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RD Example: Incumbency Effects in Brazil

Effect of party winning
election ¢ on victory at
election t + 1

Mayor elections in
Brazil, 1996-2012 (first
past the post)

Score: party’s margin of
victory at election ¢

Cutoff: zero

Outcome: victory at
election ¢ + 1
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Standard RD Framework: Basics

nunits, i =1,2,...,n
Score is X;, treatment is D; = 1(X; > xo), with cutoff x,

Potential outcomes

Yy;: outcome under treatment
Yy;: outcome under control

7; = Y1; — Yo;: individual “treatment effect”

Observed outcome (Fundamental problem of causal inference)

Yy — Yoi if X; < xp,
L Yli lel Z X0-

Under smoothness,

E[Tl ’ Xi = .X'O] = hmE[Y, ’ Xi = X] - hmE[Y, ‘ Xi = )C]
XX xTxo



T = E[Yli - Y0i|Xi = X()] = hfan[Y”X' = X] - hTHl]E[YAX, = )C]
xdxo XTXo
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The RD Parameter: No Heterogeneity
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The RD Parameter: Mild Heterogeneity
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The RD Parameter: Wild Heterogeneity

2-
E(YwlX)
1-
Treatment
Effect
O - B e B R
_1- l&——  Cutoff
1 1 1 1
-100 -50 Xo 50 100

Score (X)



RD Design with Multiple Dimensions

Multi-dimensional RD designs: treatment is assigned on the basis of more
than one score and/or more than one cutoff.

Multi-Cutoff RD design:

» Treatment assigned on the basis of single score, but different groups of
units face different cutoff values.

» Example: Mexican conditional cash transfer program Progresa based
eligibility on poverty index; in rural areas, seven different cutoffs per
geographic region.

Multi-Score RD design:

» Treatment assigned on the basis of two or more scores, often all scores
simultaneously must exceed their respective cutoffs.

» Example: in education, scholarships given to students who score
above a given cutoff in both a mathematics and a language exam.



Multi-Dimensional RD Design: Ser Pilo Paga (SPP)

Londofio-Vélez, Rodriguez, and Sanchez (2020) study Ser Pilo Paga (SPP),
a governmental subsidy for post-secondary education in Colombia.

>

Treatment: funding of full tuition of a 4-year or 5-year undergraduate
program in any government-certified higher education institution
(HED)

Assignment: eligibility depends on both merit and economic need:

> Students must obtain a high grade in Colombia’s national standardized
high school exit exam, SABER 11 (top 9 percent of scores), and

» they must also come from economically disadvantaged families,
measured by a survey-based wealth index, SISBEN (below a
region-specific threshold).

Sample: students who took the SABER 11 test in the fall of 2014 (first
cohort of beneficiaries of SPP).

Ignore non-compliance, focus on intention-to-treat effects.



Multi-Cutoff RD: SPP

Subpopulation Cutoff Sample Size MinX; MaxX;
Area 1 (14 metropolitan areas) 57.21 11,238 98 83.15
Area 2 (other urban areas) 56.32 10,053 1.78 91.91
Area 3 (rural areas) 40.75 1,841 2.89 84.23

Note: Sample size is number of students in each area facing a unique cutoff. X; is the
SISBEN wealth score. Sample includes only students with SABER 11 above the cutoff and
non-missing SISBEN.



Cumulative versus Non-cumulative Cutoffs

Treatment A Treatment B
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Multicutoff RD Setup

Unit’s score is X;

Cutoff is discrete random variable C;

P[C; =c] =p. € [0,1] forc € {c1,c2,...,cs}

fx|c(x|c) is the conditional density of X;|C; = ¢

Treatment is D; = 1(X; > C;)

Outcomes

Potential Y;(1,¢), ¥;(0,c) forc € C
Observed ¥; = Yi(1, C))D; + Y:(0, C)(1 — Dy)

Cutoffs may affect potential outcomes directly



Multi-Cutoff RD Parameters

> Cutoff-specific effects
» Normalizing and pooling effect

» Far-from-cutoff effects



Exploiting multiple cutoffs: parameters of interest
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Exploiting multiple cutoffs: parameters of interest
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Multi-Cutoff RD Parameters

> Cutoff-specific effects

» Normalizing and pooling effect Characterize heterogeneity

» Far-from-cutoff effects } Extrapolation

Helpful to assess the external validity of RD parameters



Multi-Cutoff RD: Cutoff-specific Effects

» When cutoffs are non-cumulative, the cutoff-specific effects are
defined in the same way as the single effect in the standard
one-dimensional RD design,

Tsro(€) = E[Y;(1,¢) — Yi(0, ¢)|X; = ]
forc € C.

