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Binary outcomes with panels: the current practice

• Suppose we seek to identify the effect of a variable Xkt on a binary outcome
Yt with panel data.

• Usual parameters of interest:
1. AME=effect on YT of a universal, exogenous, infinitesimal change in XkT .

2. ATE=effect on YT of a universal, exogenous change in XkT from 0 to 1.

• Following Angrist (2001) and Angrist & Pischke (2008), applied economists
most often use fixed effects (FE) linear models to estimate AME and ATE.

• Idea behind: even if wrong, such models deliver the best linear approximation
of the true model.
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Binary outcomes with panels: the current practice

• Yet, the results can be misleading for at least two reasons.

• 1st issue: FE linear models only use “movers” (on X ); yet “stayers” may be
very different from movers (and also more numerous).

• 2nd issue: nonlinearities can matter. The best linear approximation may still
be bad, and identify the opposite sign of the true AME/ATE.
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An alternative: the fixed effect logit model

• Logit model with fixed effects (FE):

Yt = 1{X ′
tβ0 + α+ εt ≥ 0}

εt | X , α ∼ logistic, i.i.d over t ≤ T .
(1)

• “FE” approach: the distribution of α|X (with X := (X ′
1, ...,X ′

T )) is left
unrestricted.

• Advantages:
1. The model allows for heterogeneous marginal/treatment effects;

2. The model accounts for E (Yt |X , α) ∈ (0, 1).

• Efficient estimation of β0 already considered by Rasch (1961); see also
Andersen (1970) and Chamberlain (1980).

• But to date, no specific study of the AME and ATE in this model.
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Our contribution

• We first study the identification of AME and ATE in this model:
1. reformulate the problem as an extremal moment problem;
2. derive simple, optimization-free, sharp bounds.

• Based on this analysis, we suggest two paths for inference:
1. Estimate the sharp bounds.

Requires nonparam. estimation and, for inference, some regularity on Fα|X .

2. Estimate very simple outer bounds of the AME/ATE.
Avoids nonparam. est. and seems to work very well in practice.

• Our analysis extends to other parameters (e.g., average structural functions)
and the ordered FE logit model.
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Selected Literature Review

• Marginal Effects in nonlinear FE parametric panel models

Honoré & Tamer (2006), Aguirregabiria and Carro (2020), Liu, Poirier and
Shu (2021) ...

• Moment problem

Theory: Karlin & Shapley (1953), Krein & Nudelman (1977), Schmüdgen
(2017)... and old results from Chebyshev and Markov!
Application to stats & econometrics Dette & Studden (1997), D’Haultfœuille
& Rathelot (2017), Dobronyi, Gu and Kim (2021)...
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The problem

• We focus on the AME at period T (say) for variable XkT , defined by:

∆ :=E
[
∂P(YT = 1|X , α)

∂XkT

]
= β0kE [Λ′(X ′

Tβ0 + α)] ,

with Λ(x) = 1/(1 + exp(−x)), Xt = (X1T , ...,XpT )′ and X = (X ′
1, ...,X ′

T )′.

• Analysis similar for the ATE if XkT is binary, and the average structural
function.

• β0 is identified by maximizing the conditional log-likelihood if

E
[ T∑

s,t=1
(Xs − Xt)(Xs − Xt)′

]
is nonsingular. (2)

• But unclear how to get E [Λ′(X ′
Tβ0 + α)].
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Intuition

• Since no constraints b/w Fα|X=x and Fα|X=x ′ , we can focus on

∆(x) := β0kE [Λ′(x ′
Tβ0 + α)|X = x ] .

⇒ A known moment of the unobserved variable α.

• Constraints on Fα|X=x , given by the data and the model.

• By sufficiency of S =
∑T

t=1 Yt , all these constraints are, for k = 0, ...,T :

P(S = k|X = x) = Ck(x , β0)
∫ exp(ka)∏T

t=1[1 + exp(x ′
tβ0 + a)]

dFα|X=x (a)

where Ck(x , β) =
∑

(d1,...,dT )∈{0,1}T :
∑T

t=1
dt =k exp

(∑T
t=1 dtx ′

tβ
)

.
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Intuition (c’ed)

⇒ For known m, g0, ..., gT , possible values of the moment
∫

m(x , α)dFα|X=x (α),
given other moments

∫
gk(x , α)dFα|X=x (α) (k = 0, ...,T )?

• A so-called moment problem.

