
Implementation of a multinomial logit model
with fixed effects

Klaus Pforr

Mannheim Centre for European Social Research (MZES)
University of Mannheim

klaus.pforr@mzes.uni-mannheim.de

July 1, 2011,
Ninth German Stata Users Group Meeting, Bamberg



Outline

Motivation

Statistical model

Implementation

First applications

Outlook



Motivation

Why mlogit?

▶ Fixed effect models available for continuous, binary and
count data dependent variables.

▶ Polytomous categorical dependent variables commonly
used in all fields of social sciences.

Why fixed effects?
Counter omitted variable bias!

▶ With fixed effects models no assumptions about αi
necessary.

▶ Random effects and pooled models basically assume no
correlation of αi and Xit .



Statistical model
mlogit across time with unobserved heterogeneity

Pr(yit = j) =
exp(αij + Xitβ

′
j )

1 + ∑
J
k=1,k ∕=B exp(αij + Xitβ

′
k )

for j ∕= base outcome B

Pr(yit = B) =
1

1 + ∑
J
k=1,k ∕=B exp(αij + Xitβ

′
k )

Solution by Chamberlain(1980)
▶ ∑

Ti
t=1 yitj is sufficient statistic for αij

▶ Cond. probability model: Prob. of sequence yi1, . . . ,yiTi

cond. of "overall tendency" to each outcome j ∕=B.
▶ αi disappeares!

Pr(yi ∣
⋀

j ∕=B ∑
Ti
t=1 yitj) =

∏
Ti
t=1 ∏

J
j=1,j ∕=B exp(Xit β

′
j )

yitj

∑di∈Δi
((∏

Ti
t=1 ∏

J
j=1,j ∕=B exp(Xit β

′
j )

ditj ))

with
Δi = {(di1, . . . ,diTi )

′∣∀j = 1, . . . ,J, j ∕= B : ∑
Ti
t=1 ditj = kij}.



Statistical model (cont.)

Δi is the set of all permutations of yi .

Example: Let yi=(1,2,3).
Δi = {(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)}.

Estimation with maximum-likelihood

The log. likelihood function:

lnL = ∑
i

(
∑
j ∕=B

∑
t

yitjXitβ
′
j − ln∑

Δi

exp ∑
j ∕=B

∑
t

ditjXitβ
′
j

)



Implementation: General layout

Top-level ado

▶ Syntax
▶ Further preparation

Actual estimation with maximum likelihood
▶ Iteration management & display of results via Stata ml
▶ Log likelihood, gradient, Hessian with Mata evaluator

function



Implementation: Top-level ado
"Outer shell"

▶ Standard parsing with syntax: varlist, group id, optional
base outcome

▶ Missings: Standard listwise deletion via markout
▶ Collinear Variables: Copied & adjusted _rmcoll from

mlogit
▶ Matsize check: Copied & adjusted from clogit
▶ Editing of equations for ml: Copied & adjusted from mlogit
▶ Offending observations/groups, i.e. checks variance in

dep. & indep. var’s; copied & adjusted from clogit
▶ Init. values: inspired by clogit
▶ Remaining preparation for mata function:

▶ Globals for group id var., indep. var’s for ml evaluator
function

▶ Matrix out2eq: Mapping from outcome indices to outcomes
values and equation indices.



Implementation: Maximum likelihood

"Interface": Stata ml

Putting equations in Stata’s ml terminology
▶ Panel structure⇒ no likelihood defined at observation

level⇒ d-family method
▶ Computation speed and accurary⇒ d2 method, i.e.

lnL,g,H have to be analytically derived
▶ J-1 equations, i.e.

(y1, . . . ,yJ−1) = (y1, . . . ,yB−1,yB+1, . . . ,yJ)

▶ J-1 parameters θj = Xitβ
′
j ; not used, direct use of

(J−1)×M coefficients βjm



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
1. Declare variables.



