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Introduction

This talk will cover two tests for moment inequality models.

The first one is the Conditional Chi-squared (CC) Test for full-vector
inference. This part will be based on:

Gregory Cox and Xiaoxia Shi, “Simple Adaptive Size-Exact Testing for
Full-vector and Subvector Inference in Moment Inequality Models,” the
Review of Economic Studies, forthcoming.

The second one is the subvector CC test for sub-vector inference. This
part will be based on the above paper as well as work-in-progress by
the same authors.

Both tests are based on fully analytical critical values (chi-squared),
and uses no user-chosen tuning parameter.

Both are designed when the number of moment inequalities are finite.
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Introduction

STATA commands that implement the two tests are in progress.

The MATA implementation of the tests have been completed and can
replicate Matlab results.

that is, despite the curious absence of a build-in MATA function for
quadratic programming with inequality constraints (QPIC).

A QPIC function is essential to our implementation – my RA wrote his
own!

Please note his name: Guangyao Zhou, who is applying to your PhD
programs this Fall.

We are (he is) working on packaging it into a STATA command.
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Moment Inequality Models

A moment inequality model:

E[m(Wi , θ0)] ≥ 0,

where m is the vector of moment functions known up to the unknown
θ0, and Wi is the vector of observables.

Used for inference in many areas of economics as a solution to
missing data, multiple equilibria, big unsolvable games, etc.
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Example 1: Interval Outcome Regression

Y ∗ : a latent outcome; X : explanatory variables

YL,YU : observed lower and upper bounds variables, YL ≤ Y ∗ ≤ Y U , a.s.

Model: E[Y ∗ − X ′β|X ] = 0.

Without further information/restriction, this implies that

E[YU − X ′β|X ] ≥ 0

E[X ′β − YL|X ] ≥ 0.

A special case: interval due to selection:

YL = S ∗ Y ∗ + (1− S)yℓ, YU = S ∗ Y ∗ + (1− S)yu.

— S : a binary selection variable; yℓ, yu bounds on support of Y ∗.

Ref. Manski and Tamer (2002), Blundell Gosling Ichimura, and Meghir (2007), Kreider

and Pepper (2007), Kreider, Pepper, Gundersen, and Jolliffe (2012), among others
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Example 2: Multiple Equilibria

Consider a two by two game, where the net profit of player j is

πj = Yj ∗ [X ′
j β + δj ∗ Y−j − εj ], where j = 1, 2,

Yj is a binary action (say entry), Y−j : the action of the other player, and
(ε1, ε2) ∼ f (σ;X1,X2). Let δ1, δ2 < 0.

This model can predict the probabilities of (0, 0), (1, 1), (0, 1) and (1, 0)
as unique equilbria, and that of multiple equilibria {(0, 1), (1, 0)}. Then,

E[(Y1,Y2) = (0, 0)|X ] = p00(β, δ, σ;X )

E[(Y1,Y2) = (1, 1)|X ] = p11(β, δ, σ;X )

E[(Y1,Y2) = (1, 0)|X ] ≤ p10(β, δ, σ;X ) + p{10,01}(β, δ, σ;X )

E[(Y1,Y2) = (0, 1)|X ] ≤ p01(β, δ, σ;X ) + p{10,01}(β, δ, σ;X )

Ref. Ciliberto and Tamer (2009), Kawai and Watanabe (2013), Magnolfi and

Roncoroni (2016), Sheng (2016), He (2017), Fack, Grenet, and He (2019) among others
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Example 3: Revealed Preference Approach to Complex
Games

Difficuties in solving complex games can hinder empirical work. But often,
it is much easier to write down revealed-preference inequalities under
relatively weak assumptions.

Let πj(dj , d−j ,X ; θ) be the payoff function of player j , when her action is
dj and her fellow players’ actions are d−j . Let the observed equilibrium
action profile be (dj)j∈J .

By revealed preference, we have

E[πj(dj ,d−j ,X ; θ)− πj(dj ,d−j ,X ; θ)|Ij ] ≥ 0,

for some dj ̸= dj , and appropriate information set Ij . Appropriate
structural assumptions can replace Ij by a vector of observables.

