Speeding Up the ARDL Estimation Command:

A Case Study in Efficient Programming in Stata and Mata

Sebastian Kripfganz¹ Daniel C. Schneider²

¹University of Exeter

²Max Planck Institute for Demographic Research

German Stata Users Group Meeting, June 23, 2017

Kripfganz/Schneider Uni Exeter & MPIDR Speeding Up ARDL June 23, 2017 1 / 27

The ARDL Model

Optimal Lag Selection

Contents

Efficient Coding

Digression: A Tiny Bit of Asymptotic Notation

The ARDL Model

Optimal Lag Selection

Incremental Code Improvements

Introduction

- Long code execution times are more than a nuisance: they negatively affect the quality of research
- strategies for speeding up execution:
 - lower-level language
 - parallelization
 - writing efficient code
- Efficient coding is often the best choice.
 - Moving to lower-level languages is tedious.
 - In many settings, speed improvements are higher than through parallelization.

Introduction: Speed of Stata and Mata

- C is the reference
 - compiled to machine instructions
- Post of Bill Gould (2014) at the Stata Forum:
 - ▶ Stata (interpreted) code is 50-200 times slower than C.
 - Mata compiled byte-code 5-6 times slower than C.
 => Mata is 10-40 times faster than Stata.
 - ▶ In real-world applications, Mata is ~2 times slower than C.
 - Mata has built-in C routines based on very efficient code.

Introduction: Efficient Coding Strategies

- Using Common Sense
 - An if-condition requires at least N comparisons. Use in-conditions instead, if possible.
 - Multiplying two 100x100 matrices requires about 2*100^3 = 2,000,000 arithmetic operations.
- Using Knowledge of Your Software (Stata, of course!)
 - Examples:
 - Mata: passing of arguments to functions
 - Efficient operators and functions (e.g. Mata's colon operator and its c-conformability)
 - Read the Stata and Mata programming manuals

Introduction: Efficient Coding Strategies

Using Knowledge of Matrix Algebra

- Translating mathematical formulas one-to-one into matrix language expressions is oftentimes (very!) inefficient.
- Examples:
 - diagonal matrices (D) :
 - multiplication of a matrix by D: don't do it!
 Mata: use c-conformability of the colon operator (see [M-2] op_colon)
 - inverse: flip diagonal elements instead of calling a matrix solver / inverter function (O(n) vs. O(n³))
 - block diagonal matrices:

 $^{\mathsf{T}}\mathbf{F}\mathbf{R}$

- multiplication: just multiply diagonal blocks; the latter is faster by 1/s², where s is the number of diagonal blocks
- inverse: invert individual blocks
- order of matrix multiplication / parenthesization

• $b = (X'X)^{-1} (X'y)$ is faster than $b = (X'X)^{-1} X'y$

e.g. for k = 10, N = 10,000: matrix multiplications are 11 times faster!

The ARDL Model

Asymptotic Notation

An algorithm with input size *n* and running time T(n) is said to be $\Theta(g(n))$ ("theta of g of n") or to have an *asymptotically tight bound* g(n) if there exist positive real numbers c_1 , c_2 , $n_0 > 0$ such that

 $c_{1}g(n) \leq T(n) \leq c_{2}g(n) \quad \forall n \geq n_{0}$

Asymptotic Notation

- O (g (n))("(big) oh of g of n"), as opposed to Θ(g(n)), is used here to only denote an upper bound. Notation differs in the literature.
- Technically, $\Theta(g(n))$ and O(g(n)) are sets of functions, so we write e.g. $T(n) \in O(g(n))$.
- For matrix operations, g (n) is frequently n raised to some low integer power.
 - $\Theta(n)$ is much better than $\Theta(n^2)$, which in turn is much better than $\Theta(n^3)$
 - Gquare) matrix multiplication is ⊖ (n³): each element of the new n × n matrix is a sum of n terms. Costly!
 - Many types of matrix inversion, e.g. the LU-decomposition, are also $\Theta(n^3)$. Costly!
 - Inner vector products are $\Theta(n)$.
- When T (n) is an *i*-th order polynomial, the leading term asymptotically dominates: T (n) ∈ O (nⁱ).
- $\Theta(a^n)$ is worse than $\Theta(n^a)$; $\Theta(\lg n)$ is better than $\Theta(n)$