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
2. Get data, etc. from Stata.



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
3. Derive N,T ,J.



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
4. Loop over i using panelsetup



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
5. Compute A = ∑j ∕=B ∑t yitjXitβ

′
j



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
6. At gradient-step (if (todo>0)), compute C(j ,m) = ∑t yitjxitm



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
7. Loop over Δi (permutations of yi ) using cvpermute



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
8. Add up B = ∑Δi

exp(∑j ∕=B ∑t ditjXitβ
′
j )



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
9. At gradient-step (if (todo>0)), add up

D(j ,m) = ∑Δi ∑t ditjxitm exp(∑j ∕=B ∑t ditjXitβ
′
j )



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
10. At Hessian-step (if (todo>1)), add up

E(j ,m)(k ,l) = ∑Δi ∑t ditjxitm ∑t ditkxitl exp(∑j ∕=B ∑t ditjXitβ
′
j )



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
11. After loop over Δi , build panel-wise lnLi ,gi ,Hi



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
12. After loop over i , build sample lnL,g,H



Implementation: Maximum likelihood (cont.)

"Core": Mata evaluator function cmlogit_eval()

▶ Compute lnL,g,H with current coef. vector

lnL =∑
i

(A− lnB)

∂ lnL
∂βjm

=∑
i

(
C(j ,m)−

D(j ,m)

B

)
for j ∕=B

∂ 2 lnL
∂βjm∂βkl

=∑
i

(D′(j ,m)D(k ,l)

B2 −
E(j ,m)(k ,l)

B

)
for j ,k ∕=B

Process step-by-step:
And that’s it! (with one ml-step)



First applications: How to use it

Syntax
femlogit depvar indepvars, group(varlist) [baseoutcome(#)]

Data structure
▶ Long panel-wise, condensed alternative-wise:

i t yit xit
1 1 1 .5
1 2 2 .2
1 3 3 .9
2 1 1 .1
2 2 2 .3
2 3 1 .2
▶ t not necessary.



Examples: Benchmark clogit

How precise and how fast is it?
Comparison with clogit for J = 2.

▶ Data used:
http://www.stata-press.com/data/r11/union.dta

▶ Relative difference of coefficients: 9.078e-16.
▶ Speed: clogit: 2.42 sec., femlogit: 101.58 sec..



Examples: Simulated data

Performance with more alternatives
Simulated data

▶ N=1000, T=5, J=5
▶ Unobs. het. αij : over all i random draw (αi1, . . . ,αi5) from

uniform distribution over 4-simplex Δ4.
▶ Error εitj : over all i and t, for each j indep. draws from

Gumbel-distribution (E(εitj) = γ,Var(εitj) = π/
√

6).
▶ Indep. variable: x correlated with α

▶ xit = uit + αi2,
▶ uit drawn from uniform distribution.

▶ Coefficients β2 = 2,β3 = 3,β4 = 4,β5 = 5.



Examples: Simulated data (cont.)

▶ Utility Uitj : for each i and t

Uit1 =εit1

Uit2 =10αi2 + β2xit + εit2

...
Uit5 =10αi5 + β5xit + εit5

▶ Dep. var.: yit = j with Uitj = maxk (Uitk )



Examples: Simulated data (cont.)

Results

informative observations: N=3405; speed: 20.83 sec.



Outlook

Things to do

▶ "tomorrow"
▶ Document and publish

▶ in near future
▶ Add standard options (if/in-able, ml-options, etc.)
▶ Think about special postestimation
▶ Robust estimates

▶ in far future
▶ Intuitive Interpretation
▶ Nested logit with fixed effects
▶ Parametric serial correlation
▶ Implementation of RE-Models & Hausman-Test



Thank you!



Example 1: clogit



Example 2: femlogit


	Motivation
	

	Statistical model
	

	Implementation
	
	
	

	First applications
	
	
	

	Outlook
	Appendix