> Interpretation analogous to standard single-cutoff RD design.

> Because each 7szp(c) focuses on subpopulation exposed to ¢, a
cutoff-specific analysis allows researchers to explore heterogeneity of
treatment effect across the subpopulations exposed to different cutoffs.



Multi-Cutoff RD: Normalizing and Pooling Effect

» Normalize score X; := X; — C;, single cutoff X, =0
> Treat as single-cutoff RD, D; = 1(X; > 0)

> Example: score is party’s margin of victory, cutoff is zero

» The RD pooled estimand is

Tpool = l)gglE[Yl | 5(1' = x] — l)glol]E[Yl ‘ 5(1' = X]

» What parameter is this approach identifying?



Pooled Estimand: Identification

If the CEFs and fy|c(x|c) are continuous at the cutoffs,

fxie(c|e)P[Ci = ¢]
Tpool = EY[C—Y,'C X[:C,Ci:C'
= 2 BID Tl J'S fucteloplc; = 4
Cutoff-specific effect cel
Weight

» Two components

» Average treatment effect when score and cutoff equal take same value ¢

» Weight determines how much each effect contributes to Tj4;



Multi-Cutoff RD Analysis: SPP

R Snippet 5.1

> out <-— rdmc(data$5padie5_any, data$sisben_score, datafcutoff)

Cutoff-specific RD estimation with robust bias-corrected inference

Cutoff Coef. P-value 95% CI hl hr Nh  Weight
-57.210 0.346 0.000 0.269 0.452 5.083 5.083 2495 0.384
-56.320 0.203 0.000 0.112 0.282 10.605 10.605 3471 0.534
-40.750 0.209 0.112 -0.042 0.408 8.790 8.790 531 0.082
Weighted 0.259 0.000 0.198 0.319 . . 6497
Pooled 0.269 0.000 0.221 0.328 9.041 9.041 7785

The normalizing-and-pooling parameter weights cutoff-specific effects
using w(c) = P[C; = ¢|X; = 0], estimated for bandwidth 2 > 0 as

w(e) = B(C;

Ci=c|X;=0)=

S I(Ci=c,—h < X; < h)

S 1(—=h < X; < h)




Multi-Cutoff RD Effects: SPP

Regression function fit

Regression function fit
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Multi-Cutoff RD Design for Extrapolation



Multi-Cutoff RD Design for Extrapolation

Difference between TE across subgroups

» Consider two cutoffs ¢y < cy.
» For a given value of X;, difference in ATEs has two components:

» Direct effect: impact of moving a person from one cutoff to the other one.

» Indirect effect: switching cutoffs shifts distribution of individual
characteristics.

» SPP example:

» Treatment is subsidy, score is SISBEN wealth, cutoff differs across
regions, lower wealth cutoff in rural (40) than urban (57) regions.

» Direct effect: subsidy received in rural areas where SISBEN wealth
cutoff is 40 may have larger effect if poorer households face more severe
credit constraints

» Indirect effect: rural areas may have higher proportion of high school
graduates who go to farming instead of college



Difference between TE across subgroups

» Formally:

T(C],C()) — T(Cl,Cl) = E[Ti|X,' = Cl,C,' = C()] — E[T,|X, = Cl,Ci = Cl]

= / [T(c1,co,u) — T(('l.(‘l.u)}fU|X’c(u|cl,co)d,u

direct effect

+ /T(Cl,chu) [fU\x,C(M\ChCo) _.fU\XﬁC(”‘ChCI)] dp

indirect effect




Exploiting multiple cutoffs

» What are the parameters of interest in this context?
» Potential CEFs:
pa(x,¢) = E[Y4X; = x,C; = ], de{0,1}

» (Conditional) ATE:

T(x,¢) =E[r | Xi = x,Ci = ¢] = 1 (x,¢) — polx, )



Multi-Cutoff RD Extrapolation: Two cutoffs
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Multi-Cutoff RD Extrapolation: Two cutoffs

i H(Xv Co)
i H(Xv Cl)

: (cy, co)
T(Co: Co)

Outcome

T(CL Cl)

—

Score



Multi-Cutoff RD Extrapolation: Two cutoffs
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Multi-Cutoff RD Extrapolation: Two cutoffs
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Multi-Cutoff RD Extrapolation: Two cutoffs
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Multi-Cutoff RD Extrapolation: Two cutoffs
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Go to conclusion. | Go to empirical example.



RD Design with Multiple Scores

Each unit’s score is a vector denoted by X; = (Xj;, X5;).
Treatment assignment is 7; = T/(X;).

Common assignment rule is to require both scores above a cutoff,
leading to T(X;) = 1(Xy; > by) - 1(Xa; > b,) where by and b, denote
the cutoff points along each of the two dimensions.

