Comparing coefficients of nested nonlinear probability models using khb

Ulrich Kohler

Joined Work with Kristian B. Karlson and Anders Holm
$9^{\text {th }}$ German Stata Users Group Meeting Bamberg
01 July 2011

Outline

(1) Introduction

(2) The KHB-method
(3) The command knb
(4) Application
(5) References

Outline

(2) The KHB-method

3 The command khb

4. Application
(5) References

Reasons to compare

The problem

We are interested in obtaining $\beta_{R}-\beta_{F}$ from the following models for latent Y^{*} :

$$
\begin{align*}
& Y^{*}=\alpha_{F}+\beta_{F} X+\gamma_{F} Z+\delta_{F} C+\epsilon \tag{1}\\
& Y^{*}=\alpha_{R}+\beta_{R} X+\delta_{R} C+\varepsilon \tag{2}
\end{align*}
$$

Having ovserved Y with value 0 if $Y^{*}<\tau$ and 1 if $Y^{*} \geq \tau$ we can obtain the logit/probit estimates with

$$
\begin{equation*}
b_{F}=\frac{\beta_{F}}{\sigma_{F}} \quad \text { and } \quad b_{R}=\frac{\beta_{R}}{\sigma_{R}} \tag{3}
\end{equation*}
$$

Note: We identify the underlying coefficients of interest relative to a scale unknown to us.

Outline

(2) The KHB-method
(3) The command khb
4. Application
(5) References

General idea

The KHB-method extracts from Z the information that is not contained in X. This is done by calculating the residuals of a linear regression of Z on X, i.e,

$$
\begin{equation*}
R=Z-(a+b X) \tag{4}
\end{equation*}
$$

where a and b are the estimated regression parameters of a linear regression.
Instead of using equation (2) we then use

$$
\begin{equation*}
Y^{*}=\widetilde{\alpha}_{R}+\widetilde{\beta}_{R} X+\widetilde{\gamma}_{R} R+\widetilde{\delta}_{R} C+\epsilon \tag{5}
\end{equation*}
$$

Difference of coefficients

As R and Z differ only in the component in Z that is correlated with X, model (1) is no more predictive than model (5), and consequently the residuals have the same standard deviation so that

$$
\begin{equation*}
\tilde{\sigma}_{R}=\sigma_{F} \tag{6}
\end{equation*}
$$

As $\widetilde{\beta}_{R}=\beta_{R}$ we can write

$$
\begin{equation*}
\widetilde{b}_{R}-b_{F}=\frac{\widetilde{\beta}_{R}}{\widetilde{\sigma}_{R}}-\frac{\beta_{F}}{\sigma_{F}}=\frac{\beta_{R}-\beta_{F}}{\sigma_{F}} \tag{7}
\end{equation*}
$$

Hence, the difference obtained reflects the difference searched divided by some common scale.

Derived statistics

Confounding ratio

$$
\begin{equation*}
\frac{\widetilde{b}_{R}}{b_{F}}=\frac{\frac{\beta_{R}}{\sigma_{F}}}{\frac{\beta_{F}}{\sigma_{F}}}=\frac{\beta_{R}}{\beta_{F}} \tag{8}
\end{equation*}
$$

Counfounding percentage

$$
\begin{equation*}
100 \cdot \frac{\widetilde{b}_{R}-b_{F}}{\widetilde{b}_{R}}=100 \cdot \frac{\frac{\beta_{R}}{\sigma_{F}}-\frac{\beta_{F}}{\sigma_{F}}}{\frac{\beta_{R}}{\sigma_{F}}}=100 \cdot \frac{\beta_{R}-\beta_{F}}{\beta_{R}} \tag{9}
\end{equation*}
$$

Significance test for the difference in effects

- Analyitcally derived standard errors for the difference in effects exist.
- Based on the delta method (Sobel, 1982).
- Simple for one X and ond Z but fairly complicated for situations with more than one X, Z.
- Karlson et al. (2010) has more details; also see our Stata Journal publications (in Press)

Outline

(1) Introduction

(2) The KHB-method
(3) The command khb
4. Application
(5) References

Syntax

khb model-type depvar key-vars || mediator-vars [if][in][, options]
model-type can be any of regress, logit, ologit, probit, oprobit, cloglog, slogit, scobit, rologit, clogit, and mlogit.
key-vars may contain factor variables
aweights, fweights, iweights, and pweights are allowed if they are allowed for the specified model type.

