Analysis and interpretation of multidimensional regression discontinuity designs

Rocío Titiunik

Professor Department of Politics Princeton University

Joint with Matias Cattaneo, Luke Keele and Gonzalo Vazquez-Bare

Prepared for 2022 Stata Economics Virtual Symposium

November 3, 2022

RD Design: score, cutoff, treatment

RD Example: Incumbency Effects in Brazil

- Effect of party winning election t on victory at election t + 1
- Mayor elections in Brazil, 1996-2012 (first past the post)
- Score: party's margin of victory at election t
- Cutoff: zero
- Outcome: victory at election t + 1

Incumbent Party's Margin of Victory at t

Standard RD Framework: Basics

- *n* units, i = 1, 2, ..., n
- Score is X_i , treatment is $D_i = \mathbb{1}(X_i \ge x_0)$, with cutoff x_0
- Potential outcomes
 - Y_{1i} : outcome under treatment
 - Y_{0i} : outcome under control
 - $\tau_i = Y_{1i} Y_{0i}$: individual "treatment effect"
- Observed outcome (Fundamental problem of causal inference)

$$Y_i = \begin{cases} Y_{0i} & \text{if } X_i < x_0, \\ Y_{1i} & \text{if } X_i \ge x_0. \end{cases}$$

Under smoothness,

$$\mathbb{E}[\tau_i \mid X_i = x_0] = \lim_{x \downarrow x_0} \mathbb{E}[Y_i \mid X_i = x] - \lim_{x \uparrow x_0} \mathbb{E}[Y_i \mid X_i = x]$$

The RD Parameter: No Heterogeneity

The RD Parameter: Mild Heterogeneity

The RD Parameter: Wild Heterogeneity

RD Design with Multiple Dimensions

Multi-dimensional RD designs: treatment is assigned on the basis of more than one score and/or more than one cutoff.

Multi-Cutoff RD design:

- Treatment assigned on the basis of single score, but different groups of units face different cutoff values.
- Example: Mexican conditional cash transfer program Progresa based eligibility on poverty index; in rural areas, seven different cutoffs per geographic region.

Multi-Score RD design:

- Treatment assigned on the basis of two or more scores, often all scores simultaneously must exceed their respective cutoffs.
- Example: in education, scholarships given to students who score above a given cutoff in both a mathematics and a language exam.

Multi-Dimensional RD Design: Ser Pilo Paga (SPP)

Londoño-Vélez, Rodríguez, and Sánchez (2020) study Ser Pilo Paga (SPP), a governmental subsidy for post-secondary education in Colombia.

- Treatment: funding of full tuition of a 4-year or 5-year undergraduate program in any government-certified higher education institution (HEI)
- Assignment: eligibility depends on both merit and economic need:
 - Students must obtain a high grade in Colombia's national standardized high school exit exam, SABER 11 (top 9 percent of scores), and
 - they must also come from economically disadvantaged families, measured by a survey-based wealth index, SISBEN (below a region-specific threshold).
- Sample: students who took the SABER 11 test in the fall of 2014 (first cohort of beneficiaries of SPP).
- ► Ignore non-compliance, focus on intention-to-treat effects.

Multi-Cutoff RD: SPP

Subpopulation	Cutoff	Sample Size	$\operatorname{Min} X_i$	$\operatorname{Max} X_i$
Area 1 (14 metropolitan areas)	57.21	11,238	.98	83.15
Area 2 (other urban areas)	56.32	10,053	1.78	91.91
Area 3 (rural areas)	40.75	1,841	2.89	84.23

Note: Sample size is number of students in each area facing a unique cutoff. X_i is the SISBEN wealth score. Sample includes only students with SABER 11 above the cutoff and non-missing SISBEN.

Cumulative versus Non-cumulative Cutoffs

(a) Non-cumulative Cutoffs

(b) Cumulative Cutoffs

Multicutoff RD Setup

- Unit's score is X_i
- Cutoff is discrete random variable C_i

 $\mathbb{P}[C_i = c] = p_c \in [0, 1] \text{ for } c \in \{c_1, c_2, ..., c_J\}$ $f_{X|C}(x|c) \text{ is the conditional density of } X_i|C_i = c$

• Treatment is
$$D_i = \mathbb{1}(X_i \ge C_i)$$

Outcomes

Potential $Y_i(1, c)$, $Y_i(0, c)$ for $c \in C$ Observed $Y_i = Y_i(1, C_i)D_i + Y_i(0, C_i)(1 - D_i)$

Cutoffs may affect potential outcomes directly

Multi-Cutoff RD Parameters

- Cutoff-specific effects
- Normalizing and pooling effect
- ► Far-from-cutoff effects

