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Introduction

I Social scientists often seek to evaluate the effects of a certain
event, such as the adoption of a national policy

I Running example

I In such settings, it is common to take advantage of variation
across geographic or other units in the extent of their exposure
to the event
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Introduction

I One heuristic model:

Outcome = Unit effect + Time effect
+ Coefficient (Event× Exposure) + Error

I Event× Exposure is the term of greatest interest, as it
captures the fact that different units are affected differently by
the event because of their different exposure to it

I Finkelstein (2007): time indicators (around the introduction of
Medicare) and a measure of access to private insurance across
states
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More examples

I The heuristic model is usually estimated by the two-way fixed
effects (TWFE) estimator

I Dube and Vargas (2013, equation 1): impact of income shocks
on violence in Colombia

I Dafny et al. (2012, equation 5): impact of a merger on health
insurance premiums

I Nunn and Qian (2011, equation 3): impact of potatoes on Old
World population growth

I Zhang and Zhu (2011, equations 2 and 3): impact of social
effects on contributions to Chinese Wikipedia

I More examples in our paper and survey by de Chaisemartin
and D’Haultfœuille (2021)
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Outline

1. Using the Medicare example to illustrate a model of treatment
effects heterogeneity

2. Discuss some identification challenges due to unmodeled
heterogeneity when there is no group totally unaffected by the
event
2.1 there exists no estimator that is guaranteed to estimate even a

weighted average of unit-specific effects
2.2 TWFE is no exception

3. Solutions: with a group that is totally unaffected by the event
3.1 de Chaisemartin and D’Haultfœuille (2018): estimate an

average effect by replacing the TWFE with an average of
difference-in-differences estimators

3.2 Stata implementations
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Outline

Introduction

A motivating example

The Possibility of Heterogeneous Coefficients
Identification challenge

Solutions
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The effect of Medicare on health care expenditures

I Medicare is a US government program introduced in 1965 to
provide health insurance to all the elderly

I Stylized version of Finkelstein’s (2007) study
I We observe per capita health care expenditures yst on the

elderly for each US state s in each of two time periods t:
I let t = 0 denote the period before the introduction of Medicare
I let t = 1 denote the period after
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Exposure measured by penetration of private insurance

I Medicare had a relatively small effect on rates of insurance
coverage for e.g. a New England state v.s. a Pacific state
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Linear panel data model

I Formally, let xst be the fraction of elderly with health
insurance in a given state s at time t

I xs0 measures the fraction of elderly with private insurance in
state s prior to Medicare

I xs1 as being equal to 1 for all states s due to the universal
coverage afforded by Medicare

I A linear panel data model of health care expenditures – what
we will refer to as the linear model – might then take the form

yst = αs + δt + βxst + εst (linear model)

I The parameter β measures the causal effect of going from no
coverage (xst = 0) to full coverage (xst = 1)



9/36

Linear panel data model

I Formally, let xst be the fraction of elderly with health
insurance in a given state s at time t

I xs0 measures the fraction of elderly with private insurance in
state s prior to Medicare

I xs1 as being equal to 1 for all states s due to the universal
coverage afforded by Medicare

I A linear panel data model of health care expenditures – what
we will refer to as the linear model – might then take the form

yst = αs + δt + βxst + εst (linear model)

I The parameter β measures the causal effect of going from no
coverage (xst = 0) to full coverage (xst = 1)



10/36

Exposure model

I We can rewrite the linear panel data model closer to the
heuristic model

I Since xs1 = 1 for all states, the linear panel data model
implies that

yst = α̃s + δt + β (1− xs0) t+ εst (exposure model)

where we have redefined the state fixed effect as
α̃s = αs + βxs0

I Here (1− xs0) is the observed exposure variable and the term
t is an indicator for whether the observation is from the
post-Medicare period
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TWFE

I The exposure model is

yst = α̃s + δt + β (1− xs0) t+ εst

I We can estimate the unknown coefficient β by a two-way fixed
effects (TWFE) estimator β̂

I Appealing properties:
I if the exposure model holds, and εst is unrelated to xst, then β̂

is unbiased for β
I if further εst are homoskedastic and not clustered / serially

correlated, then β̂ is also efficient
I The exposure model implies that the effect of Medicare on

expenditures is β (1− xs0)
I The per-unit effect of insurance on expenditures is the same

across states
I Effects differ across states only due to different effect of

Medicare on insurance rate: (1− xs0)
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Introduction

A motivating example

The Possibility of Heterogeneous Coefficients
Identification challenge

Solutions
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Heterogeneous coefficients

I Imagine that each state s has its own coefficient βs describing
the effect of insurance on expenditures in the state:

yst = αs + δt + βsxst + εst (heterogeneous model)

I For example, a state with a less healthy uninsured population
may see expenditures rise more in response to a given
expansion in insurance

I Only the least healthy elderly remain uninsured so that the
uninsured population is less healthy in states with greater
insurance penetration prior to Medicare (high xs0 and high βs)
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Behavior of the TWFE estimator

I We are still maintaining that the error term εst is unrelated to
xst as before, so absent changes in the insurance levels xst, all
states would follow identical average trends over time

I How reasonable would the TWFE estimator β̂ be, which is
based on the exposure model that assumes all states have the
same β?

