem recognized (Allison 1990, Heckman & Hotz 1989, Polachek & Kim 1994, Winship & Morgan 1999, Morgan & Winship 2007)

UNIVERSITÄ

The Problem. Consider growth curves

- Fixed Effect framework: the ultimate method for causal analysis with non-experimental data
- But many applications where conventional FE models fail because strict exogeneity is violated
 - here: time-constant unobserved factors correlate with observed factors
 - major example: unobserved effect changes over time
- Problem recognized (Allison 1990, Heckman & Hotz 1989, Polachek & Kim 1994, Winship & Morgan 1999, Morgan & Winship 2007)
- but seldomly solved in practice

UNIVERSITÄ

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

 Absent treatment, potential outcomes of treatment and control group develop along the same path

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

 Absent treatment, potential outcomes of treatment and control group develop along the same path

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

> 2. Absent treatment, potential outcomes converge

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

2. Absent treatment, potential outcomes converge

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

▶ 3. Absent treatment, potential outcomes diverge

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

▶ 3. Absent treatment, potential outcomes diverge

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

 1. potential outcomes of treatment and control group develop along the same path

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

- 1. potential outcomes of treatment and control group develop along the same path
 - ideal case, assumption of FE model (or "'change score model"') hold

UNIVERSITAT

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

- 1. potential outcomes of treatment and control group develop along the same path
 - ideal case, assumption of FE model (or "'change score model"') hold
- 2. potential outcomes converge

UNIVERSITÄT

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

- 1. potential outcomes of treatment and control group develop along the same path
 - ideal case, assumption of FE model (or "'change score model"') hold
- 2. potential outcomes converge
 - assumption of FE model violated, use ANCOVA model instead

UNIVERSITÄT

(日) (四) (三) (三)

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

- 1. potential outcomes of treatment and control group develop along the same path
 - ideal case, assumption of FE model (or "'change score model"') hold
- 2. potential outcomes converge
 - assumption of FE model violated, use ANCOVA model instead
- 3. potential outcomes diverge

UNIVERSITÄT

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

- 1. potential outcomes of treatment and control group develop along the same path
 - ideal case, assumption of FE model (or "'change score model"') hold
- 2. potential outcomes converge
 - assumption of FE model violated, use ANCOVA model instead
- 3. potential outcomes diverge
 - assumption of FE model and ANCOVA violated

UNIVERSITÄT

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

- 1. potential outcomes of treatment and control group develop along the same path
 - ideal case, assumption of FE model (or "'change score model"') hold
- 2. potential outcomes converge
 - assumption of FE model violated, use ANCOVA model instead
- 3. potential outcomes diverge
 - assumption of FE model and ANCOVA violated
 - solution ???

UNIVERSITÄT

The Problem. Consider growth curves

Allison (1990), Winship & Morgan (1999) consider 3 situations:

- 1. potential outcomes of treatment and control group develop along the same path
 - ideal case, assumption of FE model (or "'change score model"') hold
- 2. potential outcomes converge
 - assumption of FE model violated, use ANCOVA model instead
- 3. potential outcomes diverge
 - assumption of FE model and ANCOVA violated
 - solution ???
- ▶ 1., 2., 3.? Theories seldomly strong enough to decide

UNIVERSITÄT

FE with individual Slopes, notation first

Let Y_{it} : Outcome Y of individual i at time point t

FE with individual Slopes, notation first

- ▶ Let Y_{it} : Outcome Y of individual i at time point t
- ► *D_{it}* : Binary treatment indicator (time-varying),
 - D_i : treatment indicator (time-constant)

FE with individual Slopes, notation first

- ▶ Let Y_{it} : Outcome Y of individual i at time point t
- ► *D_{it}* : Binary treatment indicator (time-varying),
 - D_i : treatment indicator (time-constant)

FE with individual Slopes, notation first

- ▶ Let Y_{it} : Outcome Y of individual i at time point t
- D_{it}: Binary treatment indicator (time-varying),
 D_i: treatment indicator (time-constant)
- α_{1i} : individual constants, i.e. time-constant individual heterogeneity, usually correlated with D_{it}