Exploiting multiple cutoffs: parameters of interest

Exploiting multiple cutoffs: parameters of interest

Exploiting multiple cutoffs: parameters of interest

Multi-Cutoff RD Parameters

Cutoff-specific effects)	
Normalizing and pooling effect	$\left\{ \right.$	Characterize heterogeneity
Far-from-cutoff effects	}	Extrapolation

Helpful to assess the external validity of RD parameters

Multi-Cutoff RD: Cutoff-specific Effects

When cutoffs are non-cumulative, the cutoff-specific effects are defined in the same way as the single effect in the standard one-dimensional RD design,

$$au_{ ext{SRD}}(c) \equiv \mathbb{E}[Y_i(1,c) - Y_i(0,c)|X_i = c]$$

for $c \in \mathcal{C}$.

- ► Interpretation analogous to standard single-cutoff RD design.
- ▶ Because each \(\tau_{\mathbb{SRD}}(c)\) focuses on subpopulation exposed to \(c\), a cutoff-specific analysis allows researchers to explore heterogeneity of treatment effect across the subpopulations exposed to different cutoffs.

Multi-Cutoff RD: Normalizing and Pooling Effect

- Normalize score $\tilde{X}_i := X_i C_i$, single cutoff $\tilde{X}_i = 0$
- Treat as single-cutoff RD, $D_i = \mathbb{1}(\tilde{X}_i \ge 0)$
- Example: score is party's margin of victory, cutoff is zero
- The RD pooled estimand is

$$\tau_{pool} = \lim_{x \downarrow 0} \mathbb{E}[Y_i \mid \tilde{X}_i = x] - \lim_{x \uparrow 0} \mathbb{E}[Y_i \mid \tilde{X}_i = x]$$

What parameter is this approach identifying?

Pooled Estimand: Identification

If the CEFs and $f_{X|C}(x|c)$ are continuous at the cutoffs,

$$\tau_{pool} = \sum_{c \in \mathcal{C}} \underbrace{\mathbb{E}[Y_{1i}(c) - Y_{0i}(c) \mid X_i = c, C_i = c]}_{\text{Cutoff-specific effect}} \cdot \underbrace{\frac{f_{X|C}(c|c)\mathbb{P}[C_i = c]}{\sum\limits_{c \in \mathcal{C}} f_{X|C}(c|c)\mathbb{P}[C_i = c]}}_{\text{Weight}}$$

- Average treatment effect when score and cutoff equal take same value c
- Weight determines how much each effect contributes to τ_{pool}

Multi-Cutoff RD Analysis: SPP

			H	8 Snippet	5.1				
> out <- rdmc(data\$spadies_any, data\$sisben_score, data\$cutoff)									
Cutoff-specific RD estimation with robust bias-corrected inference									
Cutoff	Coef.	P-value	95	% CI	hl	hr	Nh	Weight	
-57.210	0.346	0.000	0.269	0.452	5.083	5.083	2495	0.384	
-56.320	0.203	0.000	0.112	0.282	10.605	10.605	3471	0.534	
-40.750	0.209	0.112	-0.042	0.408	8.790	8.790	531	0.082	
Weighted	0.259	0.000	0.198	0.319			6497		
Pooled	0.269	0.000	0.221	0.328	9.041	9.041	7785		

The normalizing-and-pooling parameter weights cutoff-specific effects using $\omega(c) = \mathbb{P}[C_i = c | \tilde{X}_i = 0]$, estimated for bandwidth h > 0 as

$$\hat{w}(c) = \hat{\mathbb{P}}(C_i = c | \tilde{X}_i = 0) = \frac{\sum_i \mathbb{1}(C_i = c, -h < \tilde{X}_i < h)}{\sum_i \mathbb{1}(-h < \tilde{X}_i < h)}$$

Multi-Cutoff RD Effects: SPP

(a) Cutoff 57.210

(c) Cutoff 40.750

20 40 Polynomial fit of order 4

(b) Cutoff 56.320

(d) Normalizing-and-pooling

Multi-Cutoff RD Design for Extrapolation

Multi-Cutoff RD Design for Extrapolation

Difference between TE across subgroups

- Consider two cutoffs $c_0 < c_1$.
- For a given value of X_i , difference in ATEs has two components:
 - Direct effect: impact of moving a person from one cutoff to the other one.
 - Indirect effect: switching cutoffs shifts distribution of individual characteristics.
- SPP example:
 - Treatment is subsidy, score is SISBEN wealth, cutoff differs across regions, lower wealth cutoff in rural (40) than urban (57) regions.
 - Direct effect: subsidy received in rural areas where SISBEN wealth cutoff is 40 may have larger effect if poorer households face more severe credit constraints
 - Indirect effect: rural areas may have higher proportion of high school graduates who go to farming instead of college

