Identification and Estimation of Average Causal Effects in Fixed Effects Logit Models

Xavier D'Haultfœuille (CREST-ENSAE)

joint work with Laurent Davezies (CREST-ENSAE) and Louise Laage (Georgetown U.)

Stata package written by Christophe Gaillac (Oxford U.)

2023 Stata Economics Virtual Symposium 9 November 2023

Outline

1 Introduction

2 Identification

3 Estimation and inference

4 Simulations

5 The Stata command mfelogit

6 Conclusion

Binary outcomes with panels: the current practice

- Suppose we seek to identify the effect of a variable X_{kt} on a binary outcome Y_t with panel data.
- Usual parameters of interest:
 - 1. AME=effect on Y_T of a universal, exogenous, infinitesimal change in X_{kT} .
 - 2. ATE=effect on Y_T of a universal, exogenous change in X_{kT} from 0 to 1.
- Following Angrist (2001) and Angrist & Pischke (2008), applied economists most often use fixed effects (FE) linear models to estimate AME and ATE.
- Idea behind: even if wrong, such models deliver the best linear approximation of the true model.

Binary outcomes with panels: the current practice

- Yet, the results can be misleading for at least two reasons.
- 1st issue: FE linear models only use "movers" (on X); yet "stayers" may be very different from movers (and also more numerous).
- 2nd issue: nonlinearities can matter. The best linear approximation may still be bad, and identify the opposite sign of the true AME/ATE.

An alternative: the fixed effect logit model

• Logit model with fixed effects (FE):

$$\begin{aligned} Y_t &= \mathbb{1}\{X'_t\beta_0 + \alpha + \varepsilon_t \geq 0\}\\ \varepsilon_t \mid X, \alpha \sim \text{logistic, i.i.d over } t \leq T. \end{aligned} \tag{1}$$

- "FE" approach: the distribution of α|X (with X := (X'₁,...,X'_T)) is left unrestricted.
- Advantages:
 - 1. The model allows for heterogeneous marginal/treatment effects;
 - 2. The model accounts for $E(Y_t|X, \alpha) \in (0, 1)$.
- Efficient estimation of β_0 already considered by Rasch (1961); see also Andersen (1970) and Chamberlain (1980).
- But to date, no specific study of the AME and ATE in this model.

Our contribution

- We first study the identification of AME and ATE in this model:
 - 1. reformulate the problem as an extremal moment problem;
 - 2. derive simple, optimization-free, sharp bounds.
- Based on this analysis, we suggest two paths for inference:
 - 1. Estimate the sharp bounds. Requires nonparam. estimation and, for inference, some regularity on $F_{\alpha|X}$.
 - Estimate very simple outer bounds of the AME/ATE. Avoids nonparam. est. and seems to work very well in practice.
- Our analysis extends to other parameters (e.g., average structural functions) and the ordered FE logit model.

Selected Literature Review

Marginal Effects in nonlinear FE parametric panel models

Honoré & Tamer (2006), Aguirregabiria and Carro (2020), Liu, Poirier and Shu (2021) \ldots

Moment problem

Theory: Karlin & Shapley (1953), Krein & Nudelman (1977), Schmüdgen (2017)... and old results from Chebyshev and Markov!

Application to stats & econometrics Dette & Studden (1997), D'Haultfœuille & Rathelot (2017), Dobronyi, Gu and Kim (2021)...

Outline

1 Introduction

2 Identification

3 Estimation and inference

4 Simulations

5 The Stata command mfelogit

6 Conclusion

The problem

• We focus on the AME at period T (say) for variable X_{kT} , defined by:

$$\Delta := E\left[\frac{\partial P(Y_T = 1 | X, \alpha)}{\partial X_{kT}}\right] = \beta_{0k} E\left[\Lambda'(X'_T \beta_0 + \alpha)\right],$$

with $\Lambda(x) = 1/(1 + \exp(-x))$, $X_t = (X_{1T}, ..., X_{pT})'$ and $X = (X'_1, ..., X'_T)'$.

- Analysis similar for the ATE if X_{kT} is binary, and the average structural function.
- β₀ is identified by maximizing the conditional log-likelihood if

$$E\left[\sum_{s,t=1}^{T} (X_s - X_t)(X_s - X_t)'\right] \text{ is nonsingular.}$$
(2)

• But unclear how to get $E[\Lambda'(X'_T\beta_0 + \alpha)]$.