Holmes (2011),Ho, Ho, and Mortimer (2012), Ho and Pakes (2014), Pakes, Porter, Ho,

and Ishii (2015), Ho and Rosen (2017), Morales, Sheu, Zahler (2019) among others
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Inference by Test Inversion

A moment inequality model typically does not point identify the
parameter. Inference for parameter is typically done by test inversion.

Test Inversion: test H0 : θ0 = θ for all θ ∈ Θ, and collect all those
that are not rejected to form a confidence region for θ0.

Let Tn(θ) be a test statistic and cv(θ, 1− α) be a critical value. The
confidence region is of the form

CSn(1− α) = {θ ∈ Θ : Tn(θ) ≤ cv(θ, 1− α)}.
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Practical Challenges

CSn(1− α) = {θ ∈ Θ : Tn(θ) ≤ cv(θ, 1− α)}.

Need to compute Tn(θ) and cv(θ, 1− α) for a large number of θ
values, and that number increases exponentially with dθ – the
dimension of θ.

State of the art tests in the literature have simulated cv(θ, 1− α),
nontrivial to compute.

They also require tuning parameters that are used to determine which
inequalities are binding.

No easy way to focus on a subvector of θ.

Computational: have to search in the space of the full vector, even if
many of the parameters are nuisance parameters.

Theoretical: projection of the joint confidence set often conservative.
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The Conditional Chi-Squared Test

The Conditional Chi-squared Test

Compare the likelihood ratio statistic to a chi-squared critical value

Degree of freedom is the number of active inequalities

Active Inequalities

Hold with equality at the restricted estimator for the moments

Sample counterpart of binding inequalities
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Desirable Properties

Simple

No tuning parameters
No simulation. Computationally very fast

Adapts to slack inequalities (without a deliberate moment selection
step)

Exact size in the normal model with known variance, and
asymptotically uniformly correct size with asymptotically normal
moments

Competitive size/power to alternatives

Easy subvector inference (if model is linear in nuisance parameters)
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Literature Review

Full-vector Inference: Chernozhukov, Hong and Tamer (2007),
Romano and Shaikh (2008), Andrews and Guggenberger (2009),
Andrews and Soares (2010), Bugni (2010), Canay (2010), Stoye
(2009), Andrews Barwick (2012), Romano, Shaikh and Wolf (2014).
Review papers: Canay and Shaikh (2017) and Molinari (2020) .

Subvector Inference: Kaido and Santos (2014), Kaido, Molinari, and
Stoye (2019), Bugni, Canay, and Shi (2017), Chen, Christensen, and
Tamer (2018), Gafarov (2019), Cho and Russell (2020), Andrews,
Roth, and Pakes (2020).

Xiaoxia Shi Conditional Chi-squared Tests for Moment Inequalities Nov 4, 2022 12



Outline

1 Conditional Chi-Squared Test

2 Subvector Inference

3 Simulations
Full-Vector Test
Subvector Test
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Moment Inequality Models

AEF m̄(θ0) ≤ b

m̄(θ0) =
1

n

n∑
i=1

m(Wi , θ0)

Wi is a vector of observables with distribution F

m(·, θ0) is a known dm-vector of moment functions

θ are unknown parameters

A is a dA × dm known matrix: dA ≥ dm, often dA > dm.

b is a known dA-vector
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Full-Vector Inference

The inequalities may not point identify θ0, and thus typically does not
allow a standard point estimator.

Confidence sets can be constructed for θ0 by inverting the test for

H0 : θ0 = θ

or
H0 : AEF m̄(θ) ≤ b

for all θ ∈ Θ.
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A Conditional Chi-Squared (CC) Test

Let Σ̂(θ) denote an estimator of the variance of
√
nm̄(θ).

Consider the QLR statistic:

T (θ) = min
µ:Aµ≤b

n(m̄(θ)− µ)′Σ̂−1(θ)(m̄(θ)− µ).

Let µ̂ denote the solution to the above minimization problem.