ARDL: Model Setup

- ARDL (p, q_1, \ldots, q_k) : autoregressive distributed lag model
- Popular, long-standing single-equation time-series model for continuous variables
- Linear model :

$$y_{t} = c_{0} + c_{1}t + \sum_{i=1}^{p} \phi_{i}y_{t-i} + \sum_{i=0}^{q} \beta_{i}'\mathbf{x}_{t-i} + u_{t}, \ u_{t} \sim iid (0, \sigma^{2})$$

- (y_t, x'_t)' can be purely I(0), purely I(1), or cointegrated: can be used to test for cointegration (bounds testing procedure). (Pesaran, Shin, and Smith, 2001).
 => econometrics of ARDL can be complicated.
- net install ardl , from(http://www.kripfganz.de/stata)
- This talk: programming; for the statistics of ard1, see Kripfganz/Schneider (2016).

ARDL: Computational Considerations

- Despite its complex statistical properties, estimating an ARDL model is just based on OLS!
- The computational costly parts are:
 - determination of optimal lag orders (e.g. via AIC or BIC)
 - treated at length in this talk
 - simulation of test distributions for cointegration testing (PSS 2001, Narayan 2005).
 - not covered by this talk

Optimal Lag Selection: The Problem

- For k + 1 variables (indepvars + depvar) and maxlag lags for each variable, run a regression and calculate an information criterion (IC) for each possible lag combination and select the model with the best IC value.
- Example: 2 variables (v1 v2), maxlag = 2 regress v1 L(1/1).v1 L(0/0).v2 regress v1 L(1/2).v1 L(0/0).v2 regress v1 L(1/1).v1 L(0/1).v2 regress v1 L(1/2).v1 L(0/1).v2
 - regress v1 L(1/1).v1 L(0/2).v2 regress v1 L(1/2).v1 L(0/2).v2

 # of regressions to run is exponential in k:

ma	axl	lag	s٠	(maxi	lags	+	$1)^{k}$:	
1		Ł		1				!

K + 1	maxlags	# regressions
3	4	100
3	8	${\sim}650$
4	8	\sim 5,800
6	8	\sim 470,000
8	8	\sim 38,000,000

The ARDL Model

Lag Selection: Preliminaries

- Lag combination matrix for k = 3 and maxlags = 2: $\begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0 & 1 \\
 1 & 0 & 2 \\
 1 & 1 & 0 \\
 1 & 1 & 1 \\
 1 & 1 & 2 \\
 1 & 2 & 0 \\
 1 & 2 & 1 \\
 ... \\
 2 & 2 & 2
 \end{bmatrix}$
 - e.g. row 3: $\begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$ corresponds to regressors L.v1 L(0/0).v2 L(0/2).v3 = $\begin{bmatrix} v_{1_{t-1}} & v_{2_t} & v_{3_t} & v_{3_{t-1}} & v_{3_{t-2}} \end{bmatrix}$
 - called "lagcombs" in pseudo-code to follow

Lag Selection: Naive Approach Using regress

Stata/Mata-like pseudocode:

```
// note: may contain incorrect syntax,
         fictitious commands/options/return values, etc.
^{\prime\prime}
lagcombs , k(3) maxlag(8)
    // defines matrix with all lag combs
scalar ic = .
forvalues i=1/numrows(lagcombs) {
    matrix lags = lagcombs(`i',1...)
    regress v1 v2 v3 , lags(lags)
    estat ic
    if r(aic)<ic {</pre>
        scalar ic = r(aic)
        matrix optimlag = lags
```


Lag Selection: Timings

Timings in seconds (2.5GHz, single core) for N=1000:

k + 1	maxlags	# regressions	regress
3	4	100	1.6
3	8	${\sim}650$	12.5
4	8	\sim 5,800	132
6	8	\sim 470,000	\sim 14000
8	8	\sim 38,000,000	(13 days?)