Intuition

• Since no constraints b/w $F_{\alpha|X=x}$ and $F_{\alpha|X=x'}$, we can focus on

$$\Delta(x) := \beta_{0k} E \left[\Lambda'(x'_T \beta_0 + \alpha) | X = x \right].$$

 \Rightarrow A known moment of the unobserved variable α .

• Constraints on $F_{\alpha|X=x}$, given by the data and the model.

• By sufficiency of $S = \sum_{t=1}^{T} Y_t$, all these constraints are, for k = 0, ..., T:

$$P(S=k|X=x) = C_k(x,\beta_0) \int \frac{\exp(ka)}{\prod_{t=1}^{T} [1 + \exp(x_t'\beta_0 + a)]} dF_{\alpha|X=x}(a)$$

where
$$C_k(x,\beta) = \sum_{(d_1,...,d_T) \in \{0,1\}^T : \sum_{t=1}^T d_t = k} \exp\left(\sum_{t=1}^T d_t x_t' \beta\right)$$

Intuition (c'ed)

- ⇒ For known $m, g_0, ..., g_T$, possible values of the moment $\int m(x, \alpha) dF_{\alpha|X=x}(\alpha)$, given other moments $\int g_k(x, \alpha) dF_{\alpha|X=x}(\alpha)$ (k = 0, ..., T)?
 - A so-called moment problem.
 - We first transform this moment problem into the "standard" Markov moment problem:
 - 1. By an appropriate transformation of the constraints;
 - 1. By an appropriate change of variables.
 - We then use results on the Markov moment problem to solve ours.

The Markov moment problem

• Let ${\mathcal D}$ be the set of positive measures on [0,1] and:

$$\mathcal{M}_{\mathcal{T}} = \left\{ (m_0, ..., m_{\mathcal{T}}) \in \mathbb{R}^{T+1} : \exists \mu \in \mathcal{D} : \int u^t d\mu(u) = m_t, \ t = 0, ..., T \right\},$$
$$\mathcal{D}(m) = \left\{ \mu \in \mathcal{D} : \int u^t d\mu(u) = m_t, \ t = 0, ..., T \right\} \text{ for } m \in \mathcal{M}_{\mathcal{T}}.$$

• Then define:

$$\underline{q}_{T}(m) := \inf_{\mu \in \mathcal{D}(m)} \int_{0}^{1} u^{T+1} d\mu(u),$$
$$\overline{q}_{T}(m) := \sup_{\mu \in \mathcal{D}(m)} \int_{0}^{1} u^{T+1} d\mu(u).$$

• $q_{\tau}(m)$ and $\overline{q}_{\tau}(m)$ can be obtained simply by solving univ. linear eqs Details

Some definitions

• For *t* = 0, ..., *T*, define:

 $\lambda_t(x,\beta) :=$ coeff of degree *t* of the polynomial

$$\begin{split} u &\mapsto u(1-u) \prod_{t=1}^{T-1} \left(1 + u \left(\exp\left((x_t - x_T)'\beta \right) - 1 \right) \right), \\ Z_t &:= \binom{T-t}{S-t} \frac{\exp(SX'_T\beta_0)}{C_S(X;\beta_0)}, \\ m_t(x) &:= \frac{E(Z_t | X = x)}{E(Z_0 | X = x)}, \\ m(x) &:= (m_0(x), ..., m_T(x))'. \end{split}$$

• To remember here: all these are identified and easy to estimate, except m(x) that involves conditional expectations.

Key result

Theorem 1

Suppose that (1)-(2) hold. Then, there exists a collection of probability measures $(\mu_x)_{x \in Supp(X)}$, with $\mu_x \in \mathcal{D}(m(x))$, such that

$$\Delta = \beta_{0k} E \bigg[\sum_{t=0}^{T} Z_t \lambda_t(x; \beta_0) + Z_0 \lambda_{T+1}(X, \beta_0) \int_0^1 u^{T+1} d\mu_X(u) \bigg].$$
(3)

