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RD Design: score, cutoff, treatment
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I Units receive score (Xi)

I Treatment: assigned if Xi ≥ x0; withheld if Xi < x0



RD Example: Incumbency Effects in Brazil

I Effect of party winning
election t on victory at
election t + 1

I Mayor elections in
Brazil, 1996-2012 (first
past the post)

I Score: party’s margin of
victory at election t

I Cutoff: zero

I Outcome: victory at
election t + 1
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Standard RD Framework: Basics
I n units, i = 1, 2, . . . , n

I Score is Xi, treatment is Di = 1(Xi ≥ x0), with cutoff x0

I Potential outcomes

Y1i: outcome under treatment

Y0i: outcome under control

τi = Y1i − Y0i: individual “treatment effect”

I Observed outcome (Fundamental problem of causal inference)

Yi =

{
Y0i if Xi < x0,
Y1i if Xi ≥ x0.

I Under smoothness,

E[τi | Xi = x0] = lim
x↓x0

E[Yi | Xi = x]− lim
x↑x0

E[Yi | Xi = x]



τ = E[Y1i − Y0i|Xi = x0]︸ ︷︷ ︸
Unobservable

= lim
x↓x0

E[Yi|Xi = x]︸ ︷︷ ︸
Observable

− lim
x↑x0

E[Yi|Xi = x]︸ ︷︷ ︸
Observable

E(Y1|X)

E(Y0|X)
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The RD Parameter: No Heterogeneity
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The RD Parameter: Mild Heterogeneity
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The RD Parameter: Wild Heterogeneity
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RD Design with Multiple Dimensions

Multi-dimensional RD designs: treatment is assigned on the basis of more
than one score and/or more than one cutoff.

Multi-Cutoff RD design:

I Treatment assigned on the basis of single score, but different groups of
units face different cutoff values.

I Example: Mexican conditional cash transfer program Progresa based
eligibility on poverty index; in rural areas, seven different cutoffs per
geographic region.

Multi-Score RD design:

I Treatment assigned on the basis of two or more scores, often all scores
simultaneously must exceed their respective cutoffs.

I Example: in education, scholarships given to students who score
above a given cutoff in both a mathematics and a language exam.



Multi-Dimensional RD Design: Ser Pilo Paga (SPP)

Londoño-Vélez, Rodríguez, and Sánchez (2020) study Ser Pilo Paga (SPP),
a governmental subsidy for post-secondary education in Colombia.

I Treatment: funding of full tuition of a 4-year or 5-year undergraduate
program in any government-certified higher education institution
(HEI)

I Assignment: eligibility depends on both merit and economic need:

I Students must obtain a high grade in Colombia’s national standardized
high school exit exam, SABER 11 (top 9 percent of scores), and

I they must also come from economically disadvantaged families,
measured by a survey-based wealth index, SISBEN (below a
region-specific threshold).

I Sample: students who took the SABER 11 test in the fall of 2014 (first
cohort of beneficiaries of SPP).

I Ignore non-compliance, focus on intention-to-treat effects.



Multi-Cutoff RD: SPP

Subpopulation Cutoff Sample Size Min Xi Max Xi

Area 1 (14 metropolitan areas) 57.21 11,238 .98 83.15
Area 2 (other urban areas) 56.32 10,053 1.78 91.91
Area 3 (rural areas) 40.75 1,841 2.89 84.23
Note: Sample size is number of students in each area facing a unique cutoff. Xi is the
SISBEN wealth score. Sample includes only students with SABER 11 above the cutoff and
non-missing SISBEN.



Cumulative versus Non-cumulative Cutoffs

Running Variable (X)
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Non−Cumulative Cutoffs

Panel III: Units exposed to cutoff c2

Panel II: Units exposed to cutoff c1

Panel I: Units exposed to cutoff c0
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(a) Non-cumulative Cutoffs

Cumulative Cutoffs

Running Variable (X)
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Multicutoff RD Setup
I Unit’s score is Xi

I Cutoff is discrete random variable Ci

P[Ci = c] = pc ∈ [0, 1] for c ∈ {c1, c2, ..., cJ}

fX|C(x|c) is the conditional density of Xi|Ci = c

I Treatment is Di = 1(Xi ≥ Ci)

I Outcomes

Potential Yi(1, c), Yi(0, c) for c ∈ C

Observed Yi = Yi(1,Ci)Di + Yi(0,Ci)(1− Di)

I Cutoffs may affect potential outcomes directly



Multi-Cutoff RD Parameters

I Cutoff-specific effects

I Normalizing and pooling effect

I Far-from-cutoff effects



Exploiting multiple cutoffs: parameters of interest
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Exploiting multiple cutoffs: parameters of interest