Options (most important ones)

options
concomitant (varlist) concomitants
disentangle
summary
vce (vcetype)
ape
verbose
keep
description
disentangle difference of effects
summary of decomposition robust or cluster clustvar decomposition using avg. partial effects show restricted and full model keep residuals of mediators

Outline

(1) Introduction

(2) The KHB-method

(3) The command khb

4. Application

Preliminaries

- Examples from educational sociology
- Subset of Danish National Longitudinal Survey (DLSY).
- Reproduce analysis presented by Karlson and Holm (2011).

```
. use dlsy_khb, clear
. describe
Contains data from dlsy_khb.dta
    obs: 1,896
    vars: 8 17 Jan 2011 10:26
    size: 49,296 (99.9% of memory free)
\begin{tabular}{|c|c|c|c|c|}
\hline variable name & storage type & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular} & variable label \\
\hline edu & byte & \(\% 20.0 \mathrm{~g}\) & edu & Educational attainment \\
\hline upsec & byte & \(\% 10.0 \mathrm{~g}\) & yesno & Complete upper secondary education (Gymnasium) \\
\hline univ & byte & \(\% 13.0 \mathrm{~g}\) & yesno & Complete University education \\
\hline fgroup & byte & \(\because 9.0 \mathrm{~g}\) & fgroup & Father's social group/class \\
\hline fses & float & \(\because 9.0 \mathrm{~g}\) & & ```
Father's SES, standardized with
```

 mean 0 and sd 1 \\
 \hline abil \& double \& $\% 10.0 \mathrm{~g}$ \& \& Standardized ability measure, with mean 0 and sd 1

\hline intact \& byte \& $\because 9.0 \mathrm{~g}$ \& yesno \& Intact family

\hline boy \& byte \& $\because 9.0 \mathrm{~g}$ \& yesno \& Boy

\hline
\end{tabular}

```

\section*{Basic use}
. khb logit univ fses || abil, c(intact boy)
Decomposition using the KHB-Method
Model-Type: logit
Variables of Interest: fses
Z-variable(s) : abil
Concomitant: intact boy

\section*{Confounding ratio/percentage}
```

. khb logit univ fses || abil, c(intact boy) summary notable
Decomposition using the KHB-Method
Model-Type: logit Number of obs = 1896
Variables of Interest: fses
Z-variable(s): abil
Concomitant: intact boy
Summary of confounding

Variable	Conf_ratio	Conf_Pct	Resc_Fact
fses	1.4302727	30.08	1.0602422

```

\section*{Option ape}
. khb logit univ fses || abil, c(intact boy) ape summary
Decomposition using the APE-Method
Model-Type: logit
Variables of Interest: fses
Z-variable(s) abil
Concomitant: intact boy

Note: Standard errors of difference not known for APE method Summary of confounding
\begin{tabular}{r|rrr} 
Variable & Conf_ratio & Conf_Pct & Dist_Sens \\
\hline fses & 1.4302727 & 30.08 & .95931864 \\
\hline
\end{tabular}

\section*{Disentangle contributions of mediators}
```

. khb logit univ fses || abil intact boy, s d not
Decomposition using the KHB-Method
Model-Type: logit Number of obs = 1896
Variables of Interest: fses
Z-variable(s): abil intact boy
Summary of confounding

Variable	Conf_ratio	Conf_Pct	Resc_Fact
fses	1.5207722	34.24	1.1317064

Components of Difference

Z-Variable	Coef	Std_Err	P_Diff	P_Reduced
fses				
abil	.1661177	.0301003	83.56	28.61
intact	.020142	.0144611	10.13	3.47
boy	.0125359	.011524	6.31	2.16

```

\section*{More than one key variable}


Summary of confounding
\begin{tabular}{r|rrr} 
Variable & Conf_ratio & Conf_Pct & Resc_Fact \\
\hline boy & 1.0810873 & 7.50 & 1.0033213 \\
intact & 1.0423075 & 4.06 & 1.03542
\end{tabular}

\section*{Categorical variables}
. xtile catabil = abil, \(n(4)\)
. tab catabil, gen(catabil)
. khb logit univ i.fgroup || catabil2-catabil4, c(intact boy) s d

\section*{Ordered outcome}
```