Moreover, the sharp identified set of Δ is $[\underline{\Delta}, \overline{\Delta}]$, with

$$\begin{split} \underline{\Delta} &= E \left[\sum_{t=0}^{T} Z_{t} \lambda_{t}(x;\beta_{0}) + \beta_{0k} Z_{0} \lambda_{T+1}(X,\beta_{0}) \big(\underline{q}_{T}(m(X)) \\ & 1 \left\{ \beta_{0k} \lambda_{T+1}(X,\beta_{0}) \geq 0 \right\} + \overline{q}_{T}(m(X)) 1 \left\{ \beta_{0k} \lambda_{T+1}(X,\beta_{0}) < 0 \right\} \big) \right], \\ \overline{\Delta} &= E \left[\sum_{t=0}^{T} Z_{t} \lambda_{t}(x;\beta_{0}) + \beta_{0k} Z_{0} \lambda_{T+1}(X,\beta_{0}) \big(\overline{q}_{T}(m(X)) \\ & 1 \left\{ \beta_{0k} \lambda_{T+1}(X,\beta_{0}) \geq 0 \right\} + \underline{q}_{T}(m(X)) 1 \left\{ \beta_{0k} \lambda_{T+1}(X,\beta_{0}) < 0 \right\} \big) \right]. \end{split}$$

Simple outer bounds: idea

- Drawback of the sharp bounds: use m(x), which requires nonparam. estim.
- Actually, Eq. (3) also useful for obtaining simple outer bounds.
- Δ is not identified solely because of $\int_0^1 u^{T+1} d\mu_X(u)$.
- Imagine that instead of u^{T+1} , we had $P(u) = \sum_{k=0}^{T} b_k u^k$.
- Then, using $\int_0^1 u^k d\mu_X(u) = E(Z_k|X)/E(Z_0|X)$, we would get for Δ :

$$\beta_{0k} E\left[\sum_{t=0}^{T} \left(\lambda_t(X,\beta_0) + b_t \lambda_{T+1}(X,\beta_0)\right) Z_t\right].$$

Very simple expectation!

Simple outer bounds: idea (c'ed)

• Now, if $\sup_{u \in [0,1]} \left| u^{T+1} - \sum_{k=0}^{T} b_k u^k \right| \le K$ for some K > 0, we obtain the outer bounds for Δ :

$$\left[\beta_{0k}E\left(\sum_{t=0}^{T}\left(\lambda_{t}(X,\beta_{0})+b_{t}\lambda_{T+1}(X,\beta_{0})\right)Z_{t}\right)\pm KE\left(Z_{0}\left|\beta_{0k}\lambda_{T+1}(X,\beta_{0})\right|\right)\right].$$

- We can optimize these bounds, by choosing appropriately $(b_0, ..., b_T)$.
- Specifically, we consider the best sup-norm approximation of u → u^{T+1} by a polynomial of degree T:

$$\mathbf{b}^* = \underset{\mathbf{b} \in \mathbb{R}^{T+1}}{\operatorname{argmin}} \sup_{u \in [0,1]} \left| u^{T+1} - \sum_{k=0}^T b_k u^k \right|$$
(4)

Simple outer bounds

- **b*** very simple to compute, using Chebyshev polynomials.
- Figures below plot $u \mapsto u^{T+1}$ and $P_T^*(u) = \sum_{k=0}^T b_t^* u^t$.

P₂^{*} approximates already very well u → u³, curves indistinguishable for T = 4.
With b = b^{*}, we have K = 1/(2 × 4^T).

Are the bounds informative?

Proposition 1 (Some properties of the bounds on Δ)

Suppose that (1)-(2) hold. Then:

- 1. The outer bounds may coincide with the sharp bounds.
- 2. $\overline{\Delta} \underline{\Delta} \leq E\left[Z_0|\lambda_{T+1}(X,\beta_0)|\right]/4^T$. If also $|(X_t X_T)'\beta_0| \leq \ln(2)$ a.s.,

$$\overline{\Delta} - \underline{\Delta} \leq \frac{1}{4^T}$$

3. Δ is point identified if and only if $\beta_{0k} = 0$ or

$$P\left(\min_{t<\mathcal{T}}|(X_t-X_{\mathcal{T}})'\beta_0|=0\cup|Supp(\alpha|X)|\leq T/2
ight)=1.$$