Score

O
ut

co
m

e τ(c0, c0)

τ(c1, c1)

µ(x, c0)
µ(x, c1)



Exploiting multiple cutoffs: parameters of interest
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Multi-Cutoff RD Parameters

I Cutoff-specific effects

I Normalizing and pooling effect

 Characterize heterogeneity

I Far-from-cutoff effects
}

Extrapolation

Helpful to assess the external validity of RD parameters



Multi-Cutoff RD: Cutoff-specific Effects

I When cutoffs are non-cumulative, the cutoff-specific effects are
defined in the same way as the single effect in the standard
one-dimensional RD design,

τSRD(c) ≡ E[Yi(1, c)− Yi(0, c)|Xi = c]

for c ∈ C.

I Interpretation analogous to standard single-cutoff RD design.

I Because each τSRD(c) focuses on subpopulation exposed to c, a
cutoff-specific analysis allows researchers to explore heterogeneity of
treatment effect across the subpopulations exposed to different cutoffs.



Multi-Cutoff RD: Normalizing and Pooling Effect

I Normalize score X̃i := Xi − Ci, single cutoff X̃i = 0

I Treat as single-cutoff RD, Di = 1(X̃i ≥ 0)

I Example: score is party’s margin of victory, cutoff is zero

I The RD pooled estimand is

τpool = lim
x↓0
E[Yi | X̃i = x]− lim

x↑0
E[Yi | X̃i = x]

I What parameter is this approach identifying?



Pooled Estimand: Identification

If the CEFs and fX|C(x|c) are continuous at the cutoffs,

τpool =
∑
c∈C

E[Y1i(c)− Y0i(c) | Xi = c,Ci = c]︸ ︷︷ ︸
Cutoff-specific effect

·
fX|C(c|c)P[Ci = c]∑

c∈C
fX|C(c|c)P[Ci = c]︸ ︷︷ ︸

Weight

I Two components

I Average treatment effect when score and cutoff equal take same value c
I Weight determines how much each effect contributes to τpool



Multi-Cutoff RD Analysis: SPP

The normalizing-and-pooling parameter weights cutoff-specific effects
using ω(c) = P[Ci = c|X̃i = 0], estimated for bandwidth h > 0 as

ŵ(c) = P̂(Ci = c|X̃i = 0) =

∑
i 1(Ci = c,−h < X̃i < h)∑

i 1(−h < X̃i < h)
.



Multi-Cutoff RD Effects: SPP
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Multi-Cutoff RD Design for Extrapolation

Difference between TE across subgroups

I Consider two cutoffs c0 < c1.

I For a given value of Xi, difference in ATEs has two components:

I Direct effect: impact of moving a person from one cutoff to the other one.

I Indirect effect: switching cutoffs shifts distribution of individual
characteristics.

I SPP example:

I Treatment is subsidy, score is SISBEN wealth, cutoff differs across
regions, lower wealth cutoff in rural (40) than urban (57) regions.

I Direct effect: subsidy received in rural areas where SISBEN wealth
cutoff is 40 may have larger effect if poorer households face more severe
credit constraints

I Indirect effect: rural areas may have higher proportion of high school
graduates who go to farming instead of college



Multi-Cutoff RD Design for Extrapolation
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Difference between TE across subgroups

I Formally:

τ(c1, c0)− τ(c1, c1) = E[τi|Xi = c1,Ci = c0]− E[τi|Xi = c1,Ci = c1]

=

∫
[τ(c1, c0, u)− τ(c1, c1, u)]︸ ︷︷ ︸

direct effect

fU|X,C(u|c1, c0)dµ

+

∫
τ(c1, c1, u) [fU|X,C(u|c1, c0)− fU|X,C(u|c1, c1)]︸ ︷︷ ︸

indirect effect

dµ



Exploiting multiple cutoffs

I What are the parameters of interest in this context?

I Potential CEFs:

µd(x, c) := E[Ydi|Xi = x,Ci = c], d ∈ {0, 1}

I (Conditional) ATE:

τ(x, c) := E[τi | Xi = x,Ci = c] = µ1(x, c)− µ0(x, c)



Multi-Cutoff RD Extrapolation: Two cutoffs
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Multi-Cutoff RD Extrapolation: Two cutoffs
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Multi-Cutoff RD Extrapolation: Two cutoffs

Score

O
ut

co
m

e

µ0(x, c0)

µ1(x, c0)

µ0(x, c1)

τ(c1, c0) = µ1(c1, c0) − µ0(c1, c0)

µ0(c1, c0) = µ0(c1, c1) + B(c0)

τ(c1, c0)

B(c1)
B(c0)

Go to conclusion. | Go to empirical example.