Let Ĵ denote the collection of j ’s for which a′j µ̂ = bj .

a′j denotes the jth row of A and bj denotes the jth element of b

Let r̂ denote the rank of A
Ĵ
, the submatrix of A formed by rows with

indices in Ĵ.

Reject if
T (θ) > χ2

r̂ ,1−α.
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A Simple Example

H0 : Em̄1 ≤ 0 Em̄2 ≤ 0

Σ̂(θ) = Var(
√
nm̄(θ)) = I .

√
nm̄

√
nµ̂

√
nm̄1

√
nm̄2
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Properties

Cox and Shi (2022, RESTUD) show that the CC test has correct level
in finite sample, if the sample moments are normal and the variance
matrix is known.

The CC test has correct uniform asymptotic level, if the sample
moments are asymptotically normal and the variance matrix is
estimated consistently.

The CC test can be slightly conservative, if the model contains no
equality constraint. A simple data-dependent refinement can be done
to make it size correct, but in practice, it works fine without the
refinement.

The test has the adaptive property: inequalities very slack are
automatically disregarded by the test.
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STATA Implementation of the CC Test

We are considering the syntax:

CCTest varlist [if] [in] [, A, b, refined]

varlist contains the variables that are the elements of m(Wi , θ) (at a
given θ) value.

The MATA code computes m̄n(θ), the sample variance matrix, and
implements a QPIC algorithm to compute the test statistic.

The QPIC algorithm reports the identity of the active inequalities,
which then yields r̂ . That is used to obtain the χ2

r̂ critical value.

The QPIC that Guangyao implements is an active-set algorithm.
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Subvector Inference Problem

BEF [m(Wi , θ0) + C (Wi , θ0)δ0] ≤ d(θ0).

δ is a vector of nuisance parameters entering linearly

B is a dB × dm known matrix

m(Wi , θ0) is a dm-vector-valued function, known up to the unknown
θ0,

C (Wi , θ0) is a dm × dδ matrix valued function, known up to the
unknown θ0,

d(θ0) is a dB -vector, known up to the unknown θ0
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Subvector Inference Problem

Hypothesis of interest:

H0 : ∃ δ s.t. BEF [m(Wi , θ) + C (Wi , θ)δ] ≤ d(θ)

The collection of θ’s at which this H0 is not rejected forms a
confidence set for θ0.
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Subvector Test

Let m̄(θ) = n−1
∑n

i=1m(Wi , θ), and C (θ) = n−1
∑n

i=1 C (Wi , θ).

Let Σ̂(θ) be an appropriate variance-estimator (more on this later)

Let Tn(θ) = minµ,δ:B(µ+C(θ)δ)≤d(θ) n(m̄(θ)− µ)′Σ̂(θ)−1(m̄(θ)− µ)

Let (µ̂, δ̂) be the solution to this minimization problem.

Let Ĵ be the indices corresponding to the active inequalities among
B(µ̂+ C (θ)δ̂) ≤ d(θ). And let BĴ be the submatrix of B formed by

the rows of B corresponding to indices in Ĵ.

Let PBĴC(θ) denote the projection matrix onto the space spanned by

the columns of BĴC (θ).
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Subvector Test

Let r̂ = rank((I − PBĴC(θ))BĴ). And let cv(θ, 1− α) = F−1
χ2
r̂
(1− α).

The subvector CC test is simply

φn(α) = 1{Tn(θ) > cv(θ, 1− α)}.
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The Variance-Matrix

BEF [m(Wi , θ0) + C (Wi , θ0)δ0] ≤ d(θ0)

There are two special cases. The appropriate Σ̂(θ) for the special
cases differ from each other and differ from the general case.

Special Case 1: C (Wi , θ) does not depend on Wi (and thus is known

at any given θ and non-random). In this case, Σ̂(θ) is the sample
variance matrix of m(Wi , θ).

