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Introduction

� Long code execution times are more than a nuisance: they
negatively affect the quality of research

� strategies for speeding up execution:

� lower-level language

� parallelization

� writing efficient code

� Efficient coding is often the best choice.

� Moving to lower-level languages is tedious.

� In many settings, speed improvements are higher than through
parallelization.
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Introduction: Speed of Stata and Mata

� C is the reference

� compiled to machine instructions

� Post of Bill Gould (2014) at the Stata Forum:

� Stata (interpreted) code is 50-200 times slower than C.

� Mata compiled byte-code 5-6 times slower than C.
=> Mata is 10-40 times faster than Stata.

� In real-world applications, Mata is ~2 times slower than C.

� Mata has built-in C routines based on very efficient code.
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Introduction: Efficient Coding Strategies

� Using Common Sense

� An if-condition requires at least N comparisons. Use in-conditions
instead, if possible.

� Multiplying two 100x100 matrices requires about 2*100^3 = 2,000,000
arithmetic operations.

� Using Knowledge of Your Software (Stata, of course!)

� Examples:

� Mata: passing of arguments to functions

� Efficient operators and functions (e.g. Mata’s colon operator and its
c-conformability)

� Read the Stata and Mata programming manuals
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Introduction: Efficient Coding Strategies
Using Knowledge of Matrix Algebra

� Translating mathematical formulas one-to-one into matrix
language expressions is oftentimes (very!) inefficient.

� Examples:

� diagonal matrices (D) :

� multiplication of a matrix by D: don’t do it!
Mata: use c-conformability of the colon operator (see [M-2] op_colon)

� inverse: flip diagonal elements instead of calling a matrix solver / inverter
function (Opnq vs. Opn3q)

� block diagonal matrices:

� multiplication: just multiply diagonal blocks; the latter is faster by 1{s2, where s is
the number of diagonal blocks

� inverse: invert individual blocks

� order of matrix multiplication / parenthesization

� b � pX 1X q�1 pX 1yq is faster than b � pX 1X q�1 X 1y
e.g. for k � 10, N � 10, 000: matrix multiplications are 11 times faster!
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Asymptotic Notation
Definition
An algorithm with input size n and running time T pnq is said to be
Θpgpnqq (“theta of g of n”) or to have an asymptotically tight bound
gpnq if there exist positive real numbers c1, c2, n0 ¡ 0 such that

c1g pnq ¤ T pnq ¤ c2g pnq @n ¥ n0

T(n)=0.8n3 - 1000n2 + 1000n + 10e9  is  O(n3)
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Asymptotic Notation
� O pg pnqq(“(big) oh of g of n”), as opposed to Θpgpnqq, is used

here to only denote an upper bound. Notation differs in the
literature.

� Technically, Θpgpnqq and Opgpnqq are sets of functions, so we
write e.g. T pnq POpgpnqq.

� For matrix operations, g pnq is frequently n raised to some low
integer power.

� Θ pnq is much better than Θ
�
n2
�
, which in turn is much better than Θ

�
n3
�

� (Square) matrix multiplication is Θ
�
n3
�
: each element of the new n � n

matrix is a sum of n terms. Costly!

� Many types of matrix inversion, e.g. the LU-decomposition, are also
Θ
�
n3
�
. Costly!

� Inner vector products are Θ pnq.

� When T pnq is an i-th order polynomial, the leading term
asymptotically dominates: T pnq P O

�
ni
�
.

� Θ panq is worse than Θ pnaq; Θ plg nq is better than Θ pnq

_
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ARDL: Model Setup

� ARDL pp, q1, . . . , qkq: autoregressive distributed lag model

� Popular, long-standing single-equation time-series model for continuous
variables

� Linear model :

yt � c0 � c1t �
p̧

i�1

φiyt�i �
q̧

i�0

β1

ixt�i � ut, ut:iid
�
0, σ2

�

� pyt, x
1

tq
1 can be purely I p0q, purely I p1q, or cointegrated: can be used to test for

cointegration (bounds testing procedure). (Pesaran, Shin, and Smith, 2001).
=> econometrics of ARDL can be complicated.