RD Design with Multiple Scores

I Each unit’s score is a vector denoted by Xi = (X1i,X2i).

I Treatment assignment is Ti = T(Xi).

I Common assignment rule is to require both scores above a cutoff,
leading to T(Xi) = 1(X1i > b1) · 1(X2i > b2) where b1 and b2 denote
the cutoff points along each of the two dimensions.

I Assume potential outcome functions are Yi(1) and Yi(0) (e.g., no
spill-overs in a geographic setting).



RD Design with Multiple Scores

Figure: Example of RD Design With Multiple Scores: Treated and Control Areas
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RD Design with Multiple Scores

Parameters of interest:

I Point-specific effects.

I Normalizing and pooling effect.



RD Design with Multiple Scores: Point-specific
effects

I Generalization of standard Sharp RD parameter,

τSRD(b) = E[Yi(1)− Yi(0)|Xi = b], b ∈ B,

where

At = {(x1, x2) : Ti(Xi) = 1} treated area

Ac = {(x1, x2) : Ti(Xi) = 0} control area

B = {(x1, x2) : (x1, x2) ∈ (bd(At) ∩ bd(Ac))}, with
bd(B) ≡ cl(B) \ int(B)

I In the example,
B = {(x1, x2) : (x1 ≥ 80 and x2 = 60) or (x1 = 80 and x2 ≥ 60)}.



RD Design with Multiple Scores: Point-specific
effects

Identification of Multi-Score RD effect analogous to single score case,

τSRD(b) = lim
x→b;x∈At

E[Yi|Xi = x]− lim
x→b;x∈Ac

E[Yi|Xi = x], b ∈ B,

I Treatment effect at every point b along the boundary identifiable by
observed bivariate regression functions for treated and control groups.

I Multi-Score RD designs generate a family or curve of treatment
effects τSRD(b), one for each boundary point b ∈ B.

I For example, τSRD(80, 70) and τSRD(90, 60).



RD Design with Multiple Scores: Normalizing and
pooling effect

Define running variable the shortest distance to boundary, then pooling all
observations in one-dimensional RD analysis.

I Choose a distance metric, di(·).

I Using di(·), calculate for each i the shortest distance between i’s score
Xi and the boundary, denoted diB.

I Define d̃iB = diB(b)T(X1i,X2i)− diB(b)(1− T(X1i,X2i)) for all i.

I Implement one-dimensional RD analysis pooling all observations,
using d̃iB as running variable and zero as cutoff.



RD Design with Multiple Scores
SPP assignment



RD Design with Multiple Scores
SPP effects



Multi-Score RD Effects: SPP
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RD Design with Multiple Scores: Ongoing

I Estimation: τ̂SRD(b) can be constructed two ways

I Two-dimensional local polynomial of Y on each coordinate separately:
X1 − b1, X2 − b2, (X1 − b1)

2, (X2 − b2)
2,...

I One-dimensional local polynomial of Y on di(b).

Study rates of convergence of each case

I Inference:

I Use strong approximations to make inferences about treatment effect
curve τSRD(b)



Concluding Remarks

I RD designs are observational studies: we are not in control of
treatment assignment

I Must take threats to internal validity seriously

I But also threats to external validity: the identifiable RD parameter not
decided by us

I Multiple dimensional RD designs allow us to explore heterogeneity
and (under additional assumptions) study far-from-cutoff effects

I Both help with bolstering external validity of RD findings



Thanks!

My webpage

https://scholar.princeton.edu/titiunik

RD software at

https://rdpackages.github.io/

https://scholar.princeton.edu/titiunik
https://rdpackages.github.io/


RD Software Packages

https://rdpackages.github.io/

I rdrobust: estimation, inference and graphical presentation using local polynomials, partitioning,

and spacings estimators.

I rdrobust, rdbwselect, rdplot.
I rddensity: discontinuity in density test at cutoff (a.k.a. manipulation testing) using novel local

polynomial density estimator.

I rddensity, rdbwdensity.

I rdmulti: RD plots, estimation, inference, and extrapolation with multiple cutoffs and scores.

I rdmc, rdmcplot, rdms.

I rdpower: power calculations and survey/sample design.

I rdpower, rdsampsi.

I rdlocrand: covariate balance, binomial tests, randomization inference methods (window
selection & inference).

I rdrandinf, rdwinselect, rdsensitivity, rdrbounds.

https://rdpackages.github.io/


For Further Details

I Multi-Cutoff RD designs

I Cattaneo, Keele, Titiunik, Vazquez-Bare, 2016, JOP.
I Cattaneo, Keele, Titiunik, Vazquez-Bare, 2021, JASA.
I Cattaneo, Idrobo, Titiunik, 2023, CUP Elements.