. forv i = 1/3 {
2. quietly eststo: khb ologit edu fses || abil, out(`i') ape s
3. }
. esttab, scalars("ratio_fses Conf.-Ratio" "pct_fses Conf.-Perc.")

```
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
(1) \\
edu
\end{tabular} & \begin{tabular}{l}
(2) \\
edu
\end{tabular} & \begin{tabular}{l}
(3) \\
edu
\end{tabular} \\
\hline \multicolumn{4}{|l|}{fses} \\
\hline Reduced & \[
\begin{aligned}
& -0.103 * * * \\
& (-11.33)
\end{aligned}
\] & \[
\begin{aligned}
& 0.0643 * * * \\
& (10.72)
\end{aligned}
\] & \[
\begin{aligned}
& 0.0385 * * * \\
& (9.27)
\end{aligned}
\] \\
\hline Full & \[
\begin{aligned}
& -0.0755 * * * \\
& (-8.02)
\end{aligned}
\] & \[
\begin{aligned}
& 0.0472 * * * \\
& (7.76)
\end{aligned}
\] & \[
\begin{aligned}
& 0.0283 * * * \\
& (7.23)
\end{aligned}
\] \\
\hline Diff & \[
\begin{aligned}
& -0.0272 \star * * \\
& (-6.50)
\end{aligned}
\] & \[
\begin{aligned}
& 0.0170 * * * \\
& (6.44)
\end{aligned}
\] & \[
\begin{aligned}
& 0.0102 * * * \\
& (5.95)
\end{aligned}
\] \\
\hline N & 1896 & 1896 & 1896 \\
\hline Conf.-Ratio & 1.360 & 1.360 & 1.360 \\
\hline Conf.-Perc. & 26.48 & 26.48 & 26.48 \\
\hline
\end{tabular}

\section*{Multinomial outcome}
```

. forv i = 2/3 {
2. quietly eststo: khb mlogit edu fses || abil, out(`i') base(1) s
3. }
. esttab, scalars("ratio_fses Conf.-Ratio" "pct_fses Conf.-Perc.")

```
\begin{tabular}{|c|c|c|}
\hline & (1) edu & (2) edu \\
\hline \multicolumn{3}{|l|}{fses} \\
\hline Reduced & \[
\begin{aligned}
& 0.423 * * * \\
& (7.63)
\end{aligned}
\] & \[
\begin{aligned}
& 0.779 * * * \\
& (9.30)
\end{aligned}
\] \\
\hline Full & \[
\begin{aligned}
& 0.313 * * * \\
& (5.70)
\end{aligned}
\] & \[
\begin{aligned}
& 0.552 * * * \\
& (6.68)
\end{aligned}
\] \\
\hline Diff & \[
\begin{aligned}
& 0.109 * * * \\
& (5.93)
\end{aligned}
\] & \[
\begin{aligned}
& 0.227 * * * \\
& (6.04)
\end{aligned}
\] \\
\hline N & 1896 & 1896 \\
\hline Conf.-Ratio & 1.349 & 1.411 \\
\hline Conf.-Perc. & 25.88 & 29.15 \\
\hline
\end{tabular}
\(t\) statistics in parentheses
* \(\mathrm{p}<0.05\), ** \(\mathrm{p}<0.01\), *** \(\mathrm{p}<0.001\)

\section*{Outline}

\section*{Introduction}
(2) The KHB-method
(3) The command khb
4. Application
(5) References

\section*{References}

Karlson, K. B. and A. Holm. 2011. Decomposing primary and secondary effects: A new decomposition method. Research in Stratification and Social Mobility 29: XXXX.
Karlson, K. B., A. Holm, and R. Breen. 2010. Comparing regression coefficients between models using logit and probit: a new method. Unpublished paper (currently under review).
Sobel, M. E. 1982. Asymptotic confidence intervals for indirect effects in structural equation models. In Sociological Methodology 1982, ed. L. S., 290-312. Washington D.C.: American Sociological Association.```

