
Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Speeding Up the ARDL Estimation
Command:

A Case Study in Efficient Programming in Stata
and Mata

Sebastian Kripfganz1 Daniel C. Schneider2

1University of Exeter
2Max Planck Institute for Demographic Research

German Stata Users Group Meeting, June 23, 2017

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 1 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Contents

Efficient Coding

Digression: A Tiny Bit of Asymptotic Notation

The ARDL Model

Optimal Lag Selection

Incremental Code Improvements

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 2 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Introduction

� Long code execution times are more than a nuisance: they
negatively affect the quality of research

� strategies for speeding up execution:

� lower-level language

� parallelization

� writing efficient code

� Efficient coding is often the best choice.

� Moving to lower-level languages is tedious.

� In many settings, speed improvements are higher than through
parallelization.

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 3 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Introduction: Speed of Stata and Mata

� C is the reference

� compiled to machine instructions

� Post of Bill Gould (2014) at the Stata Forum:

� Stata (interpreted) code is 50-200 times slower than C.

� Mata compiled byte-code 5-6 times slower than C.
=> Mata is 10-40 times faster than Stata.

� In real-world applications, Mata is ~2 times slower than C.

� Mata has built-in C routines based on very efficient code.

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 4 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Introduction: Efficient Coding Strategies

� Using Common Sense

� An if-condition requires at least N comparisons. Use in-conditions
instead, if possible.

� Multiplying two 100x100 matrices requires about 2*100^3 = 2,000,000
arithmetic operations.

� Using Knowledge of Your Software (Stata, of course!)

� Examples:

� Mata: passing of arguments to functions

� Efficient operators and functions (e.g. Mata’s colon operator and its
c-conformability)

� Read the Stata and Mata programming manuals

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 5 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Introduction: Efficient Coding Strategies
Using Knowledge of Matrix Algebra

� Translating mathematical formulas one-to-one into matrix
language expressions is oftentimes (very!) inefficient.

� Examples:

� diagonal matrices (D) :

� multiplication of a matrix by D: don’t do it!
Mata: use c-conformability of the colon operator (see [M-2] op_colon)

� inverse: flip diagonal elements instead of calling a matrix solver / inverter
function (Opnq vs. Opn3q)

� block diagonal matrices:

� multiplication: just multiply diagonal blocks; the latter is faster by 1{s2, where s is
the number of diagonal blocks

� inverse: invert individual blocks

� order of matrix multiplication / parenthesization

� b � pX 1X q�1 pX 1yq is faster than b � pX 1X q�1 X 1y
e.g. for k � 10, N � 10, 000: matrix multiplications are 11 times faster!

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 6 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Asymptotic Notation
Definition
An algorithm with input size n and running time T pnq is said to be
Θpgpnqq (“theta of g of n”) or to have an asymptotically tight bound
gpnq if there exist positive real numbers c1, c2, n0 ¡ 0 such that

c1g pnq ¤ T pnq ¤ c2g pnq @n ¥ n0

T(n)=0.8n3 - 1000n2 + 1000n + 10e9 is O(n3)

0

2e9

4e9

6e9

of

 a
rit

hm
et

ic
 o

pe
ra

tio
ns

0 500 1000 1500 2000
Algorithm input size n

T(n) 0.2 * n3 0.801 * n3Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 7 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Asymptotic Notation
� O pg pnqq(“(big) oh of g of n”), as opposed to Θpgpnqq, is used

here to only denote an upper bound. Notation differs in the
literature.

� Technically, Θpgpnqq and Opgpnqq are sets of functions, so we
write e.g. T pnq POpgpnqq.

� For matrix operations, g pnq is frequently n raised to some low
integer power.

� Θ pnq is much better than Θ
�
n2
�
, which in turn is much better than Θ

�
n3
�

� (Square) matrix multiplication is Θ
�
n3
�
: each element of the new n � n

matrix is a sum of n terms. Costly!

� Many types of matrix inversion, e.g. the LU-decomposition, are also
Θ
�
n3
�
. Costly!

� Inner vector products are Θ pnq.

� When T pnq is an i-th order polynomial, the leading term
asymptotically dominates: T pnq P O

�
ni
�
.