Outline

Introduction

2 Identification

3 Estimation and inference

4 Simulations

5 The Stata command mfelogit

6 Conclusion

Estimation of the sharp bounds

• Recall that

$$\begin{split} \overline{\Delta} &= E\left[\sum_{t=0}^{T} Z_t \lambda_t(x; \beta_0) + \beta_{0k} Z_0 \lambda_{T+1}(X, \beta_0) \big(\overline{q}_T(m(X)) \\ & 1 \left\{ \beta_{0k} \lambda_{T+1}(X, \beta_0) \ge 0 \right\} + \underline{q}_T(m(X)) 1 \left\{ \beta_{0k} \lambda_{T+1}(X, \beta_0) < 0 \right\} \big) \right], \\ m(X) &= (m_0(X), ..., m_T(X))', \quad m_t(x) := \frac{E(Z_t | X = x)}{E(Z_0 | X = x)}, \\ Z_t &= \binom{T-t}{S-t} \frac{\exp(SX'_T \beta_0)}{C_S(X; \beta_0)}. \end{split}$$

- All terms can be estimated easily, except $m_t(X)$.
- We first estimate by local polynomial regression $E(Z_t|X = x)$ and obtain a plug-in estimator of m(X).
- We modify this initial estimator to ensure that $\widehat{m}(X)$ is a true moment vector (e.g., the corresponding variance is positive).

Asymptotic distribution of $(\widehat{\underline{\Delta}}, \widehat{\overline{\Delta}})$

Theorem 2

Suppose we have i.i.d. data and (1)-(2) and Assumption 1 hold \bigcirc then, there exist $(\underline{\psi}_i, \overline{\psi}_i)_{i=1,...,n}$ i.i.d. such that:

1. If $\beta_{0k} > 0$, then

$$\sqrt{n} \left(\begin{array}{c} \widehat{\overline{\Delta}} - \overline{\Delta} \\ \widehat{\underline{\Delta}} - \underline{\Delta} \end{array} \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\begin{array}{c} \overline{\psi}_i \\ \underline{\psi}_i \end{array} \right) + o_P(1).$$

If $\beta_{0k} < 0$, same but with $\underline{\psi}_i$ and $\overline{\psi}_i$ switched. 2. If $\beta_{0k} = 0$, then

$$\sqrt{n} \left(\begin{array}{c} \widehat{\overline{\Delta}} - \overline{\Delta} \\ \widehat{\underline{\Delta}} - \underline{\Delta} \end{array} \right) = \left(\begin{array}{c} \max\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \overline{\psi}_{i}, \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \underline{\psi}_{i} \right) \\ \min\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \overline{\psi}_{i}, \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \underline{\psi}_{i} \right) \end{array} \right) + o_{P}(1).$$

We also show that we can consistently estimate Σ := V((ψ, ψ)').

Construction of confidence intervals (CI)

- The estimated bounds are not asymptotically normal when $\beta_{0k} = 0$.
- ⇒ The CI of Imbens and Manski (2004) works when $\beta_{0k} \neq 0$, but possibly not when $\beta_{0k} = 0$.
 - We modify them in a simple way. Let φ_{α} a test of $\beta_{0k} = 0$. Then let:

$$\mathsf{CI}_{1-\alpha}^{1} := \left| \begin{array}{c} \left[\underline{\widehat{\Delta}} - c_{\alpha} \left(\underline{\widehat{\Sigma}_{11}}_{n} \right)^{1/2}, \ \widehat{\overline{\Delta}} + c_{\alpha} \left(\underline{\widehat{\Sigma}_{22}}_{n} \right)^{1/2} \right] & \text{if } \varphi_{\alpha} = 1, \\ \\ \left[\min \left(0, \underline{\widehat{\Delta}} - c_{\alpha} \left(\underline{\widehat{\Sigma}_{11}}_{n} \right)^{1/2} \right), \ \max \left(0, \overline{\widehat{\Delta}} + c_{\alpha} \left(\underline{\widehat{\Sigma}_{22}}_{n} \right)^{1/2} \right) \right] & \text{if } \varphi_{\alpha} = 0. \end{array} \right]$$

where c_{α} is defined as in I & M.

Proposition 2

Suppose we have i.i.d. data, (1)-(2) and A1 hold and min $(\Sigma_{11}, \Sigma_{22}) > 0$. Then $\liminf_{n \in [\Delta, \overline{\Delta}]} P(\Delta \in Cl_{1-\alpha}^1) \ge 1 - \alpha$, with equality when $\beta_{0k} \neq 0$.