Difference between TE across subgroups

► Formally:

$$\begin{aligned} \tau(c_1, c_0) - \tau(c_1, c_1) &= \mathbb{E}[\tau_i | X_i = c_1, C_i = c_0] - \mathbb{E}[\tau_i | X_i = c_1, C_i = c_1] \\ &= \int \underbrace{[\tau(c_1, c_0, u) - \tau(c_1, c_1, u)]}_{\text{direct effect}} f_{U|X,C}(u|c_1, c_0) d\mu \\ &+ \int \tau(c_1, c_1, u) \underbrace{[f_{U|X,C}(u|c_1, c_0) - f_{U|X,C}(u|c_1, c_1)]}_{\text{indirect effect}} d\mu \end{aligned}$$

Exploiting multiple cutoffs

▶ What are the parameters of interest in this context?

Potential CEFs:

$$\mu_d(x,c) := \mathbb{E}[Y_{di}|X_i = x, C_i = c], \qquad d \in \{0,1\}$$

► (Conditional) ATE:

$$\tau(x,c) := \mathbb{E}[\tau_i \mid X_i = x, C_i = c] = \mu_1(x,c) - \mu_0(x,c)$$

Score

Go to conclusion. | Go to empirical example.

RD Design with Multiple Scores

- Each unit's score is a vector denoted by $\mathbf{X}_i = (X_{1i}, X_{2i})$.
- Treatment assignment is $T_i = T(\mathbf{X}_i)$.
- Common assignment rule is to require both scores above a cutoff, leading to $T(\mathbf{X}_i) = \mathbb{1}(X_{1i} > b_1) \cdot \mathbb{1}(X_{2i} > b_2)$ where b_1 and b_2 denote the cutoff points along each of the two dimensions.
- Assume potential outcome functions are $Y_i(1)$ and $Y_i(0)$ (e.g., no spill-overs in a geographic setting).

RD Design with Multiple Scores

Figure: Example of RD Design With Multiple Scores: Treated and Control Areas

RD Design with Multiple Scores

Parameters of interest:

- ► Point-specific effects.
- Normalizing and pooling effect.

RD Design with Multiple Scores: Point-specific effects

Generalization of standard Sharp RD parameter,

$$au_{\text{SRD}}(\mathbf{b}) = \mathbb{E}[Y_i(1) - Y_i(0) | \mathbf{X}_i = \mathbf{b}], \qquad \mathbf{b} \in \mathcal{B},$$

where

$$\begin{aligned} \mathcal{A}_t &= \{(x_1, x_2) : T_i(\mathbf{X}_i) = 1\} \text{ treated area} \\ \mathcal{A}_c &= \{(x_1, x_2) : T_i(\mathbf{X}_i) = 0\} \text{ control area} \\ \mathcal{B} &= \{(x_1, x_2) : (x_1, x_2) \in (\mathrm{bd}(\mathcal{A}_t) \cap \mathrm{bd}(\mathcal{A}_c))\}, \text{ with } \\ \mathrm{bd}(B) &\equiv \mathrm{cl}(B) \setminus \mathrm{int}(B) \end{aligned}$$

• In the example, $\mathcal{B} = \{(x_1, x_2) : (x_1 \ge 80 \text{ and } x_2 = 60) \text{ or } (x_1 = 80 \text{ and } x_2 \ge 60) \}.$

RD Design with Multiple Scores: Point-specific effects

Identification of Multi-Score RD effect analogous to single score case,

$$\tau_{\text{SRD}}(\mathbf{b}) = \lim_{\mathbf{x} \to \mathbf{b}; \mathbf{x} \in \mathcal{A}_t} \mathbb{E}[Y_i | \mathbf{X}_i = \mathbf{x}] - \lim_{\mathbf{x} \to \mathbf{b}; \mathbf{x} \in \mathcal{A}_c} \mathbb{E}[Y_i | \mathbf{X}_i = \mathbf{x}], \qquad \mathbf{b} \in \mathcal{B},$$

- Treatment effect at every point b along the boundary identifiable by observed bivariate regression functions for treated and control groups.
- ► Multi-Score RD designs generate a family or curve of treatment effects $\tau_{SRD}(\mathbf{b})$, one for each boundary point $\mathbf{b} \in \mathcal{B}$.
- For example, $\tau_{SRD}(80, 70)$ and $\tau_{SRD}(90, 60)$.