Assume potential outcome functions are Y;(1) and Y;(0) (e.g., no
spill-overs in a geographic setting).



RD Design with Multiple Scores

Figure: Example of RD Design With Multiple Scores: Treated and Control Areas
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RD Design with Multiple Scores

Parameters of interest:
» Point-specific effects.

» Normalizing and pooling effect.



RD Design with Multiple Scores: Point-specific
effects

> Generalization of standard Sharp RD parameter,
Tseo(b) = E[Yi(1) — ¥;(0)[X; =b],  be B,
where
A = {(x1,x2) : T;(X;) = 1} treated area
A = {(x1,x2) : T;(X;) = 0} control area

B = {(x1,%2) : (x1,%2) € (bA(A;) Nbd(A,))}, with
bd(B) = c1(B) \ int(B)

» In the example,
B = {(x1,x2) : (x; > 80 and x, = 60) or (x; = 80 and x, > 60)}.



RD Design with Multiple Scores: Point-specific
effects

Identification of Multi-Score RD effect analogous to single score case,

Tsrp(b) = lim  E[YX;=x] — lim E[Y|X; =x], b € B,

x—b;xe A, x—b;xe A,

> Treatment effect at every point b along the boundary identifiable by
observed bivariate regression functions for treated and control groups.

» Multi-Score RD designs generate a family or curve of treatment
effects 7szp (b), one for each boundary point b € 3.

» For example, Tszp(80,70) and 75z (90, 60).



RD Design with Multiple Scores: Normalizing and
pooling effect

Define running variable the shortest distance to boundary, then pooling all
observations in one-dimensional RD analysis.

> Choose a distance metric, d;(-).

> Using d;(-), calculate for each i the shortest distance between i’s score
X, and the boundary, denoted d;3.

» Define gli@ = d,’gg(b)T(X]i,le') - d,' (b)(l — T(X]i,le')) for all i.

> Implement one-dimensional RD analysis pooling all observations,
using d;p as running variable and zero as cutoff.



Sisben score

RD Design with Multiple Scores
SPP assignment
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RD Design with Multiple Scores
SPP effects

R Snippet 5.5

> cvec <- c(0, 30, 0)

> cvec2 <- c(0, 0, BO)

> out <- rdms(Y = data$spadies_any, X = data$running_sisben, X2 = data$running saberii
+ zvar = data$tr, C = cvec, C2 = cvec2)

Cutoff Coef. P-value 98% CI hl hr Nh
(0.00,0.00) 0.323 0.000 0.283 0.379 30.701 30.701 41771
(30.00,0.00) 0.315 0.000 0.286 0.356 42.582 42,582 71579

(0.00,50.00) 0.228 0.000 0.144 0.351 27.762  27.762 5067




Multi-Score RD Effects: SPP
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RD Design with Multiple Scores: Ongoing

> Estimation: Tszp(b) can be constructed two ways

» Two-dimensional local polynomial of ¥ on each coordinate separately:
Xy — b1, Xo — by, (X1 — by)% (Xo — b)),

» One-dimensional local polynomial of ¥ on d;(b).

Study rates of convergence of each case

» Inference:

» Use strong approximations to make inferences about treatment effect
curve Tggp (b)



Concluding Remarks

RD designs are observational studies: we are not in control of
treatment assignment

Must take threats to internal validity seriously

But also threats to external validity: the identifiable RD parameter not
decided by us

Multiple dimensional RD designs allow us to explore heterogeneity
and (under additional assumptions) study far-from-cutoff effects

Both help with bolstering external validity of RD findings



Thanks!

My webpage

https://scholar.princeton.edu/titiunik

RD software at

https://rdpackages.github.io/


https://scholar.princeton.edu/titiunik
https://rdpackages.github.io/

RD Software Packages

https://rdpackages.github.io/
rdrobust: estimation, inference and graphical presentation using local polynomials, partitioning,
and spacings estimators.

» rdrobust, rdbwselect, rdplot.

rddensity: discontinuity in density test at cutoff (a.k.a. manipulation testing) using novel local
polynomial density estimator.

» rddensity, rdbwdensity.

rdmulti: RD plots, estimation, inference, and extrapolation with multiple cutoffs and scores.
» rdmc, rdmcplot, rdms.

rdpower: power calculations and survey/sample design.
» rdpower, rdsampsi.

rdlocrand: covariate balance, binomial tests, randomization inference methods (window
selection & inference).