� Θ panq is worse than Θ pnaq; Θ plg nq is better than Θ pnq

_

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 8 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

ARDL: Model Setup

� ARDL pp, q1, . . . , qkq: autoregressive distributed lag model

� Popular, long-standing single-equation time-series model for continuous
variables

� Linear model :

yt � c0 � c1t �
p̧

i�1

φiyt�i �
q̧

i�0

β1

ixt�i � ut, ut:iid
�
0, σ2

�

� pyt, x
1

tq
1 can be purely I p0q, purely I p1q, or cointegrated: can be used to test for

cointegration (bounds testing procedure). (Pesaran, Shin, and Smith, 2001).
=> econometrics of ARDL can be complicated.

� net install ardl , from(http://www.kripfganz.de/stata)

� This talk: programming; for the statistics of ardl, see Kripfganz/Schneider
(2016).

_

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 9 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

ARDL: Computational Considerations

� Despite its complex statistical properties, estimating an ARDL
model is just based on OLS!

� The computational costly parts are:

� determination of optimal lag orders (e.g. via AIC or BIC)

� treated at length in this talk

� simulation of test distributions for cointegration testing (PSS 2001,
Narayan 2005).

� not covered by this talk

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 10 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Optimal Lag Selection: The Problem

� For k � 1 variables (indepvars + depvar) and maxlag lags for
each variable, run a regression and calculate an information
criterion (IC) for each possible lag combination and select the
model with the best IC value.

� Example: 2 variables (v1 v2) ,
maxlag � 2
regress v1 L(1/1).v1 L(0/0).v2

regress v1 L(1/2).v1 L(0/0).v2

regress v1 L(1/1).v1 L(0/1).v2

regress v1 L(1/2).v1 L(0/1).v2

regress v1 L(1/1).v1 L(0/2).v2

regress v1 L(1/2).v1 L(0/2).v2

� # of regressions to run is
exponential in k:
maxlags � pmaxlags � 1qk:
k � 1 maxlags # regressions

3 4 100
3 8 :650
4 8 :5,800
6 8 :470,000
8 8 :38,000,000

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 11 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Lag Selection: Preliminaries

� Lag combination matrix for k � 3 and maxlags � 2 :

�
���������������

1 0 0

1 0 1

1 0 2

1 1 0

1 1 1

1 1 2

1 2 0

1 2 1

� � �
2 2 2

�
���������������

� e.g. row 3:
�
1 0 2

�
corresponds to regressors

L.v1 L(0/0).v2 L(0/2).v3 =
�
v1t�1 v2t v3t v3t�1 v3t�2

�
� called “lagcombs” in pseudo-code to follow

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 12 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Lag Selection: Naive Approach Using regress

Stata/Mata-like pseudocode:

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 13 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Lag Selection: Timings

Timings in seconds (2.5GHz, single core) for N=1000:

k � 1 maxlags # regressions regress
3 4 100 1.6
3 8 :650 12.5
4 8 :5,800 132
6 8 :470,000 :14000
8 8 :38,000,000 (13 days?)

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 14 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Lag Selection: Mata I

Stata/Mata-like pseudocode:

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 15 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Lag Selection: Mata II (no redundant calculations)

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 16 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Lag Selection: Mata III

� A sticky point are the many matrix inversions, which are Θ
�
n3
�
.

� We will further improve matters by using results from linear
algebra.

� We will introduce and use pointer variables in the process.

� The following will put forth a somewhat complicated algorithm
that affects many parts of the loop.

� In this talk, we could have focused our attention on many
smaller changes for code optimization, but both things are not
possible within the time window for this presentation.

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 17 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Updating
�
X 1X

��1 Using Partitioned Matrices
� For A �

�
A11 A12

A21 A22

�
, with A, A11and A22 square and invertible:

A�1 �

�
D �DA12A

�1

22

�A�1

22
A21D �A�1

22
��A�1

22
A21DA12A

�1

22

�

with D � A�1

11
� A�1

11
A12

�
A22 � A21A

�1

11
A12

��1
A21A

�1

11

� Here: Let Xv �
�
X v

�
. The cross-product matrix becomes

X
1

vXv �

�
A11 � X 1X A12 � X 1v

A21 � A
1

12
A22 � v 1v

�

� Task: calculate
�
X

1

vXv

	�1

based on the known terms of: X 1X ,

pX 1X q�1, X 1v , v 1v

� Slight complication: Inserting a column to X , not just appending.

� Can be solved by permutation vectors (see [M-1] permutation).

� Let’s call this procedure PMAC (partioned matrices /
append column) to ease exposition.

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 18 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Updating
�
X 1X

��1 Using Partitioned Matrices

� Problem: columns are sometimes deleted, not just added.