UNIVERSITÄT

FE with individual Slopes, notation first

- ▶ Let Y_{it} : Outcome Y of individual i at time point t
- D_{it} : Binary treatment indicator (time-varying),
 D_i : treatment indicator (time-constant)
- α_{1i} : individual constants, i.e. time-constant individual heterogeneity, usually correlated with D_{it}
- ► *Z_{it}* : further independent variable(s), e.g. time (T)

UNIVERSITÄT

(日) (四) (三) (三)

FE with individual Slopes, notation first

- ▶ Let Y_{it} : Outcome Y of individual i at time point t
- D_{it} : Binary treatment indicator (time-varying),
 D_i : treatment indicator (time-constant)
- α_{1i} : individual constants, i.e. time-constant individual heterogeneity, usually correlated with D_{it}
- ► *Z_{it}* : further independent variable(s), e.g. time (T)
- α_{2i} : individual slopes, time-constant individual heterogeneity, correlated with D_{it} and interacts with Z_{it} to produce the outcome

UNIVERSITÄT

・ロト ・回ト ・ヨト ・ヨト

FE with individual Slopes, notation first

- ▶ Let *Y_{it}* : Outcome Y of individual i at time point t
- D_{it} : Binary treatment indicator (time-varying),
 D_i : treatment indicator (time-constant)
- α_{1i} : individual constants, i.e. time-constant individual heterogeneity, usually correlated with D_{it}
- ► *Z_{it}* : further independent variable(s), e.g. time (T)
- α_{2i} : individual slopes, time-constant individual heterogeneity, correlated with D_{it} and interacts with Z_{it} to produce the outcome

UNIVERSITÄT

イロト イヨト イヨト イヨト

MANNHFIM

Extending the FE framework

Conventional FE

Extending the FE framework

Conventional FE

• within transform aka time-demeaning eliminates α_{1i}

Extending the FE framework

Conventional FE

- within transform aka time-demeaning eliminates α_{1i}
- estimate

$$(Y_{it} - \overline{Y_i}) = \beta (D_{it} - \overline{D_i}) + \gamma (Z_{it} - \overline{Z_i}) + (\alpha_{1i} - \alpha_{1i}) + (\epsilon_{it} - \overline{\epsilon_{it}})$$

Extending the FE framework

Conventional FE

- within transform aka time-demeaning eliminates α_{1i}
- estimate

$$(Y_{it} - \overline{Y_i}) = \beta (D_{it} - \overline{D_i}) + \gamma (Z_{it} - \overline{Z_i}) + (\alpha_{1i} - \alpha_{1i}) + (\epsilon_{it} - \overline{\epsilon_{it}})$$

Extended FE, including individual slopes

UNIVERSITÄT

イロト イヨト イヨト イヨト

MANNHFIM

Extending the FE framework

- Conventional FE
 - within transform aka time-demeaning eliminates α_{1i}
 - estimate

$$(Y_{it} - \overline{Y_i}) = \beta (D_{it} - \overline{D_i}) + \gamma (Z_{it} - \overline{Z_i}) + (\alpha_{1i} - \alpha_{1i}) + (\epsilon_{it} - \overline{\epsilon_{it}})$$

- Extended FE, including individual slopes
 - substract not the mean, but time-varying estimate to eliminate α_{1i} and α_{2i}

UNIVERSITÄT

イロト イヨト イヨト イヨト

MANNHFIM

Extending the FE framework

- Conventional FE
 - within transform aka time-demeaning eliminates α_{1i}
 - estimate

$$(Y_{it} - \overline{Y_i}) = \beta (D_{it} - \overline{D_i}) + \gamma (Z_{it} - \overline{Z_i}) + (\alpha_{1i} - \alpha_{1i}) + (\epsilon_{it} - \overline{\epsilon_{it}})$$

Extended FE, including individual slopes

- substract not the mean, but time-varying estimate to eliminate α_{1i} and α_{2i}
- estimate

 $\widetilde{Y_{it}} = \beta \widetilde{D_{it}} + \widetilde{\epsilon_{it}}$, where $\widetilde{Y_{it}}$ is residual from individual time-series regression (OLS) of Y_{it} on Z_{it} , and analog for indep. variables

