

Introduction

- Countless empirical efficiency analyses in economics
 - Decision Making Units/production units (DMUs): firms, states, universities, etc.
- Measuring distance to Production Possibility Frontier
 - alternatively: cost- or profit-frontier
- Output-orientated and Input-orientated efficiency
 - 1. How much additional output (y_1, \ldots, y_L) can be produced leaving inputs (x_1, \ldots, x_M) unchanged?
 - 2. How much input (x_1, \ldots, x_M) can be saved leaving outputs (y_1, \ldots, y_L) unchanged?
- Prime purpose: estimating efficiency scores θ_i for individual DMUs
 - (Input-oriented) efficiency score (0, 1]: factor by which input consumption can *proportionally* be reduced

Parametric Approaches: Stochastic Frontier Models

- Introduced by Aigner et al. (1977)
- ightarrow stata command <code>frontier</code>
 - Production- (cost-, profit-) function estimated
 - Linear regression model augmented by additional non-positive (reps. non-negative) error term η_i
 - Maximum-likelihood estimation
 - Distributional assumptions for η_i and v_i required

$$\log(y_i) = \beta_0 + \sum_{m=1}^M \beta_M x_{Mi} + v_i - \eta_i$$
 with $\eta_i \ge 0$

• (Output-oriented) technical efficiency score computed as: $\hat{\theta}_i^{SF} = \mathsf{E}(\exp(-\eta_i) | v_i - \eta_i)$

Non-Parametric Approaches

- 1. Data envelopment Analysis (DEA)
 - Introduced by Charnes et al. (1978)
- \rightarrow stata ado-file **dea** (Ji & Lee, 2010)
 - Linear programming approach
 - Envelopes data by piecewise-linear convex hull
 - Solution for θ (input-oriented) efficiency score $\hat{\theta}_i^{DEA}$:

$$\begin{array}{rcl} \min_{\theta,\lambda} \theta & \text{subject to} \\ \theta x_{mi} - \sum_{j=1}^{N} \lambda_j x_{mj} & \geq & 0 \quad m = 1, ..., M \\ \sum_{j=1}^{N} \lambda_j y_{lj} - y_{li} & \geq & 0 \quad l = 1, ..., L \\ \lambda_j & \geq & 0 \quad \forall j \end{array}$$

Crwi

Non-Parametric Approaches II

2. Free Disposal Hull (FDH)

- Introduced by Deprins et al. (1984)
- Based on principle of weak dominance
 - DMU i compared to those DMUs that produce at least the same amount of any output
 - DMU with minimal input use serves as reference
- Envelopes data by piecewise linear non-convex (step) hull
- Input-oriented) efficiency scores computed as:

$$\hat{\theta}_{i}^{\textit{FDH}} = \min_{j=1,\dots,N|y_{ij} \ge y_{ij} \forall I} \left\{ \max_{m=1,\dots,M} \left\{ \frac{x_{mj}}{x_{mi}} \right\} \right\}$$

Parametric vs. Non-Parametric Approaches

- 1. Parametric Approach (shortcomings):
 - Relies on distributional assumptions
 - Functional form for production technology required
 - Production function ill-suited regression model (endogeneity of inputs)
 - Accommodates only single-output technologies
- 2. Non-Parametric Approach (shortcomings):

 - Deterministic approach
 - \Rightarrow Extremely vulnerable to outliers and measurement error

Partial Frontier Approaches

- Sensitivity to outliers reduced by allowing for super-efficient DMUs
- Super-efficient DMUs located beyond production-possibility frontier
- partial frontier envelopes just a sub-sample of the data
- Super-efficiency: (input-oriented) efficiency score > 1

Partial frontier approaches that generalize FDH:

- 1. Order-*m* efficiency (Cazals et al., 2002)
- 2. Order- α efficiency (Aragon et al., 2005)

Order-*m* Efficiency

- Adds a 'layer of randomness' to FDH
- Series of FDH analyses using an randomly drawn sup-samples of size m
- DMU may or may not serve as its own peer
- Re-sampling repeated D times
- $\hat{\theta}_i^{OM}$: average of *D* efficiency sores
- Shortcoming: very time consuming (for large data sets)
 - $\rightarrow\,$ Rules virtually out statistical inference based on bootstrapping
 - \rightarrow Determining appropriate value for *m* may require trying numerous values

Crwi

Order- α **Efficiency**

- ► Chooses $[100 \alpha]^{th}$ (α^{th}) percentile, with $0 \le \alpha \le 100$, rather an minimum (maximum) as efficiency benchmark
- Not min. input consumption, but [100 − α]th percentile (among peer-DMUs) serves as reference
- FDH represent special case of order- α (for $\alpha = 100$)
- ▶ No re-sampling \rightarrow less time consuming than order-*m*
- ightarrow New stata ado-file **orderalpha**

Order- α Input-Oriented Efficiency:

$$\hat{\theta}_{i}^{OA_{input}} = \frac{P_{100-\alpha}}{\sum_{j=1,\dots,N|y_{ij} \ge y_{ij} \forall I} \left\{ \max_{m=1,\dots,M} \left\{ \frac{x_{mj}}{x_{mi}} \right\} \right\}$$