� Lag combination matrix (maxlags � 2 for all variables):

�
�������������

1 0 0

1 0 1

1 0 2

1 1 0

1 1 1

1 1 2

1 2 0

1 2 1

� � �

2 2 2

�
�������������

� e.g. moving from row 3:
�
1 0 2

�
to row 4:

�
1 1 0

�
deletes two

lags of the last regressor

� Solution: store matrices the algorithm can jump back to using
pointers.

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 19 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Pointer Variables

� General and “advanced” programming concept, but the basics
are easy to understand and apply.

� Each variable has a name and a type.

� The name really is just a device to refer to a specific location in
memory; every location in memory has a unique address.

� Since the type of the variable is known to Mata, it knows how big of a
memory range a variable name refers to, and how to interpret the value
(the bits stored there).

� Think in these terms: each variable has an address and a value.

� Pointer variables hold memory addresses of other variables.
Pointer variables can point to anything: scalars, matrices,
pointers, objects, functions ...

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 20 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Pointer Variables
� Pointers are often assigned to using “&”; they are dereferenced

using “*”.

� Read:

� & : “the address of”

� * : “the thing pointed to by”

� mata:

s = J(2,2,1)

p = &s

p // outputs something like 0xcb3cb60

*p // outputs the 2x2 matrix of ones

*p = J(2,2,-7)

s // now contains the matrix of -7s

end

� See [M-2] pointers for many more details.

� What we need for our algorithm, is an unknown number (k � 1)
of matrices. We solve this by creating a vector of pointers to
matrices.

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 21 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Using Pointers for Updating
�
X 1X

��1

� Lag combination matrix :

�
����������

1 0 0

1 0 1

1 0 2

1 1 0

1 1 1

1 1 2

1 2 0

� � �

�
����������

� 3-element vector of pointers vec �
�
p1 p2 p3

�
; each element

points to a matrix. Then calculate pX 1X q�1 for...

� ... lags (1 0 0) by ordinary matrix inversion; store using p1

� ... lags (1 0 1) by PMAC using �p1; store using p3

� ... lags (1 0 2) by PMAC using �p3

� ... lags (1 1 0) by PMAC using �p1; store using p2

� ... lags (1 1 1) by PMAC using �p2; store using p3

� ... lags (1 1 2) by PMAC using �p3;

� ... lags (1 2 0) by PMAC using �p2; store using p2 ... and so forth.
Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 22 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Lag Selection: Mata III (update inverses)

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 23 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Lag Selection: Timings

Timings in seconds (2.5GHz, single core) for N=1000:

Mata 2 : no redundancies

Mata 3 : no redundancies + inverse updating

k � 1 maxlags # regressions regress Mata 1 Mata 2 Mata 3
3 4 100 1.6 0.36 0.11 0.14
3 8 :650 12.5 1.33 0.09 0.13
4 8 :5,800 132 11.8 0.31 0.27
6 8 :470,000 :14,000 :1,400 53 37
8 8 :38,000,000 (13 days?) :146,000 :6,500 :3,200

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 24 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Recap

In this talk, we have discussed

� Potential strategies for improving code performance

� Basic asymptotic notation for the computing time of algorithms

� Quick look at the ARDL model

� Optimal lag selection

� Moving Stata code to Mata and optimizing the Mata code

� An advanced way of using linear algebra results to improve
code performance

� Pointer variables

We have tried to illustrate that mindful code creation can be superior
to the “brute force” methods of low-level programming languages
and parallelization.

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 25 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Thank you!

Questions? Comments?

S.Kripfganz@exeter.ac.uk

schneider@demogr.mpg.de

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 26 / 27

Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

References

� Gould, William (2014, April 17): Using Mata Operators
efficiently [Msg 8]. Message posted to
https://www.statalist.org/forums/forum/general-stata-
discussion/mata/993-using-mata-operators-
efficiently?p=1826#post1826

� Kripfganz / Schneider (2016): ardl: Stata Module to Estimate
Autoregressive Distributed Lag Models. Presentation held at the
Stata Conference 2016, Chicago.

� Narayan, P.K. (2005): The Saving and Investment Nexus for
China: Evidence from Cointegration Tests. Applied Economics,
37 (17), 1979-1990.

� Pesaran, M.H., Shin Y. and R.J. Smith (2001): Bounds Testing
Approaches to the Analysis of Level Relationships. Journal of
Applied Econometrics, 16 (3), 289-326.

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 27 / 27

	Efficient Coding
	Digression: A Tiny Bit of Asymptotic Notation
	The ARDL Model
	Optimal Lag Selection
	Incremental Code Improvements