Inference using outer bounds

- The outer bounds take the form $[\widetilde{\Delta}\pm\overline{b}]$, with

$$\begin{split} \tilde{\Delta} &= E \bigg[\sum_{t=0}^{T} Z_t \left(\lambda_t(X, \beta_0) + b_{t,T}^* \lambda_{T+1}(X, \beta_0) \right) \bigg], \\ \overline{b} &= \frac{1}{2 \times 4^T} E \left[Z_0 | \lambda_{T+1}(X, \beta_0) | \right]. \end{split}$$

- We can estimate these simply by plug-in $\Rightarrow \widehat{\tilde{\Delta}}$ and $\overline{\hat{b}}$.
- We then consider the confidence interval

$$\mathsf{Cl}_{1-lpha}^2 = \left[\widehat{ ilde{\Delta}} \pm q_lpha \left(rac{n^{1/2} \widehat{ ilde{b}}}{\widehat{\sigma}}
ight) rac{\widehat{\sigma}}{n^{1/2}}
ight],$$

where $q_{\alpha}(b) = \text{quantile of order } 1 - \alpha \text{ of a } |\mathcal{N}(b, 1)| \text{ and } \widehat{\sigma} \text{ is an estimator of the asymptotic variance of } \widehat{\widetilde{\Delta}}.$

Construction of confidence intervals on Δ

Theorem 3

Suppose (1)-(2) hold, X is bounded and either $|\tilde{\Delta} - \Delta| < \overline{b}$ or $\beta_{0k} = 0$. Then:

$$\liminf_{n\to\infty} P\left(\Delta \in Cl_{1-\alpha}^2\right) \ge 1-\alpha.$$

• $| ilde{\Delta} - \Delta| < \overline{b}$ or $eta_{0k} = 0$ holds except if

$$P\left(\mathsf{Supp}(\Lambda(X'_{T}\beta_{0}+\alpha)|X)\subset\mathcal{R}_{X}|\lambda_{T+1}(X,\beta_{0})\neq0\right)=1,$$
(5)

where \mathcal{R}_x is the set of maxima (resp. minima) of the polynomial \mathbb{T}_{T+1} on [0,1] if $\lambda_{T+1}(x,\beta_0) > 0$ (resp. $\lambda_{T+1}(x,\beta_0) < 0$).

- Eq. (5) unlikely: it implies a very specific location for $\text{Supp}(\alpha)|X = x$), with discontinuous changes in this support at some x.
- But $Cl_{1-\alpha}^2$ may not have a uniform coverage. See the paper for a slightly larger CI, uniform over a large class of DGP.

Outline

1 Introduction

2 Identification

3 Estimation and inference

④ Simulations

5 The Stata command mfelogit

6 Conclusion

Designs

- We assume $X_1,...,X_T$ i.i.d., with $X_t \in \mathbb{R} \ \sim \mathcal{U}[-1/2,1/2]$ and $\beta_0 = 1$.
- We let $T \in \{2,3\}$ and $n \in \{250; 500; 1,000\}$.
- We then let $\alpha = -X'_T \beta_0 + \eta$, with either: 1. $\eta | X \sim \mathcal{N}(0, 1);$
 - 2. or $\eta | X$ such that $\tilde{\Delta} \Delta = \overline{b}$.
- In the 2nd case, the DGP varies with T.

DGP1: estimators of the bounds

- $\Delta \simeq$ 0.2067 is partially identified for all T.
- $(\underline{\Delta}, \overline{\Delta}) \simeq (0.2006, 0.2124)$ if T = 2 and $(\underline{\Delta}, \overline{\Delta}) \simeq (0.2059, 0.2069)$ if T = 3.

		First method			Second	d method	
Т	n	$\sigma(\underline{\widehat{\Delta}})$	$Bias(\widehat{\Delta})$	$\sigma(\widehat{\overline{\Delta}})$	$Bias(\widehat{\overline{\Delta}})$	$\sigma(\widehat{ ilde{\Delta}})$	$Bias(\widehat{ ilde{\Delta}})$
2	250	0.110	0.006	0.114	0.003	0.108	0.002
	500	0.077	0.013	0.081	0.01	0.074	0.005
	1000	0.054	0.013	0.057	0.011	0.052	0.004
3	250	0.072	-0.005	0.072	-0.005	0.074	-0.001
	500	0.049	-0.003	0.049	-0.004	0.051	0*
	1000	0.035	-0.004	0.036	-0.005	0.037	-0.001

Notes: *: absolute value < 0.0005. Results obtained with 3,000 sims.

