Implementation of a multinomial logit model with fixed effects

Klaus Pforr

Mannheim Centre for European Social Research (MZES)
University of Mannheim
klaus.pforr@mzes.uni-mannheim.de

July 1, 2011, Ninth German Stata Users Group Meeting, Bamberg

Outline

Motivation

Statistical model

Implementation

First applications

Outlook

Motivation

Why mlogit?

- Fixed effect models available for continuous, binary and count data dependent variables.
- Polytomous categorical dependent variables commonly used in all fields of social sciences.

Why fixed effects?

Counter omitted variable bias!

- With fixed effects models no assumptions about α_i necessary.
- Random effects and pooled models basically assume no correlation of α_i and X_{it}.

Statistical model

mlogit across time with unobserved heterogeneity

$$\Pr(y_{it} = j) = \frac{\exp(\alpha_{ij} + X_{it}\beta_j')}{1 + \sum_{k=1, k \neq B}^{J} \exp(\alpha_{ij} + X_{it}\beta_k')} \quad \text{for } j \neq \text{ base outcome } B$$

$$Pr(y_{it} = B) = \frac{1}{1 + \sum_{k=1, k \neq B}^{J} exp(\alpha_{ij} + X_{it}\beta'_{k})}$$

Solution by Chamberlain(1980)

- $ightharpoonup \sum_{t=1}^{T_i} y_{itj}$ is sufficient statistic for α_{ij}
- ▶ Cond. probability model: Prob. of sequence $y_{i1},...,y_{iT_i}$ cond. of "overall tendency" to each outcome $j \neq B$.
- α_i disappeares!

$$\Pr(y_i | \bigwedge_{j \neq B} \sum_{t=1}^{T_i} y_{itj}) = \frac{\prod_{t=1}^{T_i} \prod_{j=1, j \neq B}^{J} \exp(X_{it} \beta_j^t)^{y_{itj}}}{\sum_{d_j \in \Delta_j} ((\prod_{t=1}^{T_i} \prod_{j=1, j \neq B}^{J} \exp(X_{it} \beta_j^t)^{d_{itj}}))}$$

with

$$\Delta_i = \{(d_{i1}, \ldots, d_{iT_i})' | \forall j = 1, \ldots, J, j \neq B : \sum_{t=1}^{T_i} d_{itj} = k_{ij}\}.$$

Statistical model (cont.)

Δ_i is the set of all permutations of y_i .

Example: Let $y_i = (1,2,3)$.

$$\Delta_i = \{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)\}.$$

Estimation with maximum-likelihood

The log. likelihood function:

$$onumber \operatorname{In} L = \sum_{i} \Big(\sum_{j \neq B} \sum_{t} y_{itj} X_{it} \beta_j' - \operatorname{In} \sum_{\Delta_i} \exp \sum_{j \neq B} \sum_{t} d_{itj} X_{it} \beta_j' \Big)$$

Implementation: General layout

Top-level ado

- Syntax
- Further preparation

Actual estimation with maximum likelihood

- Iteration management & display of results via Stata ml
- Log likelihood, gradient, Hessian with Mata evaluator function

Implementation: Top-level ado

"Outer shell"

- Standard parsing with syntax: varlist, group id, optional base outcome
- Missings: Standard listwise deletion via markout
- Collinear Variables: Copied & adjusted _rmcoll from mlogit
- Matsize check: Copied & adjusted from clogit
- Editing of equations for ml: Copied & adjusted from mlogit
- Offending observations/groups, i.e. checks variance in dep. & indep. var's; copied & adjusted from clogit
- ▶ Init. values: inspired by clogit
- Remaining preparation for mata function:
 - Globals for group id var., indep. var's for ml evaluator function
 - Matrix out2eq: Mapping from outcome indices to outcomes values and equation indices.

Implementation: Maximum likelihood

"Interface": Stata ml

Putting equations in Stata's ml terminology

- Panel structure ⇒ no likelihood defined at observation level ⇒ d-family method
- ► Computation speed and accurary \Rightarrow d2 method, i.e. In *L*, *g*, *H* have to be analytically derived
- ▶ J-1 equations, i.e. $(\mathbf{y}_1,...,\mathbf{y}_{J-1}) = (y_1,...,y_{B-1},y_{B+1},...,y_J)$
- ▶ J-1 parameters $\theta_j = X_{it}\beta_j'$; not used, direct use of $(J-1)\times M$ coefficients β_{jm}

"Core": Mata evaluator function cmlogit_eval()

Compute InL, g, H with current coef. vector

$$\begin{aligned} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^{2} \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^{2}} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{aligned}$$

Process step-by-step:

"Core": Mata evaluator function cmlogit_eval()

Compute InL, g, H with current coef. vector

$$\begin{aligned} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^{2} \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^{2}} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{aligned}$$

Process step-by-step:

Declare variables.