I Recent literature has investigated the expected value of the
TWFE estimator β̂ under common trends assumptions

I Most closely related: Callaway, Goodman-Bacon, and
Sant’Anna (2021)
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Expected value of the TWFE estimator

I Under the heterogeneous model, the expected value of the
two-way fixed effects (TWFE) estimator of the exposure
model, given the data x = {x10, ..., xS0} for states
s ∈ {1, ..., S}, is given by

E
(
β̂|x
)

=
Cov (βs (1− xs0) , (1− xs0))

Var (1− xs0)

claim

I In certain situations, β̂ is still centered on an average of the
true state-level coefficients βs.

I One situation is where βs is unrelated to (i.e., statistically
independent of) (1− xs0)

I Otherwise β̂ is no longer centered around the effect in a
“typical” state
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A numerical example

I Let the coefficient βs vary across states according to the
equation

βs = 1 + 0.5λ− λxs0 (numerical example)

I λ is a parameter that governs how the state-level coefficient βs
is related to the fraction of elderly with insurance before
Medicare

I When λ = 0, the coefficient βs is equal to 1 in all states
regardless of prior insurance penetration

I When λ < 0, states with greater insurance penetration prior to
Medicare have a larger coefficient βs

I Set xs0 = 0.245 + s/100 so that no matter the value of λ, the
average value of βs across all states is always 1
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Illustration
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Intuition

I When λ > 0, states with a larger increase in insurance
coverage, (1− xs0), also have larger coefficients βs

I Following Medicare’s introduction, expenditure therefore grows
more in states with larger (1− xs0) because

I these states experience a larger increase in insurance coverage
I these states experience a larger change in expenditure for a

given change in insurance coverage

I TWFE estimator β̂ conflates them, thus overstating the effect
of insurance on expenditure.

I In the numerical example, this conflation is so severe that the
expected value of the TWFE estimator falls outside the range
of the true coefficients βs
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Identification challenge

I The TWFE estimator β̂ cannot, in general, be guaranteed
I to center around the average βs across the states
I to center around a value inside the range of the true

coefficients [mins βs,maxs βs]

I This phenomenon is not specific to the TWFE estimator
I Without any restriction on coefficients βs and if xs0 ∈ (0, 1)

for all states, then no estimator is guaranteed to center around
a value inside [mins βs,maxs βs] claim
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Proof:1/2

I Consider the special case with S = 2, some xs0’s with
0 < x20 ≤ x10 < 1, β1 < β2, and δ0 known to be zero

I The model for the data is then

ys0 = αs + βs · xs0 + εs0

ys1 = αs + δ1 + βs + εs1

with parameters θ =
(
{(αs, βs)}2s=1, δ1, Fε|X

)
, for Fε|X the

distribution of (εs0, εs1) conditional on xs0
I The distribution of the data we observe is then
FY0,Y1|X (y0, y1 | xs0 = x; θ)
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Proof:1/2

I Given any parameter θ, define the distinct parameter

θ′ =

({(
α
′
s, β

′
s

)}2

s=1
, δ
′
1, Fε|X

)
given by

θ′ =

({(
αs +

∆ · xs0
1− xs0

, βs −
∆

1− xs0

)}2

s=1

, δ1 + ∆, Fε|X

)

for some ∆ > (β2 − β1) · (1− x20) > 0.
I Parameter θ and θ′ are observationally equivalent:
FY0,Y1|X (y0, y1 | xs0 = x; θ′) = FY0,Y1|X (y0, y1 | xs0 = x; θ)

calculations

I For any estimator β̂′ that depends on the data, the expected
value must be the same under θ and θ′

I However, the ∆ is chosen such that
β
′
1 = β1 − ∆

1−x10
< β2 − ∆

1−x20
= β

′
2 < β1 < β2 TWFE
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Introduction

A motivating example

The Possibility of Heterogeneous Coefficients
Identification challenge
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A Difference-in-Differences Perspective

I This identification challenge applies to all estimators
I Consider an exposure-adjusted difference-in-differences

estimator, which provides one possible way to account for
changes in insurance rates and addresses the conflation
problem of TWFE

β̂DID
s,s′ =

(ys1 − ys0)− (ys′1 − ys′0)

(1− xs0)− (1− xs′0)
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A Difference-in-Differences Perspective

I de Chaisemartin and D’Haultfœuille (2018) call β̂DID
s,s′ a

Wald-difference-in-differences estimator because it consists of
the ratio of the difference-in-differences estimator for the
outcome (in our case, expenditures) to the one for exposure
(insurance)

β̂DID
s,s′ =

(ys1 − ys0)− (ys′1 − ys′0)

(1− xs0)− (1− xs′0)