DGP1: comparison between the two CI's

		CI	1 0.95	C	$I_{0.95}^2$
Т	n	coverage	av. length	coverage	av. length
2	250	0.96	0.453	0.96	0.419
	500	0.96	0.305	0.96	0.296
	1000	0.95	0.215	0.97	0.211
3	250	0.96	0.288	0.95	0.284
	500	0.96	0.201	0.95	0.201
	1000	0.95	0.141	0.94	0.142

Notes: results obtained with 3,000 sims.

$DGP2_T$: estimators of the bounds

• $\Delta = \underline{\Delta} = \overline{\Delta} \simeq 0.1875$ if T = 2

 $\Delta \simeq 0.1667$ and $(\underline{\Delta}, \overline{\Delta}) \simeq (0.1652, 0.1667)$ if T = 3.

		First method			Second	d method	
Т	n	$\sigma(\underline{\widehat{\Delta}})$	$Bias(\widehat{\Delta})$	$\sigma(\widehat{\overline{\Delta}})$	$Bias(\widehat{\overline{\Delta}})$	$\sigma(\widehat{ ilde{\Delta}})$	$Bias(\widehat{ ilde{\Delta}})$
2	250	0.146	0.049	0.151	0.058	0.105	-0.003
	500	0.104	0.032	0.108	0.041	0.076	-0.009
	1000	0.069	0.026	0.072	0.034	0.052	-0.01
3	250	0.075	0.01	0.075	0.009	0.063	0.001
	500	0.05	0.005	0.05	0.004	0.045	-0.001
	1000	0.034	0.005	0.034	0.004	0.031	0*

Notes: *: abs. value < 0.0005. Results obtained with 3,000 sims.

- The biases of $(\underline{\widehat{\Delta}}, \overline{\overline{\Delta}})$ are not that small when n = 1,000 and T = 2.
- This could be b/c regularity conditions on $\gamma_s(.)$ are actually violated here.

$DGP2_T$: comparison between the two CI's

		CI	1 0.95	Cl ² _{0.95}		
Т	n	coverage	av. length	coverage	av. length	
2	250	0.92	0.522	0.96	0.420	
	500	0.91	0.353	0.95	0.295	
	1000	0.91	0.243	0.95	0.209	
3	250	0.96	0.276	0.96	0.249	
	500	0.95	0.186	0.95	0.175	
	1000	0.95	0.130	0.95	0.124	

Notes: results obtained with 3,000 sims.

- $\operatorname{Cl}_{1-\alpha}^2$ has still very good coverage, though $\tilde{\Delta} \Delta = \overline{b}$.
- $Cl_{1-\alpha}^1$ undercovers for T = 2, probably b/c of the aforementioned bias.

Outline

1 Introduction

2 Identification

3 Estimation and inference

4 Simulations

5 The Stata command mfelogit

6 Conclusion

What it does & does not do yet

- Available on SSC (requires estout to be installed).
- First estimates β_0 , then computes estimated bounds or the "point estimate" $\hat{\tilde{\Delta}}$, and CI for the AME (if not binary) or the ATE (if binary).
- Handles unbalanced panels.
- Still in progress:
 - Does not handle factor variables yet;
 - Only estimates the sharp bounds & Cl¹_{1-α} for continuous X;
 - Does not handle, e.g. age and age²;
 - Could probably be faster.

Simplified syntax

mfelogit depvar [indepvar] [if] [in] method(string) id(string) time(string) [, listT(string) listX(string) level(string)]

- id and time: individual and time identifiers.
- method: outer bounds if "quick" (default), sharp bounds if "sharp".
- listT: periods on which AME / ATE are computed. By default, last period for which all individuals are observed. If "all", computes AME / ATE for all periods, and their averages.
- listX: covariates for which the AME / ATE are computed. By default, all covariates.
- level: level of confidence intervals. "0.95" by default.

