
German Institute for
Adult Education
Leibniz Centre for
Lifelong Learning

www.die-bonn.de

Power boost or source of bias? 

Monte Carlo evidence on (machine learning) 
covariate adjustment in randomized trials in 
education
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Introduction

 Experimental research (RCT) has gained in 
importance in many economics and social science 
discipline. 

 One prominent example: RCTs with pupils 
(educational RCTs) concerning 

 educational decision-making (Barone et al., 2017; 2018; Ehlert et al., 2017; 
Finger et al. 2020; Piepenburg and Fervers, 2021), 

 cognitive skills (Lynch et al., 2022; Markovitz et al., 2022; Borman et al., 2020), or 

 health or psycho-social outcomes (Lazoswski and Hullemann, 2016; Murano, 

2022; Taherkani, 2016), among others
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Introduction & Contribution

 At the same time: comparatively little attention to 
estimation of treatment effects

 One controversy (mostly in mathematical statistics 
and biostatistics, EMA (2015)): Is it better to estimate 
effects by simple difference-in-means comparison or 
to use regression adjustment (i.e. regress outcome 
on treatment plus covariates)
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Introduction & Contribution

 My contribution: Conduct Monte Carlo simulation to 
compare performance of estimators

 Previous research 

 mostly relies on simulated data (Miratrix et al., 2013; Kahan et al., 2016; Asafu-Adjei and 
Sampson, 2018; Tackney et al., 2022), exceptions are mostly from biostatistics or 
medical statistics (McHugh et al., 2010; Turner et al., 2012; Kahan et al., 2014; Morris et al., 2022)

 rarely assessed ML techniques for variable selection (execptions
include Wager et al., 2016 PNAS; Benkeser et al., 2019 JASA)

  I  use real-world data that mirrors data structures in 
educational RCTs (11 different outcomes, 9 different 
sample sizes ranging from 50 to 500)

  I employ machine-learning (LASSO) covariate 
adjustment 
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Statistical theory on covariate adjustment 

 Regression adjustment can increase efficiency 
(reduces error variance, corrects chance imbalance)

 Formally (Wager, 2020): 𝐴𝐴𝑉𝑉𝑉𝑉𝑟𝑟 𝜋𝜋𝑎𝑎𝑎𝑎𝑗𝑗 ≤ 𝐴𝐴Var 𝜋𝜋𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑗𝑗 , even 
if functional form is misspecified (for simulation 
results see Kahan et al. 2016)
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Statistical theory on covariate adjustment 

 Disadavantages (Athey and Imbens, 2017; Freedman, 2008, Adv Appl
Maths): 

 Regression adjustment can introduce finite sample bias

 In finite samples, regression adjustment can hurt efficiency and 
reduce power, especially when predictive power of covariates is low 
and/or the number of covariates is large relative to sample size 
(high-dimensional data)

 In applied research, repeated model specification can lead to false-
positives (Kahan et al., 2014)

  CovAdjust has ambiguous effects on efficiency, 
possibly bias-efficiency trade-off

 Disadvantages particularly relevant in high-dimensional 
data (which are the norm in educational trials!)



www.die-bonn.de

The role of machine learning 

 Key idea: ML algorithms could be used to find ideal 
set of predictors

 Originally, ML techniques mostly applied for (out-of-
sample) prediction or forecasting 

 Causal machine learning literature has adapted ML 
algorithms as tool for variable selection in high-
dimensional settings (originally in the non-
experimental context; Belloni et al., 2012, 2014, 2016; Chernozhukov
et al., 2018; Wager et al., 2016; Ahrens et al., 2020)

  I borrow from the latter to find an ideal set of 
covariates to control for
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Post-double selection LASSO algorithm 

 General Idea (Belloni et al., 2014; 2016): for outcome variable 
𝑦𝑦, vector of controls 𝒙𝒙 and a treatment dummy 𝑑𝑑:

 1. Perform linear LASSO of 𝑦𝑦 on 𝒙𝒙, obtain set of predictors �𝑥𝑥𝑦𝑦

 2. Perform linear LASSO of 𝑑𝑑 on 𝒙𝒙, obtain set of predictors �𝑥𝑥𝑎𝑎

 3. Estimate treatment effect by regressing 𝑦𝑦 on 𝑑𝑑, controlling for 
the union of �𝑥𝑥𝑦𝑦 and �𝑥𝑥𝑎𝑎

 Intuition: we control for strong predictors of y as well 
as strongly imbalanced covariates
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The LASSO algorithm

 For a set of 𝑝𝑝 regressors and 𝑛𝑛 observations, LASSO 
solves the following minimization problem: 