UNIVERSITÄT

・ロン ・回と ・ヨン・

Extending the FE framework

- Conventional FE
 - within transform aka time-demeaning eliminates α_{1i}
 - estimate

$$(Y_{it} - \overline{Y_i}) = \beta(D_{it} - \overline{D_i}) + \gamma(Z_{it} - \overline{Z_i}) + (\alpha_{1i} - \alpha_{1i}) + (\epsilon_{it} - \overline{\epsilon_{it}})$$

Extended FE, including individual slopes

- substract not the mean, but time-varying estimate to eliminate α_{1i} and α_{2i}
- estimate

 $\widetilde{Y_{it}} = \beta \widetilde{D_{it}} + \widetilde{\epsilon_{it}}$, where $\widetilde{Y_{it}}$ is residual from individual time-series regression (OLS) of Y_{it} on Z_{it} , and analog for indep. variables

transform "'by hand"' possible, but very very slow UNIVERSITÄT MANN

・ロト ・回ト ・ヨト ・ヨト

Extending the FE framework

• General approach to within transform (Wooldridge 2002):

Extending the FE framework

- General approach to within transform (Wooldridge 2002):
 - Premultiply all variables by matrix $\Omega_i = I_T Z'_i (Z'_i Z_i)^{-1} Z'_i$

UNIVERSITÄT

Extending the FE framework

- General approach to within transform (Wooldridge 2002):
 - Premultiply all variables by matrix $\Omega_i = I_T Z'_i (Z'_i Z_i)^{-1} Z'_i$
 - Since $\Omega_i Z_i = 0$, α_{1i} and α_{2i} are eliminated

UNIVERSITÄT

イロト イヨト イヨト イヨト

Extending the FE framework

- General approach to within transform (Wooldridge 2002):
 - Premultiply all variables by matrix $\Omega_i = I_T Z'_i (Z'_i Z_i)^{-1} Z'_i$
 - Since $\Omega_i Z_i = 0$, α_{1i} and α_{2i} are eliminated
- Conventional FE is a special case where Z_i = (1) is (N × 1) vector of constants

UNIVERSITÄT

Extending the FE framework

- General approach to within transform (Wooldridge 2002):
 - Premultiply all variables by matrix $\Omega_i = I_T Z'_i (Z'_i Z_i)^{-1} Z'_i$
 - Since Ω_iZ_i = 0, α_{1i} and α_{2i} are eliminated
- Conventional FE is a special case where Z_i = (1) is (N × 1) vector of constants
- ▶ Random growth model is another special case where $Z_i = (1, t)$ is $(N \times 2)$ matrix of constants and time variable

UNIVERSITÄT

・ロン ・回と ・ヨン ・ヨン

Stata ado xtfeis.ado

based on mata

・ロト ・回ト ・ヨト ・ヨト

Stata ado xtfeis.ado

- based on mata
- ▶ appropriate when T_i > J, where J is number of Z variables (including possibly individual constants)

Stata ado xtfeis.ado

- based on mata
- ▶ appropriate when T_i > J, where J is number of Z variables (including possibly individual constants)
- automatically selects estimation sample

UNIVERSITÄT

イロト イヨト イヨト イヨト

Stata ado xtfeis.ado

- based on mata
- ▶ appropriate when T_i > J, where J is number of Z variables (including possibly individual constants)
- automatically selects estimation sample
- panels may be unbalanced (missing data)

UNIVERSITÄT

イロト イヨト イヨト イヨト

Stata ado xtfeis.ado

- based on mata
- ▶ appropriate when T_i > J, where J is number of Z variables (including possibly individual constants)
- automatically selects estimation sample
- panels may be unbalanced (missing data)
- collapses to conventional FE model w/o specifying Z variables

UNIVERSITÄT

イロト イヨト イヨト イヨト

Stata ado xtfeis.ado

- based on mata
- ▶ appropriate when T_i > J, where J is number of Z variables (including possibly individual constants)
- automatically selects estimation sample
- panels may be unbalanced (missing data)
- collapses to conventional FE model w/o specifying Z variables
- fully robust s.e. on request

UNIVERSITÄT

(日) (四) (三) (三)