• We first transform this moment problem into the “standard” Markov moment
problem:

1. By an appropriate transformation of the constraints;
1. By an appropriate change of variables.

• We then use results on the Markov moment problem to solve ours.
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The Markov moment problem

• Let D be the set of positive measures on [0, 1] and:

MT =
{

(m0, ...,mT ) ∈ RT+1 : ∃µ ∈ D :
∫

utdµ(u) = mt , t = 0, ...,T
}
,

D(m) =
{
µ ∈ D :

∫
utdµ(u) = mt , t = 0, ...,T

}
for m ∈ MT .

• Then define:

qT (m) := inf
µ∈D(m)

∫ 1

0
uT+1dµ(u),

qT (m) := sup
µ∈D(m)

∫ 1

0
uT+1dµ(u).

• qT (m) and qT (m) can be obtained simply by solving univ. linear eqs Details
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Some definitions

• For t = 0, ...,T , define:

λt(x , β) := coeff of degree t of the polynomial

u 7→ u(1 − u)
T−1∏
t=1

(1 + u (exp ((xt − xT )′β) − 1)) ,

Zt :=
(

T − t
S − t

)
exp(SX ′

Tβ0)
CS(X ;β0) ,

mt(x) := E (Zt |X = x)
E (Z0|X = x) ,

m(x) := (m0(x), ...,mT (x))′.

• To remember here: all these are identified and easy to estimate, except m(x)
that involves conditional expectations.
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Key result
Theorem 1
Suppose that (1)-(2) hold. Then, there exists a collection of probability
measures (µx )x∈Supp(X), with µx ∈ D(m(x)), such that

∆ = β0kE
[ T∑

t=0
Ztλt(x ;β0) + Z0λT+1(X , β0)

∫ 1

0
uT+1dµX (u)

]
. (3)

Moreover, the sharp identified set of ∆ is [∆, ∆], with

∆ =E
[ T∑

t=0
Ztλt(x ;β0) + β0kZ0λT+1(X , β0)

(
qT (m(X ))

1 {β0kλT+1(X , β0) ≥ 0} + qT (m(X ))1 {β0kλT+1(X , β0) < 0}
)]
,

∆ =E
[ T∑

t=0
Ztλt(x ;β0) + β0kZ0λT+1(X , β0)

(
qT (m(X ))

1 {β0kλT+1(X , β0) ≥ 0} + qT (m(X ))1 {β0kλT+1(X , β0) < 0}
)]
.
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Simple outer bounds: idea

• Drawback of the sharp bounds: use m(x), which requires nonparam. estim.

• Actually, Eq. (3) also useful for obtaining simple outer bounds.

• ∆ is not identified solely because of
∫ 1

0 uT+1dµX (u).

• Imagine that instead of uT+1, we had P(u) =
∑T

k=0 bkuk .

• Then, using
∫ 1

0 ukdµX (u) = E (Zk |X )/E (Z0|X ), we would get for ∆:

β0kE
[ T∑

t=0
(λt(X , β0) + btλT+1(X , β0)) Zt

]
.

Very simple expectation!
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Simple outer bounds: idea (c’ed)

• Now, if supu∈[0,1]

∣∣∣uT+1 −
∑T

k=0 bkuk
∣∣∣ ≤ K for some K > 0, we obtain the

outer bounds for ∆:[
β0kE

( T∑
t=0

(λt(X , β0) + btλT+1(X , β0)) Zt

)
± K E (Z0 |β0kλT+1(X , β0)|)

]
.

• We can optimize these bounds, by choosing appropriately (b0, ..., bT ).

• Specifically, we consider the best sup-norm approximation of u 7→ uT+1 by a
polynomial of degree T :

b∗ = argmin
b∈RT+1

sup
u∈[0,1]

∣∣∣∣∣uT+1 −
T∑

k=0
bkuk

∣∣∣∣∣ (4)
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Simple outer bounds
• b∗ very simple to compute, using Chebyshev polynomials.

• Figures below plot u 7→ uT+1 and P∗
T (u) =

∑T
k=0 b∗

t ut .
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• P∗
2 approximates already very well u 7→ u3, curves indistinguishable for T = 4.

• With b = b∗, we have K = 1/(2 × 4T ).
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Are the bounds informative?