� net install ardl , from(http://www.kripfganz.de/stata)

� This talk: programming; for the statistics of ardl, see Kripfganz/Schneider
(2016).

_

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 9 / 27



Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

ARDL: Computational Considerations

� Despite its complex statistical properties, estimating an ARDL
model is just based on OLS!

� The computational costly parts are:

� determination of optimal lag orders (e.g. via AIC or BIC)

� treated at length in this talk

� simulation of test distributions for cointegration testing (PSS 2001,
Narayan 2005).

� not covered by this talk
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Optimal Lag Selection: The Problem

� For k � 1 variables (indepvars + depvar) and maxlag lags for
each variable, run a regression and calculate an information
criterion (IC) for each possible lag combination and select the
model with the best IC value.

� Example: 2 variables (v1 v2) ,
maxlag � 2
regress v1 L(1/1).v1 L(0/0).v2

regress v1 L(1/2).v1 L(0/0).v2

regress v1 L(1/1).v1 L(0/1).v2

regress v1 L(1/2).v1 L(0/1).v2

regress v1 L(1/1).v1 L(0/2).v2

regress v1 L(1/2).v1 L(0/2).v2

� # of regressions to run is
exponential in k:
maxlags � pmaxlags � 1qk:
k � 1 maxlags # regressions

3 4 100
3 8 :650
4 8 :5,800
6 8 :470,000
8 8 :38,000,000
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Lag Selection: Preliminaries

� Lag combination matrix for k � 3 and maxlags � 2 :

�
���������������

1 0 0

1 0 1

1 0 2

1 1 0

1 1 1

1 1 2

1 2 0

1 2 1

� � �
2 2 2

�
���������������

� e.g. row 3:
�
1 0 2

�
corresponds to regressors

L.v1 L(0/0).v2 L(0/2).v3 =
�
v1t�1 v2t v3t v3t�1 v3t�2

�
� called “lagcombs” in pseudo-code to follow
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Lag Selection: Naive Approach Using regress

Stata/Mata-like pseudocode:
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Lag Selection: Timings

Timings in seconds (2.5GHz, single core) for N=1000:

k � 1 maxlags # regressions regress
3 4 100 1.6
3 8 :650 12.5
4 8 :5,800 132
6 8 :470,000 :14000
8 8 :38,000,000 (13 days?)
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Lag Selection: Mata I

Stata/Mata-like pseudocode:
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Lag Selection: Mata II (no redundant calculations)

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 16 / 27



Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Lag Selection: Mata III

� A sticky point are the many matrix inversions, which are Θ
�
n3
�
.

� We will further improve matters by using results from linear
algebra.

� We will introduce and use pointer variables in the process.

� The following will put forth a somewhat complicated algorithm
that affects many parts of the loop.

� In this talk, we could have focused our attention on many
smaller changes for code optimization, but both things are not
possible within the time window for this presentation.

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 17 / 27



Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Updating
�
X 1X

��1 Using Partitioned Matrices
� For A �

�
A11 A12

A21 A22

�
, with A, A11and A22 square and invertible:

A�1 �

�
D �DA12A

�1

22

�A�1

22
A21D �A�1

22
��A�1

22
A21DA12A

�1

22

�

with D � A�1

11
� A�1

11
A12

�
A22 � A21A

�1

11
A12

��1
A21A

�1

11

� Here: Let Xv �
�
X v

�
. The cross-product matrix becomes

X
1

vXv �

�
A11 � X 1X A12 � X 1v

A21 � A
1

12
A22 � v 1v

�

� Task: calculate
�
X

1

vXv

	�1

based on the known terms of: X 1X ,

pX 1X q�1, X 1v , v 1v

� Slight complication: Inserting a column to X , not just appending.

� Can be solved by permutation vectors ( see [M-1] permutation).