Stata ado xtfeis.ado

- based on mata
- ▶ appropriate when T_i > J, where J is number of Z variables (including possibly individual constants)
- automatically selects estimation sample
- panels may be unbalanced (missing data)
- collapses to conventional FE model w/o specifying Z variables
- fully robust s.e. on request
- Syntax: xtfeis varlist, [slope(varlist)]
 [noconstant] [cluster(clustvar)]

UNIVERSITÄT

Simulation setup

▶ set up panel data set with 3000 cases (N = 1000, T = 3)

Simulation setup

- ▶ set up panel data set with 3000 cases (N = 1000, T = 3)
- ▶ 500 receive treatment between t = 2 and t = 3

イロト イヨト イヨト イヨト

UNIVERSITÄT

Simulation setup

- ▶ set up panel data set with 3000 cases (N = 1000, T = 3)
- ▶ 500 receive treatment between t = 2 and t = 3
- choose true parameters:

イロト イヨト イヨト イヨト

UNIVERSITÄT

Simulation setup

- ▶ set up panel data set with 3000 cases (N = 1000, T = 3)
- ▶ 500 receive treatment between t = 2 and t = 3
- choose true parameters:
 - treatment effect β

UNIVERSITÄT

イロト イヨト イヨト イヨト

Simulation setup

- ▶ set up panel data set with 3000 cases (N = 1000, T = 3)
- ▶ 500 receive treatment between t = 2 and t = 3
- choose true parameters:
 - treatment effect β
 - normally distributed individual constants α_{1i}

UNIVERSITÄT

・ロト ・回ト ・ヨト ・ヨト

Simulation setup

- ▶ set up panel data set with 3000 cases (N = 1000, T = 3)
- ▶ 500 receive treatment between t = 2 and t = 3
- choose true parameters:
 - treatment effect β
 - normally distributed individual constants α_{1i}
 - normally distributed individual slopes α_{2i}

UNIVERSITÄT

イロト イヨト イヨト イヨト

Simulation setup

- ▶ set up panel data set with 3000 cases (N = 1000, T = 3)
- ▶ 500 receive treatment between t = 2 and t = 3
- choose true parameters:
 - treatment effect β
 - normally distributed individual constants α_{1i}
 - normally distributed individual slopes α_{2i}

• Generate outcome:
$$Y_{it} = D_{it} + \alpha_{1i} + \alpha_{2i}T + \epsilon_{it}$$

UNIVERSITÄT

イロト イヨト イヨト イヨト

Simulation setup

- ▶ set up panel data set with 3000 cases (N = 1000, T = 3)
- ▶ 500 receive treatment between t = 2 and t = 3
- choose true parameters:
 - treatment effect β
 - normally distributed individual constants α_{1i}
 - normally distributed individual slopes α_{2i}
- Generate outcome: $Y_{it} = D_{it} + \alpha_{1i} + \alpha_{2i}T + \epsilon_{it}$
- Estimate treatment effect $\hat{\beta}$ using 5 different models

UNIVERSITÄT

イロト イヨト イヨト イヨト

Simulation setup

- ▶ set up panel data set with 3000 cases (N = 1000, T = 3)
- ▶ 500 receive treatment between t = 2 and t = 3
- choose true parameters:
 - treatment effect β
 - normally distributed individual constants α_{1i}
 - normally distributed individual slopes α_{2i}
- Generate outcome: $Y_{it} = D_{it} + \alpha_{1i} + \alpha_{2i}T + \epsilon_{it}$
- Estimate treatment effect $\hat{\beta}$ using 5 different models
- repeat 1000 times

UNIVERSITÄT

・ロト ・回ト ・ヨト ・ヨト

Simulation setup

- ▶ set up panel data set with 3000 cases (N = 1000, T = 3)
- ▶ 500 receive treatment between t = 2 and t = 3
- choose true parameters:
 - treatment effect β
 - normally distributed individual constants α_{1i}
 - normally distributed individual slopes α_{2i}
- Generate outcome: $Y_{it} = D_{it} + \alpha_{1i} + \alpha_{2i}T + \epsilon_{it}$
- Estimate treatment effect $\hat{\beta}$ using 5 different models
- repeat 1000 times
- ▶ get mean of $\hat{\beta}$, s.e., % coefs. diff. from true β

