Assessing inter-rater agreement in Stata

Daniel Klein
klein.daniel.81@gmail.com
klein@incher.uni-kassel.de

University of Kassel
INCHER-Kassel
15th German Stata Users Group meeting
Berlin
June 23, 2017

Interrater agreement and Cohen's Kappa: A brief review

Generalizing the Kappa coefficient

More agreement coefficients

Statistical inference and benchmarking agreement coefficients

Implementation in Stata

Examples

Interrater agreement

What is it?

An imperfect working definition
Define interrater agreement as the propensity for two or more raters (coders, judges, ...) to, independently from each other, classify a given subject (unit of analysis) into the same predefined category.

Interrater agreement

How to measure it?

- Consider
- $r=2$ raters
- n subjects
- $q=2$ categories

Rater A	Rater B		Total
	$\mathbf{1}$	2	
$\mathbf{1}$	n_{11}	n_{12}	$n_{1 .}$
2	n_{21}	n_{22}	$n_{2 .}$
Total	$n_{.1}$	$n_{.2}$	n

- The observed proportion of agreement is

$$
p_{o}=\frac{n_{11}+n_{22}}{n}
$$

Cohen's Kappa

The problem of chance agreement

The problem

- Observed agreement may be due to ...
- subject properties
- chance

Cohen's (1960) solution

- Define the proportion of agreement expected by chance as

$$
p_{e}=\frac{n_{1 .}}{n} \times \frac{n_{.1}}{n}+\frac{n_{2 .}}{n} \times \frac{n_{.2}}{n}
$$

- Then define Kappa as

$$
\kappa=\frac{p_{o}-p_{e}}{1-p_{e}}
$$

Cohen's Kappa

Partial agreement and weighted Kappa

The Problem

- For $q>2$ (ordered) categories raters might partially agree
- The Kappa coefficient cannot reflect this

Cohen's (1968) solution

- Assign a set of weights to the cells of the contingency table
- Define linear weights

$$
w_{k l}=1-\frac{|k-l|}{\left|q_{\max }-q_{\min }\right|}
$$

- Define quadratic weights

$$
w_{k l}=1-\frac{(k-l)^{2}}{\left(q_{\max }-q_{\min }\right)^{2}}
$$

Cohen's Kappa

Quadratic weights (Example)

- Weighting matrix for $q=4$ categories
- Quadratic weights

Rater A	Rater B			
	1	2	3	4
1	1.00			
2	0.89	1.00		
3	0.56	0.89	1.00	
4	0.00	0.56	0.89	1.00

Generalizing Kappa

Missing ratings

The problem

- Some subjects classified by only one rater
- Excluding these subjects reduces accuracy

Gwet's (2014) solution
(also see Krippendorff 1970, 2004, 2013)

- Add a dummy category, X, for missing ratings
- Base p_{o} on subjects classified by both raters
- Base p_{e} on subjects classified by one or both raters
- Potential problem: no explicit assumption about type of missing data (MCAR, MAR, MNAR)

Missing ratings

Calculation of p_{o} and p_{e}

	Rater B					
Rater A	1	2	\ldots	q	X	Total
1	n_{11}	n_{12}	\ldots	$n_{1 q}$	$n_{1 X}$	$n_{1 .}$
2	n_{21}	n_{22}	\ldots	$n_{2 q}$	$n_{2 X}$	$n_{2 .}$
\vdots						
q	$n_{q 1}$	$n_{q 2}$	\ldots	$n_{q q}$	$n_{q X}$	$n_{q .}$
X	$n_{X 1}$	$n_{X 2}$	\ldots	$n_{X q}$	0	$n_{X .}$
Total	$n_{.1}$	$n_{.2}$	\ldots	$n_{. q}$	$n_{. X}$	n

- Calculate p_{o} and p_{e} as

$$
p_{o}=\sum_{k=1}^{q} \sum_{l=1}^{q} \frac{w_{k l} n_{k l}}{n-\left(n_{. X}+n_{X .}\right)}
$$

and

$$
p_{e}=\sum_{k=1}^{q} \sum_{l=1}^{q} w_{k l} \frac{n_{k .}}{n-n_{. X}} \times \frac{n_{. l}}{n-n_{X .}}
$$