RD Design with Multiple Scores: Normalizing and pooling effect

Define running variable the shortest distance to boundary, then pooling all observations in one-dimensional RD analysis.

- Choose a distance metric, $d_i(\cdot)$.
- ► Using d_i(·), calculate for each *i* the shortest distance between *i*'s score X_i and the boundary, denoted d_i.
- ▶ Define $\tilde{d}_{i\mathcal{B}} = d_{i\mathcal{B}}(\mathbf{b})T(X_{1i}, X_{2i}) d_{i\mathcal{B}}(\mathbf{b})(1 T(X_{1i}, X_{2i}))$ for all *i*.
- ► Implement one-dimensional RD analysis pooling all observations, using \tilde{d}_{iB} as running variable and zero as cutoff.

RD Design with Multiple Scores SPP assignment

RD Design with Multiple Scores SPP effects

			R Snip	pet 5.5					
<pre>> cvec <- c(0, 30, 0) > cvec2 <- c(0, 0, 50) > out <- rdms(Y = data\$spadies_any, X = data\$running_sisben, X2 = data\$running_saber11 + zvar = data\$tr, C = cvec, C2 = cvec2)</pre>									
Cutoff	Coef.	P-value		95% CI	hl	hr	Nh		
(0.00,0.00)	0.323	0.000	0.293	0.379	30.701	30.701	41771		
(30.00,0.00)	0.315	0.000	0.286	0.356	42.582	42.582	71579		
(0.00,50.00)	0.229	0.000	0.144	0.351	27.762	27.762	5057		

Multi-Score RD Effects: SPP

(a) Point (0,0)

(b) Point (0,30)

(d) Normalizing-and-pooling

(c) Point (50,0)

RD Design with Multiple Scores: Ongoing

- Estimation: $\hat{\tau}_{\text{SRD}}(\mathbf{b})$ can be constructed two ways
 - ► Two-dimensional local polynomial of *Y* on each coordinate separately: $X_1 - b_1, X_2 - b_2, (X_1 - b_1)^2, (X_2 - b_2)^2,...$
 - One-dimensional local polynomial of *Y* on *d_i*(**b**).
 Study rates of convergence of each case
- Inference:
 - ► Use strong approximations to make inferences about treatment effect curve \(\tau_{\subset{SRD}}(b)\)

Concluding Remarks

- RD designs are observational studies: we are not in control of treatment assignment
- Must take threats to internal validity seriously
- But also threats to external validity: the identifiable RD parameter not decided by us
- Multiple dimensional RD designs allow us to explore heterogeneity and (under additional assumptions) study far-from-cutoff effects
- Both help with bolstering external validity of RD findings

Thanks!

My webpage

https://scholar.princeton.edu/titiunik

RD software at

https://rdpackages.github.io/

RD Software Packages

https://rdpackages.github.io/

rdrobust: estimation, inference and graphical presentation using local polynomials, partitioning, and spacings estimators.

- rdrobust, rdbwselect, rdplot.
- rddensity: discontinuity in density test at cutoff (a.k.a. manipulation testing) using novel local polynomial density estimator.
 - rddensity, rdbwdensity.
- rdmulti: RD plots, estimation, inference, and extrapolation with multiple cutoffs and scores.
 - rdmc, rdmcplot, rdms.
- rdpower: power calculations and survey/sample design.
 - rdpower, rdsampsi.
- rdlocrand: covariate balance, binomial tests, randomization inference methods (window selection & inference).
 - rdrandinf, rdwinselect, rdsensitivity, rdrbounds.

For Further Details

Multi-Cutoff RD designs

- ► Cattaneo, Keele, Titiunik, Vazquez-Bare, 2016, JOP.
- ► Cattaneo, Keele, Titiunik, Vazquez-Bare, 2021, JASA.
- Cattaneo, Idrobo, Titiunik, 2023, CUP Elements.
- RD Reviews:
 - Cattaneo, Idrobo, Titiunik, 2020, CUP Elements.
 - Cattaneo and Titiunik, 2022, Annual Review of Economics.

Thanks!

Effect of Access to Credit on Higher Education

- ACCES program in Colombia, which provides long-term credit to underprivileged populations to cover tuition of various post-secondary education programs such as technical or university degrees
- Eligibility for ACCES credit depends on scores in the Saber 11 exam
 - A mandatory exam for all students who wish to enter post-secondary education
 - Each semester of every year, the 1,000-quantiles of the Saber 11 score are calculated among all students who took the exam that semester. Students receive a score between 1 and 1,000 according to their position in the distribution (we call them Saber 11 position scores).
 - ► For example, a student whose Saber 11 score is between the top 0.1% and 0.2% of the distribution in that year and semester, receives a position score of 2.