�̂�𝛽𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙o 𝜆𝜆 = 𝑉𝑉𝑟𝑟𝑎𝑎 𝑚𝑚𝑚𝑚𝑛𝑛
1
𝑛𝑛
�
𝑖𝑖=1

𝑢𝑢

𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖′𝛽𝛽 2 + 𝜆𝜆�
𝑗𝑗=1

𝑝𝑝

𝑏𝑏𝑗𝑗 𝛾𝛾𝑗𝑗

(with 𝜆𝜆: penalty parameter; 𝛾𝛾𝑗𝑗 factor loadings)
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The LASSO algorithm

 Intuition: Minimize squared prediction error by using 
as few variables as possible (note: it will shrink some 
coefficients to zero)

 One peculiarity: choosing lambda

 Traditional approach: cross-validation (optimizes out-of-sample 
prediction)

 Alternative approach: plug-in formula (Belloni et al., 2012)
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Implementation in STATA

 Post-double LASSO can be implemented in STATA 
using dsregress (STATA corporation) or 
pdslasso/lassopack (Ahrens et al., 2018; 2020)

 For alternative algorithms: ddml for double-debiased 
machine learning (Chernozhukov et al., 2018; Ahrens 
et al., 2020)
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Simulation study

 Data: NEPS, SC3 (5-graders)

 Simulated treatment between waves 2 and 3 ( pre-info 
from waves 1 and 2, post info from waves 3-9)

 Outcome variables: cognitive skills (numeracy, literacy, 
reading speed, ICT, science), psycho-social constructs 
(satisfaction, math and German-related self-efficacy, 
motivation, self-esteem, reading behaviour

 9 different sample sizes (between 50 and 500)

 Controls: pre-treatment outcomes, socio-demographics, 
social background, parenting styles, social and cultural 
activities (29 controls in total)
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Simulation protocol

 1. Draw sample of size 𝑠𝑠

 2. Assign units to treatment and control group with probability 
𝑝𝑝 = 0.5

 3. Simulate treatment with a size of 𝜋𝜋 = 0.25 ∗ 𝑠𝑠𝑑𝑑 𝑦𝑦𝑝𝑝𝑝𝑝𝑒𝑒

 4. Estimate treatment effect �𝜋𝜋 by

 a) unadjusted estimation/bivariate regression

 b) unadjusted regression with change of outcome variable (pre-post as 
dependent variable)

 c) post-double LASSO

 5. Repeat steps 1-4c 𝑛𝑛 = 1000 times
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Performance measures

 Bias:  𝜃𝜃 = 𝐸𝐸 �𝜋𝜋 − 𝜋𝜋

 Variance: 𝑉𝑉𝑉𝑉𝑟𝑟 = �𝑖𝑖=1
𝑢𝑢 �𝜋𝜋𝑖𝑖 − 𝐸𝐸( �𝜋𝜋 )2

 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 = √�𝑖𝑖=1
𝑢𝑢 �𝜋𝜋𝑖𝑖 − 𝜋𝜋 2

 Power: 𝑝𝑝 = 1
𝑢𝑢
∑𝑖𝑖=1𝑢𝑢 1 𝑝𝑝𝑖𝑖 < 𝛼𝛼

 Coverage: 𝑐𝑐 = 1
𝑢𝑢
∑𝑖𝑖=1𝑢𝑢 1 𝑙𝑙𝑐𝑐𝑚𝑚𝑖𝑖 < 𝜋𝜋 < 𝑢𝑢𝑐𝑐𝑚𝑚𝑖𝑖

 For RMSE and power, I calculate relative differences
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Results – selected DGPs
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Results – selected DGPs
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Results – aggregate measures (all DGPs)

 LASSO estimation yields substantial increase of power and decrease
of RMSE, (almost) never worse than unadjusted estimators

 Coverage is about 95% for all estimators

 In small samples, LASSO is (sometimes) very slightly downward
biased
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Results by outcome and sample size
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Results by outcome and sample size
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Results by outcome and sample size
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Results by outcome and sample size
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Summary and conclusion

 Hypothesis (following statistical theory and recent 
developments in the ML literature): post-double 
LASSO estimation can improve treatment effect 
estimation in educational RCTs

 Simulation evidence: substantial gains in power (in 
spite of slight downward bias) due to strong 
reduction of variance 

  supports the more optimistic view on CovAdjust
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Outlook to future research

 Further robustness checks (e.g. different tuning 
parameters, different algorithms (especially double-
debiased ML))

 Further evidence on different data structures (e.g. 
binary outcomes, survival data etc.)

 In general: recent developments in causal ML 
literature seem to open up a wide range of 
opportunities to improve estimation of treatment 
effects in experimental settings
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Thank you for your attention!!
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