15/27

Lag Selection: Mata I

```
Stata/Mata-like pseudocode:
// note: may contain incorrect syntax,
         fictitious commands/options/return values, etc.
11
lagcombs , k(3) maxlag(8)
    // defines matrix with all lag combs
mata:
    lagcombs = st matrix("lagcombs")
    ic = .
    for (i=1; i<=rows(lagcombs); i++) {</pre>
        y = st data ( DEPVAR )
        X = st data ( PULL DATA FOR SPECIFIC LAG COMBINATION )
        // calculate AIC
        ee = y'y - y'X*invsym(X'X)*X'y // sum of squared residuals
        ic = T*log(2*pi()) + T*log(ee/T) + T + 2*k
        if (ic<ic min) {
            ic min = ic
            optimrow = i
end
           UNIVERSITY OF
                 FR
                          Kripfganz/Schneider Uni Exeter & MPIDR
                                                        Speeding Up ARDL
                                                                        June 23, 2017
```

Lag Selection: Mata II (no redundant calculations)

```
// note: may contain incorrect syntax, fictitious commands/options/return values, etc.
lagcombs , k(3) maxlag(8)
mata:
    y = st data ( DEPVAR
    X = st data ( PULL ALL DATA : ALL VARIABLES, ALL LAGS)
    // calculate terms for full lag specification
    XX = X'X; Xy = X'y; yy = y'y
    lagcombs = st matrix("lagcombs")
    ic = .
    for (i=1; i<=rows(lagcombs); i++) {</pre>
        // cross-products for current iteration
        idx = [ GET INDEX VECTOR FOR CURRENT LAG STRUCTURE ]
        XXi = XX[idx,idx] ; Xyi = Xy[idx]
        ee = vy - Xvi'*invsym(XXi)*Xvi // calculate sum of squared residuals for AIC
        ic = T*log(2*pi()) + T*log(ee/T) + T + 2*k
        if (ic<ic min) {
            ic min = ic ;
            optimrow = i
end
           UNIVERSITY OF
                  FR
                           Kripfganz/Schneider Uni Exeter & MPIDR
                                                          Speeding Up ARDL
                                                                          June 23, 2017
                                                                                       16/27
```

Lag Selection: Mata III

- A sticky point are the many matrix inversions, which are $\Theta(n^3)$.
- We will further improve matters by using results from linear algebra.
- We will introduce and use pointer variables in the process.
- The following will put forth a somewhat complicated algorithm that affects many parts of the loop.
- In this talk, we could have focused our attention on many smaller changes for code optimization, but both things are not possible within the time window for this presentation.

Updating $(X'X)^{-1}$ Using Partitioned Matrices • For $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$, with A, A_{11} and A_{22} square and invertible: $A^{-1} = \begin{bmatrix} D & -DA_{12}A_{22}^{-1} \\ -A_{22}^{-1}A_{21}D & -A_{22}^{-1} + -A_{22}^{-1}A_{21}DA_{12}A_{22}^{-1} \end{bmatrix}$

with $D = A_{11}^{-1} + A_{11}^{-1}A_{12} (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1}A_{21}A_{11}^{-1}$

• Here: Let $X_v = \begin{bmatrix} X & v \end{bmatrix}$. The cross-product matrix becomes

$$X'_{v}X_{v} = \begin{bmatrix} A_{11} = X'X & A_{12} = X'v \\ A_{21} = A'_{12} & A_{22} = v'v \end{bmatrix}$$

- Task: calculate $(X'_v X_v)^{-1}$ based on the known terms of: X'X, $(X'X)^{-1}$, X'v, v'v
 - Slight complication: Inserting a column to X, not just appending.
 - Can be solved by permutation vectors (see [M-1] permutation).
- Let's call this procedure PMAC (particulation of matrices /

Kripfganz/SchneiderUni Exeter & MPIDRSpeeding Up ARDLJune 23, 201718 / 27

Updating $(X'X)^{-1}$ Using Partitioned Matrices

Problem: columns are sometimes deleted, not just added.

```
• Lag combination matrix (maxlags = 2 for all variables): \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 2 & 1 \\ ... \\ 2 & 2 & 2 \end{bmatrix}
```

- e.g. moving from row 3: [1 0 2] to row 4: [1 1 0] deletes two lags of the last regressor
- Solution: store matrices the algorithm can jump back to using pointers.

Pointer Variables

- General and "advanced" programming concept, but the basics are easy to understand and apply.
- Each variable has a name and a type.
 - The name really is just a device to refer to a specific location in memory; every location in memory has a unique *address*.
 - Since the type of the variable is known to Mata, it knows how big of a memory range a variable name refers to, and how to interpret the value (the bits stored there).
 - Think in these terms: each variable has an address and a value.
- Pointer variables hold memory addresses of other variables.
 Pointer variables can point to anything: scalars, matrices, pointers, objects, functions ...