Order- α Output-Oriented Efficiency:

$$\hat{\theta}_{i}^{\mathsf{OA}_{output}} = \Pr_{\substack{j=1,\dots,N \mid x_{mj} \leq x_{mi} \forall m}} \left\{ \min_{l=1,\dots,L} \left\{ \frac{y_{lj}}{y_{li}} \right\} \right\}$$

Tauchmann (RWI)

C\rwi

(districts-level health production in Germany)

Tauchmann (RWI

(districts-level health production in Germany)

iann (RWI)

orderalpha

(districts-level health production in Germany)

Tauchmann (RWI)

(districts-level health production in Germany)

Tauchmann (RWI

(districts-level health production in Germany)

Tauchmann (RWI)

(districts-level health production in Germany)

Tauchmann (RWI

orderalpha: Syntax

rice Contents What's New N	ewe	-
le		_
orderalpha — Order-alpha	efficiency analysis	
ntax		
orderalpha <i>varname</i> [11] [11], 1nputs(var11st2) outputs(var11st2) [options]	
technology_definition	description	_
Model varname inputs(varlist1) outputs(varlist2)	identifier list of input variables list of output variables	
options	description	
Main ort(string) alpha(#)	<i>string</i> may be output or input ; default is ort (<i>input</i>) set benchmark percentile; default is alpha (200)	
SE/Bootstrap bootstrap reps(#) tune(#)	perform bootstrap using 100 replications set (temporary) number # of bootstrap replications and perform bootstrap set tuning parameter for subsampling bootstrap; values within the [0.5,1] interval are allowed	
Reporting <u>level(#)</u> table(<i>string</i>) <u>dots(#) invert</u>	set confidence level; default is level(93) display table of results; <i>string</i> may be scores or full, no table is the default display replication/loop dots; # may be 1 or 2, no dots is the default report reciprocal of output-oriented efficiency scores	
Generate generate(newvarlist) replace nogenerate	supply names for new variables, containing efficiency scores, ranks, and reference dmus replace existing variables in <i>newvarlist</i> do not create new variables containing results	
weights are not allowed; s bootstrap , by , and svy are	ee weight. 2 not allowed; see prefix.	-
		-1

Application: Regional Health Production in Bavaria

- Decision making units:
 - Districts ('kreis') in Bavaria
 - Cross section: year 2004
 - # of observations: 96
- Inputs:
 - i. Resident medical specialists per 100 000 inhabitants ('specialists')
 - ii. General practitioners per 100 000 inhabitants ('gps')
 - iii. Hospital beds per 10 000 inhabitants ('beds')
- Outputs:
 - i. Inverse normalized (to district demographics) *mortality* ('survival')

CICWI

orderalpha: Screen Shot (regional health production in Bavaria)

<pre>. orderalpha kreis if jahr == 2004 & regio >= 9000 & regio < 10000, inputs(specialists > gps beds) outputs(survival) alpha(95) replace table(full) reps(200) gen(escore erank > refdmu)</pre>							
Order-alpha(95) input-oriented efficiency scores estimated (variable escore)							
Number of dmus		= 96					
Number of inputs		= 3					
Number of outputs		= 1					
Mean efficiency		= .9229					
Median efficiency		= .9023					
Share of efficier	nt dmus	= .2083					
Share of super-ef	fficient dmus	= .0833					
dmu (kreis)	Eff. Score	Std. Err.	z Stat.	Eff. Rank	Ref. DMU		
Aichach-Friedbe	1	.1322505	0	9	Aichach-Fr		
Altötting, Land	.8259127	.0254798	6.832376	65	Eichstätt,		
Amberg, krsfr.	.650349	.0157609	22.18474	89	Aschaffenb		
Amberg-Sulzbach	1.104511	.3570595	.2926985	5	Landshut,		
Ansbach, Landkr	1	.1559544	0	9	Ansbach, L		
Ansbach, krsfr.	.7476639	.0246253	10.24702	77	Freising,		
Aschaffenburg,	2.423852	.7841469	1.815798	2	Aichach-Fr		
Aschaffenburg,	.8616958	.035989	3.842959	57	Aschaffenb		
Augsburg, Landk	.9280609	.1040334	.6914996	43	Regensburg		
Augsburg, krsfr	.7404743	.0212208	12.2298	79	Landshut,		
Bad Kissingen,	.8131074	.0247055	7.564818	70	Straubing-		
Bad Tölz-Wolfra	1	.5837663	0	9	Bad Tölz-W		
Bamberg, Landkr	1.082539	.3349955	.2463872	6	Coburg, La		
Bamberg, krsfr.	. 5726839	.0222016	19.24707	96	Erlangen-H		
Bayreuth, Landk	1.435832	.5069627	.8596922	3	Bamberg, L		
Bayreuth, krsfr	.7540368	.0182821	13.45376	76	Aschaffenb		
Berchtesoadener	787752	056467	2 7588	72	Erding La	-1	