"Core": Mata evaluator function cmlogit_eval()

Compute InL, g, H with current coef. vector

$$\begin{aligned} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^{2} \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^{2}} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{aligned}$$

Process step-by-step:

2. Get data, etc. from Stata.

"Core": Mata evaluator function cmlogit_eval()

► Compute In*L*, *g*, *H* with current coef. vector

$$\begin{split} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^2 \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^2} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{split}$$

Process step-by-step:

3. Derive *N*, *T*, *J*.

"Core": Mata evaluator function cmlogit_eval()

► Compute In*L*, *g*, *H* with current coef. vector

$$\begin{aligned} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^{2} \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^{2}} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{aligned}$$

Process step-by-step:

4. Loop over *i* using panelsetup

"Core": Mata evaluator function cmlogit_eval()

► Compute In*L*, *g*, *H* with current coef. vector

$$\begin{split} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^2 \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^2} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{split}$$

Process step-by-step:

5. Compute $A = \sum_{j \neq B} \sum_{t} y_{itj} X_{it} \beta'_{i}$

"Core": Mata evaluator function cmlogit_eval()

► Compute In*L*, *g*, *H* with current coef. vector

$$\begin{split} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^2 \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^2} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{split}$$

Process step-by-step:

6. At gradient-step (if (todo>0)), compute $C_{(j,m)} = \sum_t y_{itj} x_{itm}$

"Core": Mata evaluator function cmlogit_eval()

► Compute In*L*, *g*, *H* with current coef. vector

$$\begin{split} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^2 \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^2} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{split}$$

Process step-by-step:

7. Loop over Δ_i (permutations of y_i) using cvpermute

"Core": Mata evaluator function cmlogit_eval()

► Compute In*L*, *g*, *H* with current coef. vector

$$\begin{split} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^2 \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^2} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{split}$$

Process step-by-step:

8. Add up $B = \sum_{\Delta_i} \exp(\sum_{i \neq B} \sum_t d_{itj} X_{it} \beta_i')$

"Core": Mata evaluator function cmlogit_eval()

Compute InL, g, H with current coef. vector

$$\begin{split} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^2 \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^2} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{split}$$

Process step-by-step:

9. At gradient-step (if (todo>0)), add up $D_{(j,m)} = \sum_{\Delta_i} \sum_t d_{itj} x_{itm} \exp(\sum_{j \neq B} \sum_t d_{itj} X_{it} \beta_j')$

"Core": Mata evaluator function cmlogit_eval()

► Compute In*L*, *g*, *H* with current coef. vector

$$\begin{split} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^2 \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^2} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{split}$$

Process step-by-step:

10. At Hessian-step (if (todo>1)), add up $E_{(i,m)(k,l)} = \sum_{\Delta_i} \sum_t d_{itj} x_{itm} \sum_t d_{itk} x_{itl} \exp(\sum_{j \neq B} \sum_t d_{itj} X_{it} \beta_i')$

"Core": Mata evaluator function cmlogit_eval()

► Compute In*L*, *g*, *H* with current coef. vector

$$\begin{split} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^2 \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^2} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{split}$$

Process step-by-step:

11. After loop over Δ_i , build panel-wise $\ln L_i, g_i, H_i$

"Core": Mata evaluator function cmlogit_eval()

► Compute In*L*, *g*, *H* with current coef. vector

$$\begin{split} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^2 \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^2} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{split}$$

Process step-by-step:

12. After loop over i, build sample lnL, g, H

"Core": Mata evaluator function cmlogit_eval()

► Compute In*L*, *g*, *H* with current coef. vector

$$\begin{split} & \ln L = \sum_{i} (A - \ln B) \\ & \frac{\partial \ln L}{\partial \beta_{jm}} = \sum_{i} \left(C_{(j,m)} - \frac{D_{(j,m)}}{B} \right) & \text{for } j \neq B \\ & \frac{\partial^2 \ln L}{\partial \beta_{jm} \partial \beta_{kl}} = \sum_{i} \left(\frac{D'_{(j,m)} D_{(k,l)}}{B^2} - \frac{E_{(j,m)(k,l)}}{B} \right) & \text{for } j, k \neq B \end{split}$$

Process step-by-step:

And that's it! (with one ml-step)

First applications: How to use it

Syntax

 $\underline{\text{femlogit}} \ \textit{depvar indepvars}, \\ \underline{\text{group}}(\textit{varlist}) \ [\underline{\text{b}} \\ \text{aseoutcome}(\#)]$

Data structure

Long panel-wise, condensed alternative-wise:

i	t	y it	X _{it}
1	1	1	.5
1	2	2	.2
1	3	2 3	.9
2	1	1	.1
2 2 2	2	2	.3
2	3	1	.2

t not necessary.