Pointer Variables

- Pointers are often assigned to using "&"; they are dereferenced using "*".
- Read:
 - ▶ & : "the address of"

FR

* : "the thing pointed to by"

```
  mata:
```

```
s = J(2,2,1)
p = &s
p // outputs something like 0xcb3cb60
*p // outputs the 2x2 matrix of ones
*p = J(2,2,-7)
s // now contains the matrix of -7s
end
```

See [M-2] pointers for many more details.

Using Pointers for Updating $(X'X)^{-1}$

- Lag combination matrix : $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}$
- 3-element vector of pointers $vec = [p1 \ p2 \ p3]$; each element points to a matrix. Then calculate $(X'X)^{-1}$ for...
 - ... lags (1 0 0) by ordinary matrix inversion; store using p1
 - ... lags (1 0 1) by PMAC using ∗p1; store using p3
 - ▶ ... lags (1 0 2) by PMAC using **p*3
 - ... lags (1 1 0) by PMAC using *p1; store using p2
 - ... lags (1 1 1) by PMAC using ∗p2; store using p3
 - ... lags (1 1 2) by PMAC using ∗p3;

Lag Selection: Mata III (update inverses)

```
// note: may contain incorrect syntax, fictitious commands/options/return values, etc.
lagcombs , k(3) maxlag(8)
mata:
    y = st data( DEPVAR )
    X = st data ( PULL ALL DATA : ALL VARIABLES, ALL LAGS)
    // calculate terms for full lag specification
    XX = X'X; Xy = X'y; yy = y'y
    lagcombs = st matrix("lagcombs")
    ic = .
    for (i=1; i<=rows(lagcombs); i++) {</pre>
        idx = [ GET INDEX VECTOR FOR CURRENT LAG STRUCTURE ]
        XXi = XX[idx,idx] ; Xvi = Xv[idx]
        if (i==1) XXinvi = invsym(XX)
                  XXinvi = update XXinv( XXiold , XXinvi , ... )
        else
        ee = yy - Xyi'*XXinvi*Xyi
        ( CALCULATE IC, SELECT IF LOWER THAN IC VALUES UP TO NOW )
        XXiold = XXi
end
           UNIVERSITY OF
                           Kripfganz/Schneider Uni Exeter & MPIDR
                                                           Speeding Up ARDL
                                                                           June 23, 2017
                                                                                        23 / 27
```

Lag Selection: Timings

Timings in seconds (2.5GHz, single core) for N=1000:

Mata 2 : no redundancies

Mata 3 : no redundancies + inverse updating

k+1	maxlags	# regressions	regress	Mata 1	Mata 2	Mata 3
3	4	100	1.6	0.36	0.11	0.14
3	8	\sim 650	12.5	1.33	0.09	0.13
4	8	\sim 5,800	132	11.8	0.31	0.27
6	8	\sim 470,000	\sim 14,000	\sim 1,400	53	37
8	8	\sim 38,000,000	(13 days?)	\sim 146,000	\sim 6,500	~3,200

Recap

In this talk, we have discussed

- Potential strategies for improving code performance
- Basic asymptotic notation for the computing time of algorithms
- Quick look at the ARDL model
- Optimal lag selection
- Moving Stata code to Mata and optimizing the Mata code
- An advanced way of using linear algebra results to improve code performance
- Pointer variables

We have tried to illustrate that mindful code creation can be superior to the "brute force" methods of low-level programming languages and parallelization.

Thank you!

Questions? Comments?

S.Kripfganz@exeter.ac.uk schneider@demogr.mpg.de

References

- Gould, William (2014, April 17): Using Mata Operators efficiently [Msg 8]. Message posted to https://www.statalist.org/forums/forum/general-statadiscussion/mata/993-using-mata-operatorsefficiently?p=1826#post1826
- Kripfganz / Schneider (2016): ardl: Stata Module to Estimate Autoregressive Distributed Lag Models. Presentation held at the Stata Conference 2016, Chicago.
- Narayan, P.K. (2005): The Saving and Investment Nexus for China: Evidence from Cointegration Tests. Applied Economics, 37 (17), 1979-1990.
- Pesaran, M.H., Shin Y. and R.J. Smith (2001): Bounds Testing Approaches to the Analysis of Level Relationships. Journal of Applied Econometrics, 16 (3), 289-326.