Special Case 2: C (Wi , θ) is in fact C (Zi , θ) for a subset of variables in
Wi , denoted Zi , and BEF [m(Wi , θ0) + C (Zi , θ0)δ0|Zi ] ≤ d(θ0) is

known to hold. In this case, Σ̂(θ) should estimate the conditional
variance matrix of

√
nm̄(θ) given {Zi}ni=1.
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The Variance-Matrix, the General Case

BEF [m(Wi , θ0) + C (Wi , θ0)δ0] ≤ d(θ0)

In the general case, Σ̂(θ) should be the sample variance matrix of

m(Wi , θ) + C (Wi , θ)δ̃,

where δ̃ is a preliminary estimator of a point in the identified set of δ0.

Let µ̃ be the (unique) solution to a first-step QPIC problem:

min
µ,δ:B(µ+C(θ)δ)≤d(θ)

n∥m̄ − µ∥2

And let δ̃ be the (unique) solution to minδ:B(µ̃+C(θ)δ)≤d(θ) ∥δ∥
2.
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Stata Implementation of the Subvector CC Test

We are considering the syntax (suppose that dm = M):

subCC test (Z) (x1 x2 ... xM) y1 y2 ... yM [if] [in] [, B, d, C]

Z holds the conditioning variables, if there are any.

xj holds the variables that are the elements of the jth row of C (Wi , θ),
if C (Wi , θ) depends on Wi .

yj is the variable that is the jth element of m(Wi , θ).

d is d(θ).

C is C (Wi , θ) when C (Wi , θ) does not depend on Wi (and thus is in
fact C (θ)).
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Matlab Simulation I: Full Vector Test

We follow Andrews and Barwick’s (2012, AB) design, and consider p
moment inequalities:

H0 : EWj ≤ 0 for j = 1, . . . , p,

where (W1, . . . ,Wp)
′ has mean (µ1, . . . , µp)

′, unit variances, and
correlation matrix Ω.

Consider p = 2, 4, 10 and Ω = ΩNeg,Ωzero,Ωpos from AB.

We calculate

maximum null rejection probability (MNRP)
weighted average power (WAP)
size-corrected weighted average power (SCWAP)
time used for the calculation (Time)
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Alternatives Considered

Andrews and Barwick (2012)

Generalized moment selection to remove moments that are far from
binding

Requires tuning parameter κ

Bootstrap the distribution of an Adjusted QLR statistic

Size-correct using a table for κ and size-correction constants

κ and the size-correction constants chosen to maximize weighted
average power, computed via simulation by AB.

Romano, Shaikh and Wolf (2014)

Construct a level β confidence set for slackness of the inequalities.

Bootstrap the α− β quantile of the distribution of the QLR statistic
(RSW1) and the MAX statistic (RSW2) at the least favorable point
in the confidence set.
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Table: normal distribution, known Ω, n = 100

k = 10 k = 4 k = 2

Test MNRP WAP ScWAP Time MNRP WAP ScWAP Time MNRP WAP ScWAP Time

Ω = ΩNeg

RCC .051 .61 .61 .003 .052 .62 .62 .003 .051 .62 .62 .003
CC .051 .61 .60 .003 .049 .60 .61 .003 .046 .58 .60 .003
AB .046 .53 .55 1.11 .051 .59 .59 1.07 .059 .65 .64 1.40

RSW1 .054 .58 .56 .551 .056 .60 .59 .538 .052 .64 .63 .701
RSW2 .050 .23 .23 .014 .052 .34 .34 .013 .052 .50 .49 .014

Ω = ΩZero

RCC .052 .63 .63 .003 .052 .65 .65 .003 .051 .68 .68 .003
CC .050 .62 .62 .003 .045 .62 .64 .003 .038 .61 .66 .004
AB .043 .65 .66 1.08 .050 .67 .67 1.07 .056 .69 .67 1.39

RSW1 .053 .61 .60 .545 .056 .63 .62 .539 .052 .65 .65 .699
RSW2 .053 .54 .52 .014 .052 .62 .62 .014 .049 .66 .66 .014

Ω = ΩPos

RCC .051 .76 .75 .003 .053 .75 .74 .003 .051 .72 .71 .003
CC .038 .72 .76 .003 .033 .68 .74 .003 .032 .62 .69 .003
AB .042 .78 .80 1.05 .051 .75 .75 1.03 .059 .72 .70 1.34