Proposition 1 (Some properties of the bounds on ∆)
Suppose that (1)-(2) hold. Then:

1. The outer bounds may coincide with the sharp bounds.
2. ∆ − ∆ ≤ E [Z0|λT+1(X , β0)|] /4T . If also |(Xt − XT )′β0| ≤ ln(2) a.s.,

∆ − ∆ ≤ 1
4T .

3. ∆ is point identified if and only if β0k = 0 or

P
(

min
t<T

|(Xt − XT )′β0| = 0 ∪ |Supp(α|X )| ≤ T/2
)

= 1.
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Estimation of the sharp bounds
• Recall that

∆ =E
[ T∑

t=0
Ztλt(x ;β0) + β0kZ0λT+1(X , β0)

(
qT (m(X ))

1 {β0kλT+1(X , β0) ≥ 0} + qT (m(X ))1 {β0kλT+1(X , β0) < 0}
)]
,

m(X ) = (m0(X ), ...,mT (X ))′, mt(x) := E (Zt |X = x)
E (Z0|X = x) ,

Zt =
(

T − t
S − t

)
exp(SX ′

Tβ0)
CS(X ;β0) .

• All terms can be estimated easily, except mt(X ).

• We first estimate by local polynomial regression E (Zt |X = x) and obtain a
plug-in estimator of m(X ).

• We modify this initial estimator to ensure that m̂(X ) is a true moment vector
(e.g., the corresponding variance is positive).
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Asymptotic distribution of (∆̂, ∆̂)

Theorem 2
Suppose we have i.i.d. data and (1)-(2) and Assumption 1 hold Details . Then,
there exist (ψi , ψi)i=1,...,n i.i.d. such that:

1. If β0k > 0, then

√
n
(

∆̂ − ∆
∆̂ − ∆

)
= 1√

n

n∑
i=1

(
ψi
ψi

)
+ oP(1).

If β0k < 0, same but with ψi and ψi switched.
2. If β0k = 0, then

√
n

(
∆̂ − ∆
∆̂ − ∆

)
=

 max
(

1√
n

∑n
i=1 ψi ,

1√
n

∑n
i=1 ψi

)
min

(
1√
n

∑n
i=1 ψi ,

1√
n

∑n
i=1 ψi

) + oP(1).

• We also show that we can consistently estimate Σ := V ((ψ,ψ)′).
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Construction of confidence intervals (CI)

• The estimated bounds are not asymptotically normal when β0k = 0.

⇒ The CI of Imbens and Manski (2004) works when β0k ̸= 0, but possibly not
when β0k = 0.

• We modify them in a simple way. Let φα a test of β0k = 0. Then let:

CI 1
1−α :=

∣∣∣∣∣∣∣∣
[

∆̂ − cα

(
Σ̂11

n

)1/2
, ∆̂ + cα

(
Σ̂22

n

)1/2
]

if φα = 1,[
min

(
0, ∆̂ − cα

( Σ̂11
n

)1/2
)
, max

(
0, ∆̂ + cα

( Σ̂22
n

)1/2
)]

if φα = 0.

where cα is defined as in I & M.

Proposition 2

Suppose we have i.i.d. data, (1)-(2) and A1 hold and min(Σ11,Σ22) > 0. Then
lim infn inf∆∈[∆,∆] P(∆ ∈ CI 1

1−α) ≥ 1 − α, with equality when β0k ̸= 0.

22 / 36



Introduction Identification Estimation and inference Simulations The Stata command mfelogit Conclusion

Inference using outer bounds

• The outer bounds take the form [∆̃ ± b], with

∆̃ = E
[ T∑

t=0
Zt
(
λt(X , β0) + b∗

t,TλT+1(X , β0)
) ]
,

b = 1
2 × 4T E [Z0|λT+1(X , β0)|] .

• We can estimate these simply by plug-in ⇒ ̂̃∆ and b̂.

• We then consider the confidence interval

CI 2
1−α =

[ ̂̃∆ ± qα

(
n1/2b̂
σ̂

)
σ̂

n1/2

]
,

where qα(b) = quantile of order 1 −α of a |N (b, 1)| and σ̂ is an estimator of
the asymptotic variance of ̂̃∆.
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Construction of confidence intervals on ∆

Theorem 3
Suppose (1)-(2) hold, X is bounded and either |∆̃ − ∆| < b or β0k = 0. Then:

lim inf
n→∞

P
(
∆ ∈ CI 2

1−α

)
≥ 1 − α.