Generalizing Kappa

Three or more raters

- Consider three pairs of raters $\{A, B\},\{A, C\},\{B, C\}$
- Agreement might be observed for ...
- 0 pairs
- 1 pair
- all 3 pairs
- It is not possible for only two pairs to agree
- Define agreement as average agreement over all pairs
- here $0,0.33$ or 1
- With $r=3$ raters and $q=2$ categories, $p_{o} \geq \frac{1}{3}$ by design

Three or more raters

Observed agreement

- Organize the data as $n \times q$ matrix

Category	Total					
	r_{11}	\ldots	$r_{1 k}$	\ldots	$r_{1 q}$	r_{1}
	\vdots		\vdots		\vdots	\vdots
	$r_{i 1}$	\ldots	$r_{i k}$	\ldots	$r_{i q}$	r_{i}
	\vdots		\vdots		\vdots	\vdots
	$r_{n 1}$	\ldots	$r_{n k}$	\ldots	$r_{n q}$	r_{n}
Average	$\bar{r}_{1 .}$	\ldots	$\bar{r}_{k .}$	\ldots	$\bar{r}_{q .}$	\bar{r}

- Average observed agreement over all pairs of raters

$$
p_{o}=\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \sum_{k=1}^{q} \sum_{l=1}^{q} \frac{r_{i k}\left(w_{k l} r_{i l}-1\right)}{r_{i}\left(r_{i}-1\right)}
$$

Three or more raters

Chance agreement

- Fleiss (1971) expected proportion of agreement

$$
p_{e}=\sum_{k=1}^{q} \sum_{l=1}^{q} w_{k l} \pi_{k} \pi_{l}
$$

with

$$
\pi_{k}=\frac{1}{n} \sum_{i=1}^{n} \frac{r_{i k}}{r_{i}}
$$

- Fleiss' Kappa does not reduce to Cohen’s Kappa
- It instead reduces to Scott's π
- Conger (1980) generalizes Cohen’s Kappa (formula somewhat complex)

Generalizing Kappa

Any level of measurement

- Krippendorff $(1970,2004,2013)$ introduces more weights (calling them difference functions)
- ordinal
- ratio
- circular
- bipolar
- Gwet (2014) suggests

Data metric	Weights
nominal/categorical	none (identity)
ordinal	ordinal
interval	linear, quadratic, radical
ratio	any

- Rating categories must be predefined

More agreement coefficients

A general form

- Gwet (2014) discusses (more) agreement coefficients of the form

$$
\kappa .=\frac{p_{o}-p_{e}}{1-p_{e}}
$$

- Differences only in chance agreement p_{e}
- Brennan and Prediger (1981) coefficient $\left(\kappa_{n}\right)$

$$
p_{e}=\frac{1}{q^{2}} \sum_{k=1}^{q} \sum_{l=1}^{q} w_{k l}
$$

- Gwet's $(2008,2014)$ AC $\left(\kappa_{G}\right)$

$$
p_{e}=\frac{\sum_{k=1}^{q} \sum_{l=1}^{q} w_{k l}}{q(q-1)} \sum_{k=1}^{q} \pi_{k}\left(1-\pi_{k}\right)
$$

More agreement coefficients

Krippendorff's alpha

- Gwet (2014) obtains Krippendorff's alpha as

$$
\kappa_{\alpha}=\frac{p_{o}-p_{e}}{1-p_{e}}
$$

with

$$
p_{o}=\left(1-\frac{1}{n^{\prime} \bar{r}}\right) p_{o}^{\prime}+\frac{1}{n^{\prime} \bar{r}}
$$

where

$$
p_{o}^{\prime}=\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \sum_{k=1}^{q} \sum_{l=1}^{q} \frac{r_{i k}\left(w_{k l} r_{i l}-1\right)}{\bar{r}\left(r_{i}-1\right)}
$$

and

$$
p_{e}=\sum_{k=1}^{q} \sum_{l=1}^{q} w_{k l} \pi_{k}^{\prime} \pi_{l}^{\prime}
$$

with

$$
\pi_{k}^{\prime}=\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \frac{r_{i k}}{\bar{r}}
$$

Statistical inference

- Model-based (analytic) approach
- based on theoretical distribution under H_{0}
- not necessarily valid for confidence interval construction
- Bootstrap
- valid confidence intervals with few assumptions
- computationally intensive
- Design-based (finite population)
- First introduced by Gwet (2014)
- sample of subjects drawn from subject universe
- sample of raters drawn from rater population

