Assessing inter-rater agreement in Stata

Daniel Klein klein.daniel.81@gmail.com klein@incher.uni-kassel.de

University of Kassel INCHER-Kassel

15th German Stata Users Group meeting Berlin June 23, 2017 Interrater agreement and Cohen's Kappa: A brief review

Generalizing the Kappa coefficient

More agreement coefficients

Statistical inference and benchmarking agreement coefficients

Implementation in Stata

Examples

An imperfect working definition

Define interrater agreement as the propensity for two or more raters (coders, judges, ...) to, independently from each other, classify a given subject (unit of analysis) into the same predefined category.

How to measure it?

 Consider 	Rater A	Rate	er B 2	Total
• $r = 2$ raters	1	<i>n</i> ₁₁	n_{12}	$n_{1.}$
n subjects	2	n_{21}	n_{22}	$n_{2.}$
• $q = 2$ categories	Total	$ n_{.1}$	$n_{.2}$	n

The observed proportion of agreement is

$$p_o = \frac{n_{11} + n_{22}}{n}$$

The problem

- Observed agreement may be due to
 - subject properties
 - chance

Cohen's (1960) solution

Define the proportion of agreement expected by chance as

$$p_e = \frac{n_{1.}}{n} \times \frac{n_{.1}}{n} + \frac{n_{2.}}{n} \times \frac{n_{.2}}{n}$$

Then define Kappa as

$$\kappa = \frac{p_o - p_e}{1 - p_e}$$

The Problem

- ► For *q* > 2 (ordered) categories raters might partially agree
- The Kappa coefficient cannot reflect this

Cohen's (1968) solution

- Assign a set of weights to the cells of the contingency table
 - Define linear weights

$$w_{kl} = 1 - \frac{|k-l|}{|q_{max} - q_{min}|}$$

Define quadratic weights

$$w_{kl} = 1 - \frac{(k-l)^2}{(q_{max} - q_{min})^2}$$

- Weighting matrix for q = 4 categories
- Quadratic weights

Datar A	Rater B						
nalel A	1	2	3	4			
1	1.00						
2	0.89	1.00					
3	0.56	0.89	1.00				
4	0.00	0.56	0.89	1.00			

The problem

- Some subjects classified by only one rater
- Excluding these subjects reduces accuracy

Gwet's (2014) solution

(also see Krippendorff 1970, 2004, 2013)

- ► Add a dummy category, *X*, for missing ratings
- Base p_o on subjects classified by both raters
- Base p_e on subjects classified by one or both raters
- Potential problem: no explicit assumption about type of missing data (MCAR, MAR, MNAR)

Missing ratings

Calculation of p_o and p_e

Dator A		F	Rater I	В		Total
nalel A	1	2		q	X	TOLAI
1	n_{11}	n_{12}		n_{1q}	n_{1X}	$n_{1.}$
2	n_{21}	n_{22}		n_{2q}	n_{2X}	$n_{2.}$
÷	÷	÷	÷	÷	÷	÷
q	n_{q1}	n_{q2}		n_{qq}	n_{qX}	$n_{q.}$
X	n_{X1}	n_{X2}		n_{Xq}	0	$n_{X.}$
Total	n.1	$n_{.2}$		$n_{.q}$	$n_{.X}$	n

• Calculate p_o and p_e as

$$p_o = \sum_{k=1}^{q} \sum_{l=1}^{q} \frac{w_{kl} n_{kl}}{n - (n_{.X} + n_{X.})}$$

and

$$p_e = \sum_{k=1}^{q} \sum_{l=1}^{q} w_{kl} \frac{n_{k.}}{n - n_{.X}} \times \frac{n_{.l}}{n - n_{X.}}$$

Three or more raters

- Consider three pairs of raters {A, B}, {A, C}, {B, C}
- Agreement might be observed for ...
 - 0 pairs
 - 1 pair
 - all 3 pairs
- It is not possible for only two pairs to agree
- Define agreement as average agreement over all pairs
 - ▶ here 0, 0.33 or 1
- With r = 3 raters and q = 2 categories, $p_o \ge \frac{1}{3}$ by design