RSW1 .053 .77 .77 .547 .056 .73 .71 .534 .052 .67 .66 .700
RSW2 .052 .77 .77 .014 .052 .74 .74 .013 .049 .68 .69 .014

Note: CC, RCC, AB, RSW1 and RSW denote the conditional chi-squared test, the refined CC test, the adjusted quasi-likelihood
ratio test with bootstrap critical value in AB, the two-step test in RSW based on the QLR statistic and that based on the Max
statistic, respectively. MNRP, WAP, ScWAP and Time denote maximum null rejection probability, weighted average power, size-
corrected WAP, and average computation time used in seconds in each Monte Carlo simulation. The AB test and the RSW tests
use 1000 and 499 bootstrap draws respectively. The results for the CC, RCC, and RSW2 tests are based on 5000 simulations,
while those for the AB and RSW1 tests are based on 2000 simulations for feasibility.
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Table: normal distribution, estimated Ω, n = 100

k = 10 k = 4 k = 2

Test MNRP WAP ScWAP Time MNRP WAP ScWAP Time MNRP WAP ScWAP Time

Ω = ΩNeg

RCC .074 .63 .54 .003 .058 .63 .61 .004 .053 .62 .61 .003
CC .074 .63 .54 .003 .058 .61 .59 .004 .048 .59 .60 .003
AB .046 .51 .53 1.23 .049 .58 .58 1.56 .056 .64 .63 1.13

RSW1 .054 .55 .53 .569 .053 .58 .58 .736 .050 .62 .62 .533
RSW2 .053 .24 .23 .026 .051 .34 .33 .026 .051 .49 .48 .023

Ω = ΩZero

RCC .069 .65 .59 .003 .053 .66 .65 .004 .051 .68 .68 .003
CC .069 .64 .57 .003 .049 .63 .63 .004 .039 .61 .66 .003
AB .043 .62 .64 1.23 .048 .66 .67 1.55 .053 .68 .67 1.14

RSW1 .052 .58 .58 .570 .053 .62 .61 .732 .050 .64 .64 .541
RSW2 .062 .54 .50 .026 .053 .61 .60 .026 .050 .64 .64 .024

Ω = ΩPos

RCC .056 .77 .75 .003 .054 .75 .74 .004 .051 .71 .71 .003
CC .043 .73 .74 .003 .034 .68 .73 .004 .035 .63 .69 .003
AB .044 .78 .79 1.19 .049 .74 .75 1.50 .055 .71 .70 1.07

RSW1 .053 .76 .75 .566 .053 .71 .71 .731 .052 .66 .66 .528
RSW2 .056 .76 .74 .026 .052 .73 .72 .027 .050 .67 .67 .023

Note: Same as Table 1.
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Full Vector Simulation Takeaways

With Ω known, RCC has exact size and CC is slightly conservative for
small p.

The performance of CC and RCC tests is competitive.

Power curve calculations show that RCC and AB power functions
cross: neither test dominates.

Results are approximately the same with Ω unknown, and when the
moments are non-normal.

AB and RSW-QLR tests are much slower (≈ 200× or ≈ 400×); the
RSW-MAX test is also slower (4 to 8×).
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Matlab Simulation 2: Subvector Test

We consider the logit version of the multinomial demand model in
Gandhi, Lu, and Shi (2019).