Statistical inference

Design-based approach

- Inference conditional on the sample of raters

$$
V(\kappa)=\frac{1-f}{n(n-1)} \sum_{i=1}^{n}\left(\kappa_{i}^{\star}-\kappa\right)^{2}
$$

where

$$
\kappa_{i}^{\star}=\kappa_{i}-2(1-\kappa) \frac{p_{e_{i}}-p_{e}}{1-p_{e}}
$$

with

$$
\kappa_{i}=\frac{n}{n^{\prime}} \times \frac{p_{o_{i}}-p_{e}}{1-p_{e}}
$$

$p_{e_{i}}$ and $p_{o_{i}}$ are the subject-level expected and observed agreement

Benchmarking agreement coefficients

Benchmark scales

- How do we interpret the extent of agreement?
- Landis and Koch (1977) suggest

Coefficient			Interpretation
	$<$	0.00	Poor
0.00	to	0.20	Slight
0.21	to	0.40	Fair
0.41	to	0.60	Moderate
0.61	to	0.80	Substantial
0.81	to	1.00	Almost Perfect

- Similar scales proposed (e.g., Fleiss 1981, Altman 1991)

Benchmarking agreement coefficients
 Probabilistic approach

The Problem

- Precision of estimated agreement coefficients depends on
- the number of subjects
- the number of raters
- the number of categories
- Common practice of benchmarking ignores this uncertainty

Gwet's (2014) solution

- Probabilistic benchmarking method

1. Compute the probability for a coefficient to fall into each benchmark interval
2. Calculate the cumulative probability, starting from the highest level
3. Choose the benchmark interval associated with a cumulative probability larger than a given threshold

Interrater agreement in Stata Kappa

- kap, kappa (StataCorp.)
- Cohen's Kappa, Fleiss Kappa for three or more raters
- Caseweise deletion of missing values
- Linear, quadratic and user-defined weights (two raters only)
- No confidence intervals
- kapci (SJ)
- Analytic confidence intervals for two raters and two ratings
- Bootstrap confidence intervals
- kappci (kaputil, SSC)
- Confidence intervals for binomial ratings (uses ci for proportions)
- kappa2 (SSC)
- Conger's (weighted) Kappa for three or more raters
- Uses available cases
- Jackknife confidence intervals
- Majority agreement

Interrater agreement in Stata

 Krippendorff's alpha- krippalpha (SSC)
- Ordinal, quadratic and ratio weights
- No confidence intervals
- kalpha (SSC)
- Ordinal, quadratic, ratio, circular and bipolar weights
- (Pseudo-) bootstrap confidence intervals (not recommended)
- kanom (SSC)
- Two raters with nominal ratings only
- No weights (for disagreement)
- Confidence intervals (delta method)
- Supports basic features of complex survey designs

Interrater agreement in Stata Kappa, etc.

- kappaetc (SSC)
- Observed agreement, Cohen and Conger's Kappa, Fleiss' Kappa, Krippendorff's alpha, Brennan and Prediger coefficient, Gwet's AC
- Uses available cases, optional casewise deletion
- Ordinal, linear, quadratic, radical, ratio, circular, bipolar, power, and user-defined weights
- Confidence intervals for all coefficients (design-based)
- Standard errors conditional on sample of subjects, sample of raters, or unconditional
- Benchmarking estimated coefficients (probabilistic and deterministic)
- ...

Kappa paradoxes

Dependence on marginal totals

Rater A	Rater B		Total
	1	2	
1	45	15	60
2	25	15	40
Total	70	30	100

Rater A	Rater B		Total
	1	2	
1	25	35	60
2	5	35	40
Total	30	70	100

$$
\begin{aligned}
p_{o} & =0.60 \\
\kappa_{n} & =0.20 \\
\kappa & =0.13 \\
\kappa_{F} & =0.12 \\
\kappa_{G} & =0.27 \\
\kappa_{\alpha} & =0.13
\end{aligned}
$$

$$
\begin{aligned}
p_{o} & =0.60 \\
\kappa_{n} & =0.20 \\
\kappa & =0.26 \\
\kappa_{F} & =0.19 \\
\kappa_{G} & =0.21 \\
\kappa_{\alpha} & =0.20
\end{aligned}
$$