Observed agreement

 \blacktriangleright Organize the data as $n \times q$ matrix

Subject	Category					Total
Oubject	1		k		q	Total
1	r_{11}		r_{1k}		r_{1q}	r_1
÷	:		÷		÷	÷
i	r_{i1}		r_{ik}		r_{iq}	r_i
÷	:		÷		÷	÷
n	r_{n1}		r_{nk}		r_{nq}	r_n
Average	$\bar{r}_{1.}$		$\bar{r}_{k.}$		$\bar{r}_{q.}$	\bar{r}

Average observed agreement over all pairs of raters

$$p_o = \frac{1}{n'} \sum_{i=1}^{n'} \sum_{k=1}^{q} \sum_{l=1}^{q} \frac{r_{ik} (w_{kl} r_{il} - 1)}{r_i (r_i - 1)}$$

Chance agreement

Fleiss (1971) expected proportion of agreement

$$p_e = \sum_{k=1}^q \sum_{l=1}^q w_{kl} \pi_k \pi_l$$

with

$$\pi_k = \frac{1}{n} \sum_{i=1}^n \frac{r_{ik}}{r_i}$$

Fleiss' Kappa does not reduce to Cohen's Kappa

- It instead reduces to Scott's π
- Conger (1980) generalizes Cohen's Kappa (formula somewhat complex)

Generalizing Kappa

Any level of measurement

- Krippendorff (1970, 2004, 2013) introduces more weights (calling them difference functions)
 - ordinal
 - ratio
 - circular
 - bipolar
- Gwet (2014) suggests

Data metric	Weights
nominal/categorical	none (identity)
ordinal	ordinal
interval	linear, quadratic, radical
ratio	any

Rating categories must be predefined

More agreement coefficients A general form

 Gwet (2014) discusses (more) agreement coefficients of the form

$$\kappa_{\cdot} = \frac{p_o - p_e}{1 - p_e}$$

- Differences only in chance agreement p_e
 - Brennan and Prediger (1981) coefficient (κ_n)

$$p_e = \frac{1}{q^2} \sum_{k=1}^{q} \sum_{l=1}^{q} w_{kl}$$

Gwet's (2008, 2014) AC (κ_G)

$$p_e = \frac{\sum_{k=1}^q \sum_{l=1}^q w_{kl}}{q(q-1)} \sum_{k=1}^q \pi_k \left(1 - \pi_k\right)$$

More agreement coefficients Krippendorff's alpha

Gwet (2014) obtains Krippendorff's alpha as

$$\kappa_{\alpha} = \frac{p_o - p_e}{1 - p_e}$$

with

$$p_o = \left(1 - \frac{1}{n'\bar{r}}\right)p'_o + \frac{1}{n'\bar{r}}$$

where

$$p'_{o} = \frac{1}{n'} \sum_{i=1}^{n'} \sum_{k=1}^{q} \sum_{l=1}^{q} \frac{r_{ik} (w_{kl} r_{il} - 1)}{\bar{r} (r_i - 1)}$$

and

$$p_e = \sum_{k=1}^q \sum_{l=1}^q w_{kl} \pi'_k \pi'_l$$

with

$$\pi'_k = \frac{1}{n'} \sum_{i=1}^{n'} \frac{r_{ik}}{\bar{r}}$$

Approaches

- Model-based (analytic) approach
 - ► based on theoretical distribution under *H*₀
 - not necessarily valid for confidence interval construction
- Bootstrap
 - valid confidence intervals with few assumptions
 - computationally intensive
- Design-based (finite population)
 - First introduced by Gwet (2014)
 - sample of subjects drawn from subject universe
 - sample of raters drawn from rater population