The model implies an IV regression model:

E[Y ∗ − X ′θ0 − Z ′
cδ0|Zc ,Ze ] = 0, (1)

where

Y ∗: inverse demand of a product in a market

X : vector of endogenous product/market level variables (e.g. price)

Zc : exogenous/control variables

Ze : excluded instruments

Y ∗ is unobserved because market shares are imprecisely measured.
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Simulation 2: Subvector Test

Using (imprecise) empirical market shares, we construct bounds for
Y ∗: YU and YL, which may not satisfy Y ∗ ∈ [YL,YU ], but satisfy

E[YL|Z ] ≤ E[Y ∗|Z ] ≤ E[YU |Z ]. (2)

Thus we have the conditional moment inequalities

E[YU − X ′θ0|Z ]− Z ′
cδ0 ≥ 0

−E[YL − X ′θ0|Z ] + Z ′
cδ0 ≥ 0. (3)

Using a vector of functions of Z as instrumental functions I(Z ), we
get

E
[(

I(Z)(YU−X ′θ0)
I(Z)(−YL+X ′θ0)

)
|Z

]
−
(

I(Z)Z ′
c

I(Z)Z ′
c

)
δ0 ≥ 0 (4)
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Subvector Test

We consider a scalar X , a scalar Ze , and a dc -dimensional Zc , where
dc = 2, 3, 4, which is also the number of nuisance parameters.

We use an I(Z ) that is 4, 8, 16 dimensional for dc = 2, 3, 4, giving us
8, 16, 32 moment inequalities, respectively.

We simulate a binary choice model with n i.i.d. markets.

We set the DGP in such a way that dc does not affect the ID set of
θ0 which can be numerically calculated.

We use 5000 simulations to calculate the rejection rates in and
outside of the ID set.

We compare to the subvector test in Andrews, Roth, and Pakes
(2021, ARP), which is proposed for the same model.
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Confidence Interval

Table: Average Value, Length, and Computation Time (in seconds) of Confidence Intervals

n = 500 n = 1000

CI Excess Length Time CI Excess Length Time
dc = 2, 8 moment inequalities

sCC [-1.780, -.332] 1.00 0.1 [-1.615, -.433] .736 0.1
ARP Hybrid [-1.998, -.264] 1.29 111 [-1.736, -.395] .895 109

dc = 3, 16 moment inequalities
sCC [-1.852, -.293] 1.11 0.2 [-1.659, -.404] .809 0.1

ARP Hybrid [-2.219, -.123] 1.65 199 [-1.883, -.287] 1.15 120
dc = 4, 32 moment inequalities

sCC [-1.921, -.254] 1.22 0.1 [-1.718, -.366] .906 0.1
ARP Hybrid [-2.596, -.011] 2.14 97 [-2.104, -.180] 1.48 145

Note: The identified set for θ0 is [−1.203,−.757]. The computation times across different (n, dc) cases are
not comparable because they may have been performed by different computers on the computer cluster. The
computation of different tests within each (n, dc) case is always completed on the same computer. Thus the
computation times across tests are comparable.
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Power Curve: dc = 2, and 8 moment inequalities

Figure: Rejection Rates of the sCC and sRCC Tests for H0 : θ0 = θ at a Variety of
θ Values at 2 Sample Sizes (nominal level = 5%)
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(b) dc = 2, n = 1000
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Power Curve: dc = 3 and 16 moment inequalities

Figure: Rejection Rates of the sCC and sRCC Tests for H0 : θ0 = θ at a Variety of
θ Values at 2 Sample Sizes (nominal level = 5%)
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(d) dc = 3, n = 1000
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Power Curve: dc = 4, and 32 moment inequalities

Figure: Rejection Rates of the sCC and sRCC Tests for H0 : θ0 = θ at a Variety of
θ Values at 2 Sample Sizes (nominal level = 5%)
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(e) dc = 4, n = 500
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(f) dc = 4, n = 1000
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Summary

Two extremely simple tests are presented for full-vector and for
subvector inference in moment inequality models.

The tests solve a QPIC problem to obtain the test statistics, and use
chi-squared critical values with data dependent (but trivial to
compute) degrees of freedom.

Work-in-progress Stata commands are also presented.

My RA Guangyao Zhou wrote a MATA function for QPIC problems
that may be of independent interest. He is applying to PhD programs.

Matlab simulations show good computational and power performance
of the proposed tests.

Xiaoxia Shi Conditional Chi-squared Tests for Moment Inequalities Nov 4, 2022 39


	Conditional Chi-Squared Test
	Subvector Inference
	Simulations 
	Full-Vector Test
	Subvector Test