UNIVERSITÄT

イロト イヨト イヨト イヨト

Simulation: 5 different models

イロト イヨト イヨト イヨト

Simulation: 5 different models

Model Equation

() < </p>

Simulation: 5 different models

Model	Equation
Pooled OLS	$Y_{it} = \beta D_{it} + \gamma T + \epsilon_{it}$

Simulation: 5 different models

Model	Equation
Pooled OLS	$Y_{it} = \beta D_{it} + \gamma T + \epsilon_{it}$
ANCOVA	$Y_{it+1} = \delta Y_{it} + \beta D_i + \gamma T + \epsilon_{it}$

UNIVERSITÄT MANNHEIM

・ロ・ ・ 日・ ・ 日・ ・ 日・

Simulation: 5 different models

Model	Equation
Pooled OLS	$Y_{it} = \beta D_{it} + \gamma T + \epsilon_{it}$
ANCOVA	$Y_{it+1} = \delta Y_{it} + \beta D_i + \gamma T + \epsilon_{it}$
Change score	$Y_{it+1} - Y_{it} = \beta D_i + \gamma T + \epsilon_{it}$

UNIVERSITÄT MANNHEIM ペロト ペクト ペミト ペミト ミークへや

Simulation: 5 different models

Model	Equation
Pooled OLS	$Y_{it} = \beta D_{it} + \gamma T + \epsilon_{it}$
ANCOVA	$Y_{it+1} = \delta Y_{it} + \beta D_i + \gamma T + \epsilon_{it}$
Change score	$Y_{it+1} - Y_{it} = \beta D_i + \gamma T + \epsilon_{it}$
Fixed Effects	$\ddot{Y}_{it} = \beta \ddot{D}_{it} + \gamma \ddot{T} + \ddot{\epsilon}_{it}$

UNIVERSITÄT MANNHEIM

Simulation: 5 different models

Model	Equation
Pooled OLS	$Y_{it} = \beta D_{it} + \gamma T + \epsilon_{it}$
ANCOVA	$Y_{it+1} = \delta Y_{it} + \beta D_i + \gamma T + \epsilon_{it}$
Change score	$Y_{it+1} - Y_{it} = \beta D_i + \gamma T + \epsilon_{it}$
Fixed Effects	$\ddot{Y}_{it} = \beta \ddot{D}_{it} + \gamma \ddot{T} + \ddot{\epsilon}_{it}$
Fixed Effects IS	$\widetilde{Y_{it}} = \beta \widetilde{D_{it}} + \widetilde{\epsilon_{it}}$

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT Mannheim

크

イロン イヨン イヨン イヨン

Simulation results

Scenario 1: Absent treatment, potential outcomes follow same path

イロト イヨト イヨト イヨト

Simulation results

Scenario 1: Absent treatment, potential outcomes follow same path

•
$$\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = 0, \ \epsilon_{it} = N(0, .1)$$

UNIVERSITÄT

イロト イヨト イヨト イヨト

MANNHFIM

æ

Simulation results

Scenario 1: Absent treatment, potential outcomes follow same path

•
$$\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = 0, \ \epsilon_{it} = N(0, .1)$$

Model	\hat{eta}	s.e.	% p > .05
-------	-------------	------	------------------

UNIVERSITÄT

イロト イヨト イヨト イヨト

MANNHFIM

æ

Simulation results

Scenario 1: Absent treatment, potential outcomes follow same path

•
$$\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = 0, \ \epsilon_{it} = N(0, .1)$$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.214	.010	100

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT

イロト イヨト イヨト イヨト

Simulation results

Scenario 1: Absent treatment, potential outcomes follow same path

•
$$\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = 0, \ \epsilon_{it} = N(0, .1)$$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.214	.010	100
ANCOVA	.125	.007	100

Simulation results

Scenario 1: Absent treatment, potential outcomes follow same path

•
$$\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = 0, \ \epsilon_{it} = N(0, .1)$$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.214	.010	100
ANCOVA	.125	.007	100
Change score	<.001	.006	1.1

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT

イロト イヨト イヨト イヨト

Simulation results

Scenario 1: Absent treatment, potential outcomes follow same path

•
$$\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = 0, \ \epsilon_{it} = N(0, .1)$$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.214	.010	100
ANCOVA	.125	.007	100
Change score	<.001	.006	1.1
Fixed Effects	<.001	.007	4.7