Design-based approach

Inference conditional on the sample of raters

$$V(\kappa) = \frac{1-f}{n(n-1)} \sum_{i=1}^{n} (\kappa_i^{\star} - \kappa)^2$$

where

$$\kappa_i^{\star} = \kappa_i - 2\left(1 - \kappa\right) \frac{p_{e_i} - p_e}{1 - p_e}$$

with

$$\kappa_i = \frac{n}{n'} \times \frac{p_{o_i} - p_e}{1 - p_e}$$

 $p_{e_i} \mbox{ and } p_{o_i}$ are the subject-level expected and observed agreement

Benchmark scales

- How do we interpret the extent of agreement?
- Landis and Koch (1977) suggest

Coefficient			Interpretation
	<	0.00	Poor
0.00	to	0.20	Slight
0.21	to	0.40	Fair
0.41	to	0.60	Moderate
0.61	to	0.80	Substantial
0.81	to	1.00	Almost Perfect

Similar scales proposed (e.g., Fleiss 1981, Altman 1991)

Benchmarking agreement coefficients

Probabilistic approach

The Problem

- Precision of estimated agreement coefficients depends on
 - the number of subjects
 - the number of raters
 - the number of categories
- Common practice of benchmarking ignores this uncertainty

Gwet's (2014) solution

- Probabilistic benchmarking method
 - 1. Compute the probability for a coefficient to fall into each benchmark interval
 - 2. Calculate the cumulative probability, starting from the highest level
 - 3. Choose the benchmark interval associated with a cumulative probability larger than a given threshold

Interrater agreement in Stata

Kappa

- kap, kappa (StataCorp.)
 - Cohen's Kappa, Fleiss Kappa for three or more raters
 - Caseweise deletion of missing values
 - Linear, quadratic and user-defined weights (two raters only)
 - No confidence intervals
- kapci (SJ)
 - Analytic confidence intervals for two raters and two ratings
 - Bootstrap confidence intervals
- kappci (kaputil, SSC)
 - Confidence intervals for binomial ratings (uses ci for proportions)
- kappa2 (SSC)
 - Conger's (weighted) Kappa for three or more raters
 - Uses available cases
 - Jackknife confidence intervals
 - Majority agreement

Interrater agreement in Stata

Krippendorff's alpha

- krippalpha (SSC)
 - Ordinal, quadratic and ratio weights
 - No confidence intervals
- kalpha (SSC)
 - Ordinal, quadratic, ratio, circular and bipolar weights
 - (Pseudo-) bootstrap confidence intervals (not recommended)
- kanom (SSC)
 - Two raters with nominal ratings only
 - No weights (for disagreement)
 - Confidence intervals (delta method)
 - Supports basic features of complex survey designs

Interrater agreement in Stata

Kappa, etc.

kappaetc (SSC)

- Observed agreement, Cohen and Conger's Kappa, Fleiss' Kappa, Krippendorff's alpha, Brennan and Prediger coefficient, Gwet's AC
- Uses available cases, optional casewise deletion
- Ordinal, linear, quadratic, radical, ratio, circular, bipolar, power, and user-defined weights
- Confidence intervals for all coefficients (design-based)
- Standard errors conditional on sample of subjects, sample of raters, or unconditional
- Benchmarking estimated coefficients (probabilistic and deterministic)

▶ ...

Kappa paradoxes

Dependence on marginal totals

Rater A	Rater B 1 2	Total	Rater A	Rate 1	er B 2	Total
1	45 15	60	1	25	35	60
2	25 15	40	2	5	35	40
Total	70 30	100	Total	30	70	100
I F F F F F F	$p_o = 0.$ $\kappa_n = 0.$ $\kappa = 0.$ $\kappa_F = 0.$ $\kappa_G = 0.$ $\kappa_\alpha = 0.$	60 20 13 12 27 13	Г к к к к к	$p_o =$ $p_n =$ $p_r =$ $p_r =$ $p_G =$	$\begin{array}{rcrc} = & 0. \\ = & 0. \\ = & 0. \\ = & 0. \\ = & 0. \\ = & 0. \end{array}$	60 20 26 19 21 20