Tauchmann (RWI)

orderalpha: Saved Results

Viewer (#5) [help orderalpha]			凶
🔶 🌩 Ċ 🚍 🍙 heb o	xideralpha	R	
Advice Contents What's New	v News		
Saved results			-
orderalpha saves the	following in e() :		
scalars e(N) e(inputs) e(outputs) e(outputs) e(super) e(mear_e) e(mear_e) e(mear_e)	number of dimus value of diputs number of outputs share of super-officient dimus share of super-officient dimus share of super-officient median estimated efficiency confiderce level		
Macros e(cmd) neo, e(tmd) neo, e(tmlife) e(tmlife) e(tmlife) e(tmlife) e(tmvert) e(nroperties) e(depwar)	orderalpha command as typed order-alpha effectives effectives effectives effectives and the saved (not saved for ort(input)) effectives and the saved for ort(input)) effectives		
Matrices e(b) e(ranks) e(reference)	vector of estimated efficiency scores (colnames are of the form varname:value_of_varname) vector of efficiency ranks (colnames are of the form varname:value_of_varname) matrix of names of reference dums (not saved if varname is a string variable)		
Functions e(sample)	marks estimation sample		
orderalpha, boot rep	s(#) additionally saves the following in e():		
Scalars e(N_reps) e(Tune) e(N_bs)	number of boutstrap repetitions value of turing parameter Size of boutstrap samples		
Macros e(vce) e(vcetype)	bootstrap Bootstrap		_
Matrices e(V) e(bias) e(reps) e(b_bs)	bootstrap variance-covariance matrix for estimated efficiency scores estimated blases number of noumissing results bootstrap estimates		_1
Tauchmann (RWI) orderalpha	July 1 st 201	1 1/

Order- α based outlier-detection

Idee proposed by Daraio & Simar (2007):

- Increasing the value of α reduces number of DMUs classified as "super-efficient"
- In the absence of outliers: share of super-efficient DMUs should decrease smoothly
- Discontinuity points at presence of outliers
- $\Rightarrow\,$ DMUs still classified "super-efficient" for $\alpha\geq\alpha^{\it disc}$ (point of discontinuity) most likely outliers
- $\Rightarrow\,$ To be excluded from efficiency analysis applying FDH or DEA

Implementing approach of Daraio & Simar (2007)

oaoutlier:

- Carries out series of order- α analyses
- Plots share of super-efficient units against α
- Suggests two local and one global rules for detecting discontinuities:
 - 1. α for which the twice differenced series takes minimum value (following a non-negative one)
 - 2. Values of α for which negative values persist after repeatedly smoothing twice differenced series by running odd-spaced median smoothers (\rightarrow **smooth**)
 - 3. α that minimizes BIC for splitting the series into two parts and fitting linear (quadratic) functions to each

Crwi

oaoutlier: Syntax

Viewer (#6) [help oaoutlier]		×		
+ + C = A help caputier	R			
Advice Contents What's New News				
help oaoutlier		-		
Title				
oaoutlier — Outlier detectio	on based on order-alpha efficiency analysis			
Syntax				
<pre>oaoutlier varname [if] [</pre>	<pre>in], inputs(varlist1) outputs(varlist2) [options]</pre>			
technology_definition	description			
Model varname inputs(varlist1) outputs(varlist2)	identifier list of input variables list of output variables			
options	description			
Main <u>ort(string)</u> <u>nal</u> pha(#)	<pre>string may be output or input; default is ort(input) try # values for alpha; the maximum allowed value is N which is also the default</pre>			
Detection no <u>bic</u> no <u>roug</u> h no <u>smo</u> oth smoother(string)	do not suggest discontinuities based on BIC do not suggest discontinuities based on rough series of difference in differences do not suggest discontinuities based on smoothed series of differences in differences use smoother <i>srring</i> for smoothing series of differences in differences			
Reporting noplot dots	suppress plotting series of share of super-efficient dmus display loop dots			
weights are not allowed; see bootstrap, by, and svy are no	weight. st allowed; see prefix.			
Description				
		11.		

Graph. output oaoutlier: (regional health production in Bavaria)

oaoutlier: Saved Results

References

Aigner, D., Lovell, C.A.K. & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models, *Journal of Econometrics* 6: 21–37.

 Aragon, Y., Daouia, A. & Thomas-Agnan, C. (2005). Nonparametric frontier estimation: a conditional quantile based approach, *Econometric Theory* 21: 358–389.

Cazals, C., Florens, J.P. & Simar, L. (2002). Nonparametric frontier estimation: A robust approach, *Journal of Econometrics* **106**: 1–25.

Charnes, A., Cooper, W.W. & Rhodes, E. (1978). Measuring efficiency of decision making units, *European Journal of Operational Research* **2**: 429–444.

Daraio, C. & Simar, L. (2007). Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications, Springer, New York.

Deprins, D., Simar, L. & Tulkens, H. (1984). Measuring laborefficiency in post offices, in: Marchand, M., Pestieau, P. and Tulkens, H. (eds.), *The Performance* of Public Enterprises: Concepts and Measurement, Elsevier, Amsterdam, 243–267.

Ji, Y.B. & Lee, C. (2010). Data envelopment analysis, The Stata Journal 10, 267–280.