• |∆̃ − ∆| < b or β0k = 0 holds except if

P (Supp(Λ(X ′
Tβ0 + α)|X ) ⊂ RX |λT+1(X , β0) ̸= 0) = 1, (5)

where Rx is the set of maxima (resp. minima) of the polynomial TT+1 on
[0, 1] if λT+1(x , β0) > 0 (resp. λT+1(x , β0) < 0).

• Eq. (5) unlikely: it implies a very specific location for Supp(α)|X = x), with
discontinuous changes in this support at some x .

• But CI 2
1−α may not have a uniform coverage. See the paper for a slightly

larger CI, uniform over a large class of DGP.

24 / 36



Introduction Identification Estimation and inference Simulations The Stata command mfelogit Conclusion

Outline

1 Introduction

2 Identification

3 Estimation and inference

4 Simulations

5 The Stata command mfelogit

6 Conclusion

25 / 36



Introduction Identification Estimation and inference Simulations The Stata command mfelogit Conclusion

Designs

• We assume X1, ...,XT i.i.d., with Xt ∈ R ∼ U [−1/2, 1/2] and β0 = 1.

• We let T ∈ {2, 3} and n ∈ {250; 500; 1, 000}.

• We then let α = −X ′
Tβ0 + η, with either:

1. η|X ∼ N (0, 1);

2. or η|X such that ∆̃ − ∆ = b.

• In the 2nd case, the DGP varies with T .
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DGP1: estimators of the bounds

• ∆ ≃ 0.2067 is partially identified for all T .

• (∆,∆) ≃ (0.2006, 0.2124) if T = 2 and (∆,∆) ≃ (0.2059, 0.2069) if T = 3.

First method Second method
T n σ(∆̂) Bias(∆̂) σ(∆̂) Bias(∆̂) σ( ̂̃∆) Bias( ̂̃∆)
2 250 0.110 0.006 0.114 0.003 0.108 0.002

500 0.077 0.013 0.081 0.01 0.074 0.005
1000 0.054 0.013 0.057 0.011 0.052 0.004

3 250 0.072 -0.005 0.072 -0.005 0.074 -0.001
500 0.049 -0.003 0.049 -0.004 0.051 0∗

1000 0.035 -0.004 0.036 -0.005 0.037 -0.001
Notes: ∗: absolute value < 0.0005. Results obtained with 3,000 sims.
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DGP1: comparison between the two CI’s

CI10.95 CI20.95
T n coverage av. length coverage av. length
2 250 0.96 0.453 0.96 0.419

500 0.96 0.305 0.96 0.296
1000 0.95 0.215 0.97 0.211

3 250 0.96 0.288 0.95 0.284
500 0.96 0.201 0.95 0.201
1000 0.95 0.141 0.94 0.142

Notes: results obtained with 3,000 sims.
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DGP2T : estimators of the bounds
• ∆ = ∆ = ∆ ≃ 0.1875 if T = 2

∆ ≃ 0.1667 and (∆,∆) ≃ (0.1652, 0.1667) if T = 3.

First method Second method
T n σ(∆̂) Bias(∆̂) σ(∆̂) Bias(∆̂) σ( ̂̃∆) Bias( ̂̃∆)
2 250 0.146 0.049 0.151 0.058 0.105 -0.003

500 0.104 0.032 0.108 0.041 0.076 -0.009
1000 0.069 0.026 0.072 0.034 0.052 -0.01

3 250 0.075 0.01 0.075 0.009 0.063 0.001
500 0.05 0.005 0.05 0.004 0.045 -0.001
1000 0.034 0.005 0.034 0.004 0.031 0∗

Notes: ∗: abs. value < 0.0005. Results obtained with 3,000 sims.

• The biases of (∆̂, ∆̂) are not that small when n = 1, 000 and T = 2.

• This could be b/c regularity conditions on γs(.) are actually violated here.
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DGP2T : comparison between the two CI’s

CI10.95 CI20.95
T n coverage av. length coverage av. length
2 250 0.92 0.522 0.96 0.420

500 0.91 0.353 0.95 0.295
1000 0.91 0.243 0.95 0.209

3 250 0.96 0.276 0.96 0.249
500 0.95 0.186 0.95 0.175
1000 0.95 0.130 0.95 0.124

Notes: results obtained with 3,000 sims.

• CI 2
1−α has still very good coverage, though ∆̃ − ∆ = b.

• CI 1
1−α undercovers for T = 2, probably b/c of the aforementioned bias.
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What it does & does not do yet

• Available on SSC (requires estout to be installed).