� Let’s call this procedure PMAC (partioned matrices /
append column) to ease exposition.
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Updating
�
X 1X

��1 Using Partitioned Matrices

� Problem: columns are sometimes deleted, not just added.

� Lag combination matrix (maxlags � 2 for all variables):

�
�������������

1 0 0

1 0 1

1 0 2

1 1 0

1 1 1

1 1 2

1 2 0

1 2 1

� � �

2 2 2

�
�������������

� e.g. moving from row 3:
�
1 0 2

�
to row 4:

�
1 1 0

�
deletes two

lags of the last regressor

� Solution: store matrices the algorithm can jump back to using
pointers.
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Pointer Variables

� General and “advanced” programming concept, but the basics
are easy to understand and apply.

� Each variable has a name and a type.

� The name really is just a device to refer to a specific location in
memory; every location in memory has a unique address.

� Since the type of the variable is known to Mata, it knows how big of a
memory range a variable name refers to, and how to interpret the value
(the bits stored there).

� Think in these terms: each variable has an address and a value.

� Pointer variables hold memory addresses of other variables.
Pointer variables can point to anything: scalars, matrices,
pointers, objects, functions ...

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 20 / 27



Efficient Coding Digression: A Tiny Bit of Asymptotic Notation The ARDL Model Optimal Lag Selection Incremental Code Improvements

Pointer Variables
� Pointers are often assigned to using “&”; they are dereferenced

using “*”.

� Read:

� & : “the address of”

� * : “the thing pointed to by”

� mata:

s = J(2,2,1)

p = &s

p // outputs something like 0xcb3cb60

*p // outputs the 2x2 matrix of ones

*p = J(2,2,-7)

s // now contains the matrix of -7s

end

� See [M-2] pointers for many more details.

� What we need for our algorithm, is an unknown number (k � 1)
of matrices. We solve this by creating a vector of pointers to
matrices.
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Using Pointers for Updating
�
X 1X

��1

� Lag combination matrix :

�
����������

1 0 0

1 0 1

1 0 2

1 1 0

1 1 1

1 1 2

1 2 0

� � �

�
����������

� 3-element vector of pointers vec �
�
p1 p2 p3

�
; each element

points to a matrix. Then calculate pX 1X q�1 for...

� ... lags (1 0 0) by ordinary matrix inversion; store using p1

� ... lags (1 0 1) by PMAC using �p1; store using p3

� ... lags (1 0 2) by PMAC using �p3

� ... lags (1 1 0) by PMAC using �p1; store using p2

� ... lags (1 1 1) by PMAC using �p2; store using p3

� ... lags (1 1 2) by PMAC using �p3;

� ... lags (1 2 0) by PMAC using �p2; store using p2 ... and so forth.
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Lag Selection: Mata III (update inverses)
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Lag Selection: Timings

Timings in seconds (2.5GHz, single core) for N=1000:

Mata 2 : no redundancies

Mata 3 : no redundancies + inverse updating

k � 1 maxlags # regressions regress Mata 1 Mata 2 Mata 3
3 4 100 1.6 0.36 0.11 0.14
3 8 :650 12.5 1.33 0.09 0.13
4 8 :5,800 132 11.8 0.31 0.27
6 8 :470,000 :14,000 :1,400 53 37
8 8 :38,000,000 (13 days?) :146,000 :6,500 :3,200
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Recap

In this talk, we have discussed

� Potential strategies for improving code performance

� Basic asymptotic notation for the computing time of algorithms

� Quick look at the ARDL model

� Optimal lag selection

� Moving Stata code to Mata and optimizing the Mata code

� An advanced way of using linear algebra results to improve
code performance

� Pointer variables

We have tried to illustrate that mindful code creation can be superior
to the “brute force” methods of low-level programming languages
and parallelization.
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Thank you!

Questions? Comments?

S.Kripfganz@exeter.ac.uk

schneider@demogr.mpg.de
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