Tables from Feinstein and Cicchetti 1990

Rater A	Rate	r B 2	Total
1	118	5	123
2	2	0	2
Total	120	5	125

p_o	=	0.94
κ_n	=	0.89
κ	=	-0.02
$\kappa_{_F}$	=	-0.03
κ_{G}	=	0.94
κ_{α}	=	-0.02

Table from Gwet 2008

Kappa paradoxes

Independence of center cells, row and columns with quadratic weights

Rator A	F	Rater	В	Total	Total Bator A		Rater B		В	Total	
	1	2	3	Iotai		riater		1	2	3	Total
1	1	15	1	17		1		1	1	1	3
2	3	0	3	6		2		3	17	3	23
3	2	3	2	7		3		2	0	2	4
Total	6	18	6	30		Total		6	18	6	30
p_o		=	0.1	0			p_o		=	0.6	7
p_{o_u}	v2	=	0.7	0			p_o	w2	=	0.8	4
κ_{n_i}	w2	=	0.1	0			κ_r	u_{w2}	=	0.5	3
κ_w	2	=	0.0	0			κ_u	v2	=	0.0	0
$\kappa_{F_{T}}$	<i>n</i> 2	=	-0.	05			κ_{I}	Tw2	=	0.0	0
κ_{G}	~ _ ?	=	0.1	5			κ_{c}		=	0.6	9
κ_{lpha}	w2	=	-0.	03			κ_{c}	χ_{w2}	=	0.0	2

Tables from Warrens 2012

```
. tabi 75 1 4 \ 5 4 1 \ 0 0 10 , nofreq replace
. expand pop
(2 zero counts ignored; observations not deleted)
(93 observations created)
. drop if !pop
(2 observations deleted)
```

```
. rename (row col) (ratera raterb)
```

```
. tabulate ratera raterb
```

		raterb		
ratera	1	2	3	Total
1	75	1	4	80
2	5	4	1	10
3	0	0	10	10
Total	80	5	15	100

Interrater agreement

. kappaetc ratera raterb

Interrater agreement

Number of s	ubjects = 100
Ratings per	subject = 2
Number of rating cat	egories = 3

	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Percent Agreement	0.8900	0.0314	28.30	0.000	0.8276	0.9524
Brennan and Prediger	0.8350	0.0472	17.70	0.000	0.7414	0.9286
Cohen/Conger's Kappa	0.6765	0.0881	7.67	0.000	0.5016	0.8514
Fleiss Kappa	0.6753	0.0891	7.58	0.000	0.4985	0.8520
Gwet's AC	0.8676	0.0394	22.00	0.000	0.7893	0.9458
Krippendorff´s alpha	0.6769	0.0891	7.60	0.000	0.5002	0.8536

Probabilistic method

. kappaetc , benchmark showscale

Interrater agreement

Number of subjects = 100

- Ratings per subject = 2
- Number of rating categories = 3

	Coef.	Std. Err.	P in.	P cum. > 95%	Probabi] [Benchmark	listic Interval]
Percent Agreement	0.8900	0.0314	0.997	0.997	0.8000	1.0000
Brennan and Prediger	0.8350	0.0472	0.230	1.000	0.6000	0.8000
Cohen/Conger's Kappa	0.6765	0.0881	0.193	0.999	0.4000	0.6000
Fleiss Kappa	0.6753	0.0891	0.199	0.998	0.4000	0.6000
Gwet's AC Krippendorff's alpha	0.8676 0.6769	0.0394 0.0891	0.955 0.194	0.955 0.999	0.8000 0.4000	1.0000 0.6000

Benchmark scale

<0.0000	Poor
0.0000-0.2000	Slight
0.2000-0.4000	Fair
0.4000-0.6000	Moderate
0.6000-0.8000	Subtantial
0.8000-1.0000	Almost Perfect