Tables from Feinstein and Cicchetti 1990

Kappa paradoxes

Rater A	Rater B		Total
1	118	5	
2	2	0	2
Total	120	5	125

$$
\begin{array}{ccc}
p_{o} & = & 0.94 \\
\kappa_{n} & = & 0.89 \\
\kappa & = & -0.02 \\
\kappa_{F} & = & -0.03 \\
\kappa_{G} & = & 0.94 \\
\kappa_{\alpha} & = & -0.02
\end{array}
$$

Table from Gwet 2008

Kappa paradoxes

Independence of center cells, row and columns with quadratic weights

Rater A	Rater B			Total	Rater A	Rater B			Total
	1	2	3			1	2	3	
1	1	15	1	17	1	1	1	1	3
2	3	0	3	6	2	3	17	3	23
3	2	3	2	7	3	2	0	2	4
Total	6	18	6	30	Total	6	18	6	30
p_{o}		$=$	0.10		p_{o}		$=0$	0.67	
$p_{o_{w 2}}$		0.70			$p_{o_{w 2}}$		2	0.84	
$\kappa_{n_{w 2}}$		$=$	0.1		$\kappa_{n_{w 2}}$		2	0.53	
$\kappa_{w 2}$		=	0.0		$\kappa_{w 2}$		$=$	0.00	
$\kappa_{F_{w 2}}$		=	-0.010		$\kappa_{F_{w 2}}$		2	0.00	
$\kappa_{G_{w 2}}$		=	0.1		$\kappa_{G_{w 2}}$		$=$	0.69	
$\kappa_{\alpha_{w 2}}$		$=$	-0.03		$\kappa_{\alpha_{w 2}}$		$=$	0.02	

Tables from Warrens 2012

Benchmarking

Set up from Gwet (2014)

```
. tabi 75 1 4 \ 5 4 1 \ 0 0 10 , nofreq replace
. expand pop
(2 zero counts ignored; observations not deleted)
(93 observations created)
```

. drop if !pop
(2 observations deleted)
. rename (row col) (ratera raterb)
. tabulate ratera raterb

ratera	1	2	3	Total
1	75	1	4	80
2	5	4	1	10
3	0	0	10	10
Total	80	5	15	100

Benchmarking

Interrater agreement

. kappaetc ratera raterb
Interrater agreement

$$
\begin{array}{rrr}
\text { Number of subjects }= & 100 \\
\text { Ratings per subject } & = & 2 \\
\text { Number of rating categories } & = & 3
\end{array}
$$

| | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Percent Agreement | 0.8900 | 0.0314 | 28.30 | 0.000 | 0.8276 | 0.9524 |
| Brennan and Prediger | 0.8350 | 0.0472 | 17.70 | 0.000 | 0.7414 | 0.9286 |
| Cohen/Conger's Kappa | 0.6765 | 0.0881 | 7.67 | 0.000 | 0.5016 | 0.8514 |
| Fleiss Kappa | 0.6753 | 0.0891 | 7.58 | 0.000 | 0.4985 | 0.8520 |
| Gwet's AC | 0.8676 | 0.0394 | 22.00 | 0.000 | 0.7893 | 0.9458 |
| Krippendorff's alpha | 0.6769 | 0.0891 | 7.60 | 0.000 | 0.5002 | 0.8536 |

Benchmarking

Probabilistic method

. kappaetc , benchmark showscale
Interrater agreement

Number of subjects	$=$	100
Ratings per subject	$=$	2
Number of rating categories	$=$	3

				P cum.		Probabilistic [Benchmark	
	Coef.	Std. Err.	P in.	$>95 \%$			
Percent Agreement	0.8900	0.0314	0.997	0.997	0.8000	1.0000	
Brennan and Prediger	0.8350	0.0472	0.230	1.000	0.6000	0.8000	
Cohen/Conger 's Kappa	0.6765	0.0881	0.193	0.999	0.4000	0.6000	
Fleiss Kappa	0.6753	0.0891	0.199	0.998	0.4000	0.6000	
Gwet's AC $_{\text {Krippendorff 's alpha }}$	0.8676	0.0394	0.955	0.955	0.8000	1.0000	

Benchmark scale

<0.0000	Poor
$0.0000-0.2000$	Slight
$0.2000-0.4000$	Fair
$0.4000-0.6000$	Moderate
$0.6000-0.8000$	Subtantial
$0.8000-1.0000$	Almost Perfect

