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Introduction



The State of Empirical Work

Consider a number of facts based on empirical work:

▶ Most studies consider more than a single dependent variable of interest

▶ Frequentist hypothesis testing is often quite centrally used (and indeed, comes as
default in many methods and their Stata implementations)

▶ These methods are designed to limit false rejection of a null hypothesis to some
small value

▶ Such error rates are valid test-by-test, but accumulate if we consider multiple tests

▶ This can be problematic, especially if one views rejection of a single test in a class
as ‘confirmatory’ of some general idea
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A Simple Illustrative Simulation

We can try 5000 simulations of the following models in Stata varying K and examining
rejection rates…

yk
i = α+ τTreatk

i + εk
i ∀k ∈ {1, . . . ,K}

Table: Error Rates, and Error Rates by Class

Number of Dependent Variables
1 2 3 4 5 6 7 8 9 10

Total Tests Rejected 265 569 783 1077 1314 1552 1862 2163 2433 2638
Mean Tests Rejected 0.053 0.057 0.052 0.054 0.053 0.052 0.053 0.054 0.054 0.053
Proportion ≥ 1 Rejection 0.053 0.111 0.149 0.197 0.235 0.275 0.320 0.361 0.397 0.414
Proportion ≥ 2 Rejection 0.000 0.002 0.007 0.018 0.027 0.034 0.048 0.062 0.079 0.096
Refer to section (1) of the accompanying Stata code multHyp.do.
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What to Do?

There are a number of ways forward to conduct valid inference in cases where multiple
hypotheses are tested:

1. Dimension reduction
2. Familywise Error Rate Corrections
3. False Discovery Rate Corrections
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This Talk

In this talk I plan to discuss each of these 3 methods and their Stata implementations.

▶ I will not delve deeply into the math here. Many references for this information:
▶ Eg text-book introductions: Lehmann and Romano (2005), Casella and Berger

(2001), and Westfall and Young (1993)
▶ Stata Journal papers with background: R. Newson and The ALSPAC Study Team

(2003), R. B. Newson (2010), and Clarke, Romano, and Wolf (2020)
▶ I will however work through examples with code
▶ In the interests of controlling the DGP, this will all be based on simulated data
▶ This will be specifically tailored to modelling in economics: heavy reliance on

regression based framework (OLS, IV, RDD, etc.)
▶ In general, I will point to papers and Stata routines throughout
▶ Code to follow along: https://github.com/damiancclarke/multHypStata
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Figure: Correlations (Y1,Y2,Y3)

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.99

Multivariate normals simulated as per Gould (Undated). Stata visualization: Rostam-Afschar and Jessen (2014).

Refer to section (2) of the accompanying Stata code multHyp.do.
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Indexes and Dimension Reduction



Indexes and Dimension Reduction

A simple option if one is concerned about multiple outcomes is to compress the
information into a single dimension or index.

▶ How to go about generating the index and aggregating sources of information is
an interesting problem

▶ Anderson (2008) is a tour of force here (in Stata: Schwab et al. (2020))
▶ Anderson (2008)’s proposal: “overweight” variables which bring more independent

variation to the index
▶ This is very different to what a principal component analysis would draw out
▶ This decision is not innocuous
▶ One draw-back here: it pre-supposes some prior about relationships between

independent and dependent variables
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Figure: Behaviour of the Anderson Index
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Figure: Behaviour of Principal Component
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Figure: Behaviour of a Summary Index
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Familywise Error Rate Corrections



Familywise Error Rate Corrections

Alternative to aggregation is the consideration of the full family of hypotheses as
separate tests: then correction for multiple testing just requires adjusting critical values

▶ This provides you with more information
▶ Familywise error rate (FWER) corrections seek to limit limit the probability of

falsely rejecting any tests across the entire family to α

▶ Earliest and perhaps most well known of these is Bonferroni (1935)
▶ These procedures – in particular the early generation models – can be costly in

terms of power
▶ This is a classic trade-off between size and power
▶ But much of the cost in early models comes from restrictive dependence

assumptions
▶ Tremendous recent advances here using (a) step-down, and, especially (b)

simulation-based methods
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Family Wise Error Rate Corrections

Table: Family Wise Error Rate Corrections in Stata

Correction Stata Implementation Note
Bonferroni (1935) R. B. Newson 2010 1st generation
Holm (1979) R. B. Newson 2010 Step-down
Westfall and Young (1993) Reif 2017; Jones, Molitor, and Reif 2019 Step-down, arbitrary dependence
Romano and Wolf (2005) Clarke 2016; Clarke 2021 Step-down, arbitrary dependence
Method Specific
List, A. Shaikh, and Xu (2019) Seidel and Yang Xu 2016 Restricted R-W style implementation
List, A. Shaikh, and Xu (2019) Steinmayr 2020 Restricted R-W style implementation
Notes: Full details of algorithms is provided in papers in left-hand column. Help files, github repos or Stata Journal pa-
pers (R. B. Newson 2010; Clarke, Romano, and Wolf 2020) provide computational background and Stata-specific syntax points.
David McKenzie has an extremely useful blog post summary of this: https://blogs.worldbank.org/impactevaluations/
updated-overview-multiple-hypothesis-testing-commands-stata
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FWER Corrections and Improvements in Power

Figure: Simulated Power to Reject False Null Hypothesis
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(a) ρ = 0.25
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(b) ρ = 0.75

Refer to section (4) of the accompanying Stata code multHyp.do.
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Figure: How Bootstrap Step-down Procedure Gains Power: ρ = 0
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Refer to section (6) of the accompanying Stata code multHyp.do.