I As with the TWFE estimator, this estimator can be centered
around a value outside the range of coefficients, including in
our numerical example if xs0, xs′0 ∈ (0, 1)
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Solutions

I Impose further structure on the coefficients βs
I For example, suppose that a researcher is willing to posit a

linear relationship between βs and xs0, but does not know the
value of the parameter λ that governs this relationship

I Then substitute the expression for βs to arrive at a linear panel
model whose unknown parameter, λ, can be estimated by a
two-way fixed effects estimator

I Bounds on variation in coefficients and mean of the error term
(Manski and Pepper, 2018)

I More data: a “close to” totally unaffected state (xs′0 = 1)
and/or a control state (xs′0 = xs′1 = 0)
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Solutions

I Suppose that in state s′ Medicare had no effect on insurance
rates, for example because all elderly in the state were insured
prior to Medicare, xs′0 = 1

I Then this β̂DID
s,s′ is unbiased for βs, the true coefficient for the

affected state s

β̂DID
s,s′ =

(ys1 − ys0)− (ys′1 − ys′0)

(1− xs0)

I The presence of an unaffected state brings it closer to the
classical difference-in-differences setting of Card and Krueger,
1994)

I Average of β̂DID
s,s′ is centered around the average of true

coefficients for all affected states s 6= s′.
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Solutions
I It does not repair the TWFE estimator β̂

−1.0 −0.5 0.0 0.5 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

Coefficient heterogeneity (λ)

C
oe

ffi
ci

en
t

Range of coefficients across states
Average coefficient across states
Expected value of difference−in−difference estimator
Expected value of TWFE estimator



29/36

Solutions

I Recent papers propose alternative estimators in a range of
settings

I csdid implements Callaway and Sant’Anna (2021)
I fuzzydid and did_multipledgt implement de Chaisemartin

and D’Haultfœuille (2018, 2020) respectively
I drdid implements Sant’Anna and Zhao (2020)
I eventstudyinteract implements Sun and Abraham (2021)
I among others, more detailed reviews in Freyaldenhoven,

Hansen, Pérez, and Shapiro (2021), de Chaisemartin and
D’Haultfœuille (2022), Roth, Sant’Anna, Bilinski, and Poe
(2022)
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Conclusion

I An active literature tries to interpret the two-way fixed effects
(TWFE) estimator, in the presence of unmodeled coefficient
heterogeneity

I We illustrate some implications for the case where the research
design takes advantage of variation across units (say, US
states) in exposure to some treatment

I TWFE can still fail to estimate the average of the units’
coefficients

I With unmodeled heterogeneity and without totally unaffected
states, there exists no estimator that is guaranteed to estimate
a value inside the true range

I Building on the literature, we note that when there is a totally
unaffected unit, it is possible to estimate an average effect by
an average of difference-in-differences estimators
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Expected value of the TWFE estimator

Claim
Under the heterogeneous model, the expected value of the two-way
fixed effects (TWFE) estimator of the exposure model, given the
data x = {x10, ..., xS0} for states s ∈ {1, ..., S}, is given by

E
(
β̂|x
)

=
Cov (βs (1− xs0) , (1− xs0))

Var (1− xs0)

where Cov (·, ·) and Var (·) denote the sample covariance and
variance, respectively, and the expectation E

(
β̂|x
)
is taken with

respect to the distribution of the errors εst conditional on the data
x = {x10, ..., xS0}. back
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Underidentification

Claim
There exists no estimator β̂′ that can be expressed as a function of
the data {(xs0, ys0, ys1)}Ss=1 and whose expected value is
guaranteed to be contained in [mins βs,maxs βs] for any
heterogeneous model and any {xs0}Ss=1.
back
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Details

We show that the two parameter values θ and θ′ are observationally
equivalent, which means the expected value of β̂′ must be the same
under θ and θ′. To see this, note that the distribution of (ys0, ys1)
conditional on xs0 is the same under θ and θ′:

FY0,Y1|X (y0, y1 | xs0 = x; θ)

= Pr {εs0 ≤ y0 − αs − βs · x, εs1 ≤ y1 − αs − δ1 − βs | xs0 = x; θ}
= Pr {εs0 ≤ y0 − αs − βs · x, εs1 − εs0 ≤ y1 − y0 − δ1 − βs (1− x) |xs0 = x; θ}

= Pr

 εs0 ≤ y0 −
(
αs + ∆·x

1−x

)
−
(
βs − ∆

1−x

)
· x,

εs1 − εs0 ≤ y1 − y0 − (δ1 + ∆)−
(
βs − ∆

1−x

)
(1− x)

∣∣∣∣xs0 = x; θ


= Pr

{
εs0 ≤ y0 − α′s − β′s · x,

εs1 − εs0 ≤ y1 − y0 − δ′1 − β′s (1− x)

∣∣∣∣xs0 = x; θ′
}

=FY0,Y1|X
(
y0, y1 | xs0 = x; θ′

)
.

back
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