UNIVERSITÄT

イロト イヨト イヨト イヨト

Simulation results

Scenario 1: Absent treatment, potential outcomes follow same path

•
$$\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = 0, \ \epsilon_{it} = N(0, .1)$$

Model	\hat{eta}	s.e.	% <i>p</i> > .05	_
Pooled OLS	.214	.010	100	-
ANCOVA	.125	.007	100	_
Change score	<.001	.006	1.1	_
Fixed Effects	<.001	.007	4.7	-
Fixed Effects IS	<.001	.011	5.1	_
				UNIVERSITÄT MANNHE

イロト イヨト イヨト イヨト
Simulation results

Scenario 2: Absent treatment, potential outcomes converge

Simulation results

Scenario 2: Absent treatment, potential outcomes converge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(-.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

UNIVERSITÄT

・ロン ・回 と ・ ヨ と ・ ヨ と

Simulation results

Scenario 2: Absent treatment, potential outcomes converge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(-.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model
$$\hat{\beta}$$
 s.e. **%** *p* > .05

Simulation results

Scenario 2: Absent treatment, potential outcomes converge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(-.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.128	.012	100

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT

・ロン ・回 と ・ ヨ と ・ ヨ と

Simulation results

Scenario 2: Absent treatment, potential outcomes converge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(-.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.128	.012	100
ANCOVA	005	.009	10.8

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT

・ロン ・回 と ・ ヨ と ・ ヨ と

Simulation results

Scenario 2: Absent treatment, potential outcomes converge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(-.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.128	.012	100
ANCOVA	005	.009	10.8
Change score	050	.008	100

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT

・ロト ・回ト ・ヨト ・ヨト

Simulation results

- Scenario 2: Absent treatment, potential outcomes converge
 - $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(-.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.128	.012	100
ANCOVA	005	.009	10.8
Change score	050	.008	100
Fixed Effects	060	.010	100

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT

・ロト ・回ト ・ヨト ・ヨト

Simulation results

- Scenario 2: Absent treatment, potential outcomes converge
 - $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(-.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.128	.012	100
ANCOVA	005	.009	10.8
Change score	050	.008	100
Fixed Effects	060	.010	100
Fixed Effects IS	<.001	.011	4.6

UNIVERSITÄT

イロン イヨン イヨン イヨン

Simulation results

- Scenario 2: Absent treatment, potential outcomes converge
 - $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(-.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.128	.012	100
ANCOVA	005	.009	10.8
Change score	050	.008	100
Fixed Effects	060	.010	100
Fixed Effects IS	<.001	.011	4.6

UNIVERSITÄT

イロン イヨン イヨン イヨン

Simulation results

Scenario 3: Absent treatment, potential outcomes diverge

Simulation results

Scenario 3: Absent treatment, potential outcomes diverge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

UNIVERSITÄT

・ロン ・回 と ・ ヨ と ・ ヨ と

Simulation results

Scenario 3: Absent treatment, potential outcomes diverge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model
$$\hat{\beta}$$
 s.e. **%** *p* > .05

Simulation results

Scenario 3: Absent treatment, potential outcomes diverge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.300	.013	100

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT

・ロン ・回 と ・ ヨ と ・ ヨ と

Simulation results

Scenario 3: Absent treatment, potential outcomes diverge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% p > .05
Pooled OLS	.300	.013	100
ANCOVA	.104	.010	100

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT

イロト イヨト イヨト イヨト

Simulation results

Scenario 3: Absent treatment, potential outcomes diverge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.300	.013	100
ANCOVA	.104	.010	100
Change score	.050	.008	100

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT

・ロト ・回ト ・ヨト ・ヨト

Simulation results

Scenario 3: Absent treatment, potential outcomes diverge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.300	.013	100
ANCOVA	.104	.010	100
Change score	.050	.008	100
Fixed Effects	.060	.010	100

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT

・ロト ・回ト ・ヨト ・ヨト

Simulation results

Scenario 3: Absent treatment, potential outcomes diverge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.300	.013	100
ANCOVA	.104	.010	100
Change score	.050	.008	100
Fixed Effects	.060	.010	100
Fixed Effects IS	<.001	.011	4.6