Examples: Benchmark clogit

How precise and how fast is it?

Comparison with clogit for J = 2.

- Data used:
 - http://www.stata-press.com/data/r11/union.dta
- Relative difference of coefficients: 9.078e-16.
- ► Speed: clogit: 2.42 sec., femlogit: 101.58 sec..

Examples: Simulated data

Performance with more alternatives

Simulated data

- ► N=1000, T=5, J=5
- ▶ Unobs. het. α_{ij} : over all i random draw $(\alpha_{i1}, ..., \alpha_{i5})$ from uniform distribution over 4-simplex Δ^4 .
- ► Error ε_{itj} : over all i and t, for each j indep. draws from Gumbel-distribution (E(ε_{itj}) = γ ,Var(ε_{itj}) = $\pi/\sqrt{6}$).
- Indep. variable: x correlated with α
 - $X_{it} = U_{it} + \alpha_{i2}$
 - *u_{it}* drawn from uniform distribution.
- Coefficients $\beta_2 = 2, \beta_3 = 3, \beta_4 = 4, \beta_5 = 5$.

Examples: Simulated data (cont.)

▶ Utility *Uitij*: for each i and t

$$U_{it1} = \varepsilon_{it1}$$

$$U_{it2} = \frac{10\alpha_{i2} + \beta_2 x_{it} + \varepsilon_{it2}}{\vdots}$$

$$\vdots$$

$$U_{it5} = \frac{10\alpha_{i5} + \beta_5 x_{it} + \varepsilon_{it5}}{\vdots}$$

▶ Dep. var.: $y_{it} = j$ with $U_{itj} = \max_k(U_{itk})$

Examples: Simulated data (cont.)

Results

informative observations: N=3405; speed: 20.83 sec.

Outlook

Things to do

- "tomorrow"
 - Document and publish
- in near future
 - Add standard options (if/in-able, ml-options, etc.)
 - Think about special postestimation
 - Robust estimates
- in far future
 - Intuitive Interpretation
 - Nested logit with fixed effects
 - Parametric serial correlation
 - Implementation of RE-Models & Hausman-Test

Thank you!

Example 1: clogit

. clogit union age grade not_smsa south black, group(idcode) note: multiple positive outcomes within groups encountered. note: 2744 groups (14165 obs) dropped because of all positive or all negative outcomes.

note: black omitted because of no within-group variance.

```
Iteration 0: log likelihood = -4521.3385
Iteration 1: log likelihood = -4516.1404
Iteration 2: log likelihood = -4516.1385
Iteration 3: log likelihood = -4516.1385
```

Conditional (fixed-effects) logistic regression	Number of obs	=	12035
	LR chi2(4)	=	68.09
	Prob > chi2	=	0.0000
Log likelihood = -4516.1385	Pseudo R2	=	0.0075

union	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age grade not_smsa south	.0170301 .0853572 .0083678	.004146 .0418781 .1127963	4.11 2.04 0.07 -5.98	0.000 0.042 0.941 0.000	.0089042 .0032777 2127088 9933619	.0251561 .1674368 .2294445
black	(omitted)	.1231/32	-5.98	0.000	9933619	5026842

Example 2: femlogit

. femlogit union age grade not smsa south black, group(idcode) b(0)

note: 2744 groups (14165 obs) dropped because of all positive or all regative outcomes.

note: black omitted because of no within-group variance.

log likelihood = -4521.3385 Iteration 0: Iteration 1: log likelihood = -4516.1404 Iteration 2: log likelihood = -4516.1385 Iteration 3: log likelihood = -4516.1385

Number of obs 12035 Wald chi2(4) Log likelihood = -4516.1385Prob > chi2

union	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age grade not_smsa south black	.0170301 .0853572 .0083678 748023 (omitted)	.004146 .0418781 .1127963 .1251752	4.11 2.04 0.07 -5.98	0.000 0.042 0.941 0.000	.0089042 .0032777 2127088 9933619	.0251561 .1674368 .2294445 5026842