(Toy) example: determinants of unionization in the US

```
• Syntax:
```

```
use "https://www.stata-press.com/data/r17/union.dta", clear
tabulate year, generate(y_)
drop y_1
mfelogit union south y_* black, id("idcode") time("year")
xtset idcode year
xtreg union age y * black south, fe
```

- black automatically omitted as constant for each indiv. over time.
- Results on the ATE for south, with the FE logit and FE linear regs.:

	FE Logit model	FE linear reg.
Point est.	072	071
95% CI	[095,048]	[103,040]

Outline

Introduction

2 Identification

3 Estimation and inference

4 Simulations

5 The Stata command mfelogit

Conclusion

- Simple characterization of the identified set for the AME.
- Based on this, estimators of the sharp bounds of the AME.
- Alternative method based on a "proxy" of the AME and an upper bound on its asymptotic bias.
- Though not optimal as $n \to \infty$, very simple and seems to work very well for usual n and T.
- Already a Stata command, mfelogit, available on SSC. Will be improved soon hopefully!

Intuition on the Markov moment problem for T = 1.

- If T = 1, we seek bounds on $\int_0^1 x^2 d\mu(x)$ given $\int_0^1 x d\mu(x) = m_1$.
- Using $x^2 \leq x$ on [0,1] and Jensen's ineq., we get $\underline{q}_1(m) = m_1^2$, $\overline{q}_1(m) = m_1$.

Figure: Moment space and bounds $\underline{q}_{\tau}(m), \overline{q}_{\tau}(m)$ when T = 1.

Solving the moment problem for any T \blacksquare

- Such ideas generalize for any $T: \underline{q}_T(m)$ and $\overline{q}_T(m)$ rational functions of m.
- Let T>0 and for any $m=(m_0,...,m_s)$, s>T, let

$$\underline{\mathbb{H}}_{T}(m) = (m_{i+j-2})_{1 \le i, j \le T/2+1}, \quad \overline{\mathbb{H}}_{T}(m) = (m_{i+j-1} - m_{i+j})_{1 \le i, j \le T/2} \quad \text{if } T \text{ even}$$

$$\underline{\mathbb{H}}_{T}(m) = (m_{i+j-1})_{1 \le i, j \le (T+1)/2}, \quad \overline{\mathbb{H}}_{T}(m) = (m_{i+j-2} - m_{i+j-1})_{1 \le i, j \le (T+1)/2} \quad \text{if } T \text{ odd.}$$

• Then let $\underline{H}_{\mathcal{T}}(c) = det(\underline{\mathbb{H}}_{\mathcal{T}}(c))$ and $\overline{H}_{\mathcal{T}}(c) = det(\overline{\mathbb{H}}_{\mathcal{T}}(c))$.

Proposition 3 (Extremal moments & Hankel determinants)

- 1. $\mathcal{M}_T = closure \left\{ m \in \mathbb{R}^{T+1} : \underline{H}_t(m) > 0 \text{ and } \overline{H}_t(m) > 0, t = 1, ..., T \right\}.$
- 2. If $m \in \mathcal{M}_T$ and $\underline{H}_T(m) \times \overline{H}_T(m) > 0$, $\underline{q}_T(m) < \overline{q}_T(m)$. Also, $q \mapsto \underline{H}_{T+1}(m, q)$ is strictly \uparrow , linear and

 $\underline{H}_{T+1}(m, \underline{q}_{T}(m)) = 0 \quad (and similarly for \ \overline{q}_{T}(m)).$

• See the paper for the point identified case (when $\underline{H}_T(m) \times \overline{H}_T(m) = 0$).

Conditions for asymptotic normality in the 1st method

- Let $\gamma(.) = (\gamma_0(.), ..., \gamma_T(.))$ with $\gamma_t(x) = P(S = t | X = x)$.
- *K* be the kernel in the local polynomial (of degree $\ell \ge pT/2$) estimator of $\gamma_t(.)$ and $h_n \in \mathbb{R}$ be the bandwidth.

Assumption 1

- 1. K has a compact support and is Lipschitz on \mathbb{R}^{pT} .
- 2. $nh_n^{2(\ell+1)} \to 0$ and $n[h_n^{pT}/\ln n]^3 \to \infty$.
- 3. The pdf of X, f_X , is C^1 and bounded away from 0 on its bounded support.
- 4. γ_0 is $C^{\ell+2}$ on Supp(X).
- 5. Either $|Supp(\alpha|X = x)| > T/2$ for all $x \in Supp(X)$, or $x \mapsto |Supp(\alpha|X = x)$ is constant.
- Point 5 needed b/c \underline{q}_t and \overline{q}_t not differentiable at all $m \in \partial \mathcal{M}_t$ if $t \geq 3$.