UNIVERSITÄT

イロン イヨン イヨン イヨン

Simulation results

Scenario 3: Absent treatment, potential outcomes diverge

• $\beta = 0, \ \alpha_{1i} = N(.25D_i, .1), \ \alpha_{2i} = N(.05D_i, .1), \ \epsilon_{it} = N(0, .1)$

Model	\hat{eta}	s.e.	% <i>p</i> > .05
Pooled OLS	.300	.013	100
ANCOVA	.104	.010	100
Change score	.050	.008	100
Fixed Effects	.060	.010	100
Fixed Effects IS	<.001	.011	4.6

UNIVERSITÄT

イロン イヨン イヨン イヨン

Simulation Summary

FE model: fine when α_{1i} = 0, but fails when potential outcomes w/o treatment do not follow same path (α_{2i} = 0 required)

イロト イヨト イヨト イヨト

UNIVERSITÄT

Simulation Summary

- ► FE model: fine when \(\alpha_{1i} = 0\), but fails when potential outcomes w/o treatment do not follow same path (\(\alpha_{2i} = 0\) required\))
- ► Changes Score model: alternative to FE, but also requires α_{2i} = 0

UNIVERSITÄT

イロト イヨト イヨト イヨト

Simulation Summary

- ► FE model: fine when \(\alpha_{1i} = 0\), but fails when potential outcomes w/o treatment do not follow same path (\(\alpha_{2i} = 0\) required\))
- ► Changes Score model: alternative to FE, but also requires α_{2i} = 0
- ANCOVA model: appropriate when potential outcomes converge, but fails when they diverge or when α_{2i} = 0

UNIVERSITÄT

イロト イヨト イヨト イヨト

Simulation Summary

- ► FE model: fine when \(\alpha_{1i} = 0\), but fails when potential outcomes w/o treatment do not follow same path (\(\alpha_{2i} = 0\) required\))
- ► Changes Score model: alternative to FE, but also requires α_{2i} = 0
- ANCOVA model: appropriate when potential outcomes converge, but fails when they diverge or when α_{2i} = 0
- FE-IS is the only model which performs nicely regardles of α_{1i} and α_{2i}
 UNIVERSITÄT

・ロト ・回ト ・ヨト ・ヨト

The story

 Married men earn higher (hourly) wages than never-married, cohabiting, divorced

V. Ludwig

イロト イヨト イヨト イヨト

UNIVERSITÄT

The story

- Married men earn higher (hourly) wages than never-married, cohabiting, divorced
- "'... one of the most well documented phenomena in social science"' (Waite & Gallagher 2000)

UNIVERSITÄT

イロト イヨト イヨト イヨト

The story

- Married men earn higher (hourly) wages than never-married, cohabiting, divorced
- "'... one of the most well documented phenomena in social science"' (Waite & Gallagher 2000)
- Studies show (using conventional FE):

UNIVERSITÄT

イロト イヨト イヨト イヨト

The story

- Married men earn higher (hourly) wages than never-married, cohabiting, divorced
- "'... one of the most well documented phenomena in social science"' (Waite & Gallagher 2000)
- Studies show (using conventional FE):
 - selection of high earners into marriage explains at least half of the premium

UNIVERSITÄT

(日) (四) (三) (三)

The story

- Married men earn higher (hourly) wages than never-married, cohabiting, divorced
- "'... one of the most well documented phenomena in social science"' (Waite & Gallagher 2000)
- Studies show (using conventional FE):
 - selection of high earners into marriage explains at least half of the premium
 - a significant positive effect still remains (2-10% after controlling for α_{1i})

UNIVERSITÄT

・ロン ・回と ・ヨン・

The story

- Married men earn higher (hourly) wages than never-married, cohabiting, divorced
- "'... one of the most well documented phenomena in social science"' (Waite & Gallagher 2000)
- Studies show (using conventional FE):
 - selection of high earners into marriage explains at least half of the premium
 - a significant positive effect still remains (2-10% after controlling for α_{1i})
 - not clear whether the effect is causal