» rdrandinf, rdwinselect, rdsensitivity, rdrbounds.


https://rdpackages.github.io/

For Further Details

» Multi-Cutoff RD designs

» Cattaneo, Keele, Titiunik, Vazquez-Bare, 2016, JOP.
» Cattaneo, Keele, Titiunik, Vazquez-Bare, 2021, JASA.
» Cattaneo, Idrobo, Titiunik, 2023, CUP Elements.

» RD Reviews:

» Cattaneo, Idrobo, Titiunik, 2020, CUP Elements.

» Cattaneo and Titiunik, 2022, Annual Review of Economics.



Thanks!



Effect of Access to Credit on Higher Education

» ACCES program in Colombia, which provides long-term credit to
underprivileged populations to cover tuition of various post-secondary
education programs such as technical or university degrees

> Eligibility for ACCES credit depends on scores in the Saber 11 exam

» A mandatory exam for all students who wish to enter post-secondary
education

» Each semester of every year, the 1,000-quantiles of the Saber 11 score
are calculated among all students who took the exam that semester.
Students receive a score between 1 and 1,000 according to their position
in the distribution (we call them Saber 11 position scores).

» For example, a student whose Saber 11 score is between the top 0.1%
and 0.2% of the distribution in that year and semester, receives a position
score of 2.



Effect of Access to Credit on Higher Education

> Eligibility for ACCES credit depends on scores in the Saber 11 exam,
creating a RD design

» Running variable: Saber 11 position scores
» Treatment: Eligibility to receive ACESS credit
» Outcome: Enrolling in a higher education program

» Cutoff: 850 in 2002-2008, varies by department starting in 2009



Effect of Access to Credit on Higher Education:
Normalized and pooled effect
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Effect of Access to Credit on Higher Education:
Effect at cutoff -850
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Effect of Access to Credit on Higher Education:
Effect at cutoff -571
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Effect of Access to Credit on Higher Education:
Extrapolated Effect at cutoff -650
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RD and Extrapolation Effects of ACCES Loan
Eligibility on Higher Education Enrollment

Robust BC Inference
Estimate Bw Eff. N p-value 95% CI1

RD effects

C = -850 0.137 72.9 145 0.007 [0.036, 0.231 ]

C=-571 0.170 1354 208 0.101 [ —0.038, 0.429 ]

Pooled 0.125 145.5 514 0.028 [0.012, 0.22]
Naive difference

1e(—650) 0.755 303.4 504

1n(—650) 0.706 1374 208

Difference 0.049 0.172 [ —0.019, 0.105 ]
Bias

1e(—850) 0.525 54.9 54

1n(—850) 0.666 149.5 237

Difference —0.141 0.004 [—-0.273, —0.053 ]
Extrapolation

70(—650) 0.190 0.001 [0.079, 0.334]

Note: estimates obtained using local linear regression with MSE-optimal bandwidth and
robust bias-corrected p-values and confidence intervals.



Multi-Cutoff RD Extrapolation: Formalization

Definition (Cutoff Selection Bias)

Forc,c’ € C,let B(x, ¢, c’) = po.(x) — o (x). There is bias from
exposure to different cutoffs if B(x, ¢, ") # 0 for some ¢, ¢’ € C, ¢ # ¢
and for some x € X.



Multi-Cutoff RD Extrapolation: Formalization

Assumptions

» Standard continuity assumptions on the relevant regression functions

li%l,uc(c—i—g) forc e C={(,h}

)
pc(c) = h?ol’uc(c—i_ g) forceC={(h}
) = us(x) forallx € ((,R)
) = pe(x) forallx € ((,h).

» Main extrapolation assumption

Assumption (Constant Bias)
B(l) = B(x) forall x € ((,h).



Multi-Cutoff RD Extrapolation: Formalization

» The bias at the low cutoff £ can be written as

B(() = lsi%l,u/([ +e) — pa(l).

» Under constant bias assumption, we have
o, () = 14 () + B(C),

average control response for ' subpopulation equal to average
observed response for /2 subpopulation, plus difference in average
control responses between both subpopulations at low cutoff £. This
leads to our main identification result.



Multi-Cutoff RD Extrapolation: Formalization

Theorem (Extrapolation)

Under constant bias assumption and standard continuity assumptions in
sharp RD designs, 7;(x) is identifiable by

(%) = pe(x) = [ () + B(0)],

for any pointx € ([, k).



Extensions

» Generalization of constant-bias assumption:

Bler) = Bleo) + 32 B o) - ey — co]

s=1

— account for differences in slopes, curvature, etc.

» Implementation with more than two cutoffs: “fixed effects” model.

po(x, ¢;) = g(x) +0;

» Combining both approaches:

to(x, ¢;) = g(x) + pr(x)'0;



	Extrapolating RD Treatment Effects using Multiple Cutoffs
	Empirical Application