I RD Reviews:

I Cattaneo, Idrobo, Titiunik, 2020, CUP Elements.
I Cattaneo and Titiunik, 2022, Annual Review of Economics.



Thanks!



Effect of Access to Credit on Higher Education

I ACCES program in Colombia, which provides long-term credit to
underprivileged populations to cover tuition of various post-secondary
education programs such as technical or university degrees

I Eligibility for ACCES credit depends on scores in the Saber 11 exam

I A mandatory exam for all students who wish to enter post-secondary
education

I Each semester of every year, the 1,000-quantiles of the Saber 11 score
are calculated among all students who took the exam that semester.
Students receive a score between 1 and 1,000 according to their position
in the distribution (we call them Saber 11 position scores).

I For example, a student whose Saber 11 score is between the top 0.1%
and 0.2% of the distribution in that year and semester, receives a position
score of 2.



Effect of Access to Credit on Higher Education

I Eligibility for ACCES credit depends on scores in the Saber 11 exam,
creating a RD design

I Running variable: Saber 11 position scores

I Treatment: Eligibility to receive ACESS credit

I Outcome: Enrolling in a higher education program

I Cutoff: 850 in 2002-2008, varies by department starting in 2009



Effect of Access to Credit on Higher Education:
Normalized and pooled effect
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Effect of Access to Credit on Higher Education:
Effect at cutoff -850

Saber 11 Score
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Effect of Access to Credit on Higher Education:
Effect at cutoff -571

Saber 11 Score
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Effect of Access to Credit on Higher Education:
Extrapolated Effect at cutoff -650

Saber 11 Score
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RD and Extrapolation Effects of ACCES Loan
Eligibility on Higher Education Enrollment

Robust BC Inference
Estimate Bw Eff. N p-value 95% CI

RD effects
C = −850 0.137 72.9 145 0.007 [ 0.036 , 0.231 ]
C = −571 0.170 135.4 208 0.101 [ −0.038 , 0.429 ]
Pooled 0.125 145.5 514 0.028 [ 0.012 , 0.22 ]

Naive difference
µ`(−650) 0.755 303.4 504
µh(−650) 0.706 137.4 208
Difference 0.049 0.172 [ −0.019 , 0.105 ]

Bias
µ`(−850) 0.525 54.9 54
µh(−850) 0.666 149.5 237
Difference −0.141 0.004 [ −0.273 , −0.053 ]

Extrapolation
τ`(−650) 0.190 0.001 [ 0.079 , 0.334 ]

Note: estimates obtained using local linear regression with MSE-optimal bandwidth and
robust bias-corrected p-values and confidence intervals.



Multi-Cutoff RD Extrapolation: Formalization

Definition (Cutoff Selection Bias)
For c, c′ ∈ C, let B(x, c, c′) = µ0,c(x)− µ0,c′(x). There is bias from
exposure to different cutoffs if B(x, c, c′) 6= 0 for some c, c′ ∈ C, c 6= c′

and for some x ∈X.



Multi-Cutoff RD Extrapolation: Formalization

Assumptions

I Standard continuity assumptions on the relevant regression functions

µ0,c(c) = lim
ε↑0

µc(c + ε) for c ∈ C = {l, h}

µ1,c(c) = lim
ε↓0

µc(c + ε) for c ∈ C = {l, h}

µ0,h(x) = µh(x) for all x ∈ (l, h)

µ1,l(x) = µl(x) for all x ∈ (l, h).

I Main extrapolation assumption

Assumption (Constant Bias)

B(l) = B(x) for all x ∈ (l, h).



Multi-Cutoff RD Extrapolation: Formalization

I The bias at the low cutoff l can be written as

B(l) = lim
ε↑0

µl(l + ε)− µh(l).

I Under constant bias assumption, we have

µ0,l(x̄) = µh(x̄) + B(l),

average control response for l subpopulation equal to average
observed response for h subpopulation, plus difference in average
control responses between both subpopulations at low cutoff l. This
leads to our main identification result.



Multi-Cutoff RD Extrapolation: Formalization

Theorem (Extrapolation)

Under constant bias assumption and standard continuity assumptions in
sharp RD designs, τl(x̄) is identifiable by

τl(x̄) = µl(x̄)− [µh(x̄) + B(l)],

for any point x̄ ∈ (l, h).



Extensions

I Generalization of constant-bias assumption:

B(c1) ≈ B(c0) +

p∑
s=1

1
s!

B(s)(c0) · [c1 − c0]
s

→ account for differences in slopes, curvature, etc.

I Implementation with more than two cutoffs: “fixed effects” model.

µ0(x, cj) = g(x) + θj

I Combining both approaches:

µ0(x, cj) = g(x) + pk(x)′θj
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