Figure: How Bootstrap Step-down Procedure Gains Power: ρ = 0.5
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Refer to section (6) of the accompanying Stata code multHyp.do.



Figure: How Bootstrap Step-down Procedure Gains Power: ρ = 0.9
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Refer to section (6) of the accompanying Stata code multHyp.do.



False Discovery Rate Corrections



False Discovery Rate Corrections
FWER corrections provide a clear framework for controlling error rates across multiple
hypotheses, but in the limit, clearly become too demanding…

▶ While it is reasonable to aspire to no false rejection when K=10, it seems less
reasonable when K=100 (or more)

▶ False discovery rate corrections seek to limit “false discoveries”: proportion of null
hypotheses rejected that are actually true

▶ More recent developments, in line with bio-statistic applications with many many
tests

▶ FDR corrections imply that α% of “discoveries” will actually be false
▶ Typically, FDR corrections have greater power than FWER procedures, at the cost

of more false rejections
▶ In the specific case that all null hypotheses are true, FDR = FWER
▶ Suitability of one or other also depends on subjective considerations of type I vs

type II
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False Discovery Rate Corrections

Table: False Discovery Rate Corrections in Stata

Correction Stata Implementation Note
Benjamini and Hochberg 1995 R. B. Newson 2010 Provides decision rule (accept/reject)

for input values of α
Benjamini and Yekutieli 2001 R. B. Newson 2010 Provides decision rule (accept/reject)

for input values of α
Benjamini and Yekutieli 2001 Anderson 2008 Directly provides a p-value
Notes: Full details of algorithms are provided in papers in left-hand column. Stata Journal papers (R. B. New-
son 2010) or do file documentation provide computational background and Stata-specific syntax points. David
McKenzie has an extremely useful blog post summary of this: https://blogs.worldbank.org/impactevaluations/
updated-overview-multiple-hypothesis-testing-commands-stata

14 / 16

https://blogs.worldbank.org/impactevaluations/updated-overview-multiple-hypothesis-testing-commands-stata
https://blogs.worldbank.org/impactevaluations/updated-overview-multiple-hypothesis-testing-commands-stata


False Discovery Rate Corrections

Table: Performance of FDR and FWER Routines

ρ = 0 ρ = 0.33 ρ = 0.67

Pr(A) Pr(B) Pr(C) Pr(A) Pr(B) Pr(C) Pr(A) Pr(B) Pr(C)
Naïve 0.294 0.115 0.258 0.264 0.117 0.258 0.174 0.116 0.262
FDR
Benjamini-Hochberg 0.084 0.042 0.168 0.078 0.046 0.163 0.046 0.043 0.164
Benjamini-Yekutieli 0.018 0.013 0.105 0.022 0.016 0.109 0.020 0.022 0.104
FWER
Bonferroni 0.028 0.020 0.131 0.024 0.023 0.132 0.024 0.028 0.128
Holm 0.030 0.020 0.135 0.032 0.026 0.135 0.028 0.030 0.132
Westfall-Young 0.032 0.022 0.130 0.032 0.028 0.132 0.040 0.041 0.153
Romano-Wolf 0.030 0.023 0.129 0.036 0.029 0.137 0.038 0.038 0.156
Pr(A) ≡ Pr(Reject at least 1 true null)
Pr(B) ≡ Pr(Rejected null is actually true|null is rejected)
Pr(C) ≡ Pr(Reject null|null is false)
Refer to section (5) of the accompanying Stata code multHyp.do.
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Discussion and Conclusion



Discussion and Conclusion

There is a growing, though incomplete, movement towards correctly adjusting for
multiple hypothesis testing

▶ A very small selection of empirical papers implementing these sort of things are:
▶ Lee and A. M. Shaikh 2014
▶ Gertler et al. 2014
▶ Attanasio et al. 2014

▶ However, this is certainly not universal
▶ Non-comprehensively, it seems to me like these are quite widely used in

pre-specified projects (some values in Viviano, Wuthrich, and Niehaus (2021))
▶ But much less so in designs where power is an issue: IV, RDD

▶ Presumably adaptive designs like RDD could define bandwidths optimally to account
for multiple hypothesis correction

▶ More generally, relates to interesting work on the file drawer problem
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