UNIVERSITÄT

The story

- Married men earn higher (hourly) wages than never-married, cohabiting, divorced
- "'... one of the most well documented phenomena in social science"' (Waite & Gallagher 2000)
- Studies show (using conventional FE):
 - selection of high earners into marriage explains at least half of the premium
 - a significant positive effect still remains (2-10% after controlling for α_{1i})
 - not clear whether the effect is causal
 - possible bias because of α_{2i}

UNIVERSITÄT

イロト イヨト イヨト イヨト

Real data

Two country studies: West Germany and US

Real data

- Two country studies: West Germany and US
- GSOEP 1984-2006 and NLSY 1979-2004 data

Real data

- Two country studies: West Germany and US
- GSOEP 1984-2006 and NLSY 1979-2004 data
- Use working males, never-married when first observed, observe (log) hourly wages before and after marriage

UNIVERSITÄT

イロト イヨト イヨト イヨト

Real data

- Two country studies: West Germany and US
- GSOEP 1984-2006 and NLSY 1979-2004 data
- Use working males, never-married when first observed, observe (log) hourly wages before and after marriage
- Z includes slope variables work experience, and experience squared, and individual constants

UNIVERSITAT

< ロ > < 回 > < 回 > < 回 > < 回 >

Real data

- Two country studies: West Germany and US
- GSOEP 1984-2006 and NLSY 1979-2004 data
- Use working males, never-married when first observed, observe (log) hourly wages before and after marriage
- Z includes slope variables work experience, and experience squared, and individual constants
- Therefore, at least 4 years per person

UNIVERSITÄT

イロト イヨト イヨト イヨト

Real data

- Two country studies: West Germany and US
- GSOEP 1984-2006 and NLSY 1979-2004 data
- Use working males, never-married when first observed, observe (log) hourly wages before and after marriage
- Z includes slope variables work experience, and experience squared, and individual constants
- Therefore, at least 4 years per person
- controls: divorce, remarriage, number of children, yrs.
 education, tenure, year dummies

イロト イヨト イヨト イヨト

Results: Effect of marriage on male wages

GSOEP			NLSY		
Model	\hat{eta}	robust s.e.	Model	\hat{eta}	robust s.e.
POLS	.078**	(.014)	POLS	.146**	(.010)
FE	.036**	(.013)	FE	.082**	(.008)
FE-IS	.015	(.010)	FE-IS	.021*	(.008)

V. Ludwig Linear FE Models with Ind. Slopes

UNIVERSITÄT

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

MANNHEIM
Conclusions

- FE-IS valid under more general conditions than alternative models
 - besides linearity, no further assumptions needed regarding heterogeneous slopes

UNIVERSITÄT

イロト イヨト イヨト イヨト

MANNHFIM

Conclusions

- FE-IS valid under more general conditions than alternative models
 - besides linearity, no further assumptions needed regarding heterogeneous slopes
 - outcomes may develop differently over time in treatment and control group (may diverge or converge)

UNIVERSITAT

Conclusions

- FE-IS valid under more general conditions than alternative models
 - besides linearity, no further assumptions needed regarding heterogeneous slopes
 - outcomes may develop differently over time in treatment and control group (may diverge or converge)
 - supported by simulation results

UNIVERSITÄT

Conclusions

- FE-IS valid under more general conditions than alternative models
 - besides linearity, no further assumptions needed regarding heterogeneous slopes
 - outcomes may develop differently over time in treatment and control group (may diverge or converge)
 - supported by simulation results
- possible extension: implement a test for heterogeneous slopes

UNIVERSITÄT

Conclusions

- FE-IS valid under more general conditions than alternative models
 - besides linearity, no further assumptions needed regarding heterogeneous slopes
 - outcomes may develop differently over time in treatment and control group (may diverge or converge)
 - supported by simulation results
- possible extension: implement a test for heterogeneous slopes

UNIVERSITÄT

Conclusions

- FE-IS valid under more general conditions than alternative models
 - besides linearity, no further assumptions needed regarding heterogeneous slopes
 - outcomes may develop differently over time in treatment and control group (may diverge or converge)
 - supported by simulation results
- possible extension: implement a test for heterogeneous slopes

UNIVERSITÄT