Effect of Access to Credit on Higher Education

- Eligibility for ACCES credit depends on scores in the Saber 11 exam, creating a RD design
 - Running variable: Saber 11 position scores
 - Treatment: Eligibility to receive ACESS credit
 - Outcome: Enrolling in a higher education program
 - Cutoff: 850 in 2002-2008, varies by department starting in 2009

Effect of Access to Credit on Higher Education: Normalized and pooled effect

Effect of Access to Credit on Higher Education: Effect at cutoff -850

Effect of Access to Credit on Higher Education: Effect at cutoff -571

Effect of Access to Credit on Higher Education: Extrapolated Effect at cutoff -650

RD and Extrapolation Effects of ACCES Loan Eligibility on Higher Education Enrollment

				Robust BC Inference		
	Estimate	Bw	Eff. N	p-value	95% CI	
RD effects						
C = -850	0.137	72.9	145	0.007	[0.036, 0.231]	
C = -571	0.170	135.4	208	0.101	$[-0.038 \ , \ 0.429 \]$	
Pooled	0.125	145.5	514	0.028	$[\ 0.012 \ , \ 0.22 \]$	
Naive difference						
$\mu_{\ell}(-650)$	0.755	303.4	504			
$\mu_h(-650)$	0.706	137.4	208			
Difference	0.049			0.172	$[-0.019 \;,\; 0.105 \;]$	
Bias						
$\mu_{\ell}(-850)$	0.525	54.9	54			
$\mu_h(-850)$	0.666	149.5	237			
Difference	-0.141			0.004	$[-0.273 \; , \; -0.053 \;]$	
Extrapolation						
$ au_{\ell}(-650)$	0.190			0.001	$[\ 0.079 \ , \ 0.334 \]$	

Note: estimates obtained using local linear regression with MSE-optimal bandwidth and robust bias-corrected p-values and confidence intervals.

Definition (Cutoff Selection Bias)

For $c, c' \in C$, let $B(x, c, c') = \mu_{0,c}(x) - \mu_{0,c'}(x)$. There is bias from exposure to different cutoffs if $B(x, c, c') \neq 0$ for some $c, c' \in C$, $c \neq c'$ and for some $x \in \mathcal{X}$.

Assumptions

Standard continuity assumptions on the relevant regression functions

$$\mu_{0,c}(c) = \lim_{\varepsilon \uparrow 0} \mu_c(c+\varepsilon) \quad \text{for } c \in C = \{\ell, \hbar\}$$

$$\mu_{1,c}(c) = \lim_{\varepsilon \downarrow 0} \mu_c(c+\varepsilon) \quad \text{for } c \in C = \{\ell, \hbar\}$$

$$\mu_{0,\hbar}(x) = \mu_{\hbar}(x) \quad \text{for all } x \in (\ell, \hbar)$$

$$\mu_{1,\ell}(x) = \mu_{\ell}(x) \quad \text{for all } x \in (\ell, \hbar).$$

Main extrapolation assumption

Assumption (Constant Bias) $B(\ell) = B(x)$ for all $x \in (\ell, \hbar)$.

• The bias at the low cutoff l can be written as

$$B(\ell) = \lim_{\varepsilon \uparrow 0} \mu_{\ell}(\ell + \varepsilon) - \mu_{\hbar}(\ell).$$

Under constant bias assumption, we have

$$\mu_{0,\ell}(\bar{x}) = \mu_{\hbar}(\bar{x}) + B(\ell),$$

average control response for ℓ subpopulation equal to average observed response for \hbar subpopulation, plus difference in average control responses between both subpopulations at low cutoff ℓ . This leads to our main identification result.

Theorem (Extrapolation)

Under constant bias assumption and standard continuity assumptions in sharp RD designs, $\tau_{\ell}(\bar{x})$ is identifiable by

$$\tau_{\ell}(\bar{x}) = \mu_{\ell}(\bar{x}) - [\mu_{\hbar}(\bar{x}) + B(\ell)],$$

for any point $\bar{x} \in (l, h)$ *.*

Extensions

• Generalization of constant-bias assumption:

$$B(c_1) \approx B(c_0) + \sum_{s=1}^p \frac{1}{s!} B^{(s)}(c_0) \cdot [c_1 - c_0]^s$$

 \rightarrow account for differences in slopes, curvature, etc.

▶ Implementation with more than two cutoffs: "fixed effects" model.

$$\mu_0(x,c_j) = g(x) + \theta_j$$

Combining both approaches:

$$\mu_0(x,c_j) = g(x) + p_k(x)'\theta_j$$