• First estimates β0, then computes estimated bounds or the “point estimate”̂̃∆, and CI for the AME (if not binary) or the ATE (if binary).

• Handles unbalanced panels.

• Still in progress:
• Does not handle factor variables yet;

• Only estimates the sharp bounds & CI 1
1−α for continuous X ;

• Does not handle, e.g. age and age2;

• Could probably be faster.
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Simplified syntax

mfelogit depvar [indepvar ]
[

if
] [

in
]

method(string ) id(string )

time(string )
[

, listT(string ) listX(string ) level(string )
]

• id and time: individual and time identifiers.

• method: outer bounds if ”quick” (default), sharp bounds if ”sharp”.

• listT: periods on which AME / ATE are computed. By default, last period
for which all individuals are observed. If ”all”, computes AME / ATE for all
periods, and their averages.

• listX: covariates for which the AME / ATE are computed. By default, all
covariates.

• level: level of confidence intervals. ”0.95” by default.

33 / 36



Introduction Identification Estimation and inference Simulations The Stata command mfelogit Conclusion

(Toy) example: determinants of unionization in the US
• Syntax:mfelogit-example - Printed on 08/11/2023 14:58:10

Page 1

1   use "https://www.stata-press.com/data/r17/union.dta", clear
2   
3   tabulate year, generate(y_)
4   drop y_1
5   
6   mfelogit union south y_* black, id("idcode") time("year")
7   
8   xtset idcode year
9   xtreg union age y_* black south, fe

• black automatically omitted as constant for each indiv. over time.

• Results on the ATE for south, with the FE logit and FE linear regs.:

FE Logit model FE linear reg.
Point est. -.072 -.071
95% CI [ -.095, -.048] [-.103, -.040]

34 / 36



Introduction Identification Estimation and inference Simulations The Stata command mfelogit Conclusion

Outline

1 Introduction

2 Identification

3 Estimation and inference

4 Simulations

5 The Stata command mfelogit

6 Conclusion

35 / 36



Introduction Identification Estimation and inference Simulations The Stata command mfelogit Conclusion

Conclusion

• Simple characterization of the identified set for the AME.

• Based on this, estimators of the sharp bounds of the AME.

• Alternative method based on a “proxy” of the AME and an upper bound on
its asymptotic bias.

• Though not optimal as n → ∞, very simple and seems to work very well for
usual n and T .

• Already a Stata command, mfelogit, available on SSC. Will be improved
soon hopefully!
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Intuition on the Markov moment problem for T = 1.
• If T = 1, we seek bounds on

∫ 1
0 x2dµ(x) given

∫ 1
0 xdµ(x) = m1.

• Using x2 ≤ x on [0, 1] and Jensen’s ineq., we get q1(m) = m2
1, q1(m) = m1.
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Figure: Moment space and bounds q
T

(m), qT (m) when T = 1.
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Solving the moment problem for any T Back

• Such ideas generalize for any T : qT (m) and qT (m) rational functions of m.

• Let T > 0 and for any m = (m0, ...,ms), s > T , let

HT (m) = (mi+j−2)1≤i,j≤T/2+1 , HT (m) = (mi+j−1 − mi+j)1≤i,j≤T/2 if T even
HT (m) = (mi+j−1)1≤i,j≤(T+1)/2 , HT (m) = (mi+j−2 − mi+j−1)1≤i,j≤(T+1)/2 if T odd.

• Then let HT (c) = det (HT (c)) and HT (c) = det
(
HT (c)

)
.

Proposition 3 (Extremal moments & Hankel determinants)

1. MT = closure
{

m ∈ RT+1 : Ht(m) > 0 and Ht(m) > 0, t = 1, ...,T
}

.

2. If m ∈ MT and HT (m) × HT (m) > 0, qT (m) < qT (m). Also,
q 7→ HT+1(m, q) is strictly ↑, linear and

HT+1(m, qT (m)) = 0 (and similarly for qT (m)).

• See the paper for the point identified case (when HT (m) × HT (m) = 0).
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Conditions for asymptotic normality in the 1st method Back

• Let γ(.) = (γ0(.), ..., γT (.)) with γt(x) = P(S = t|X = x).

• K be the kernel in the local polynomial (of degree ℓ ≥ pT/2) estimator of
γt(.) and hn ∈ R be the bandwidth.

Assumption 1

1. K has a compact support and is Lipschitz on RpT .
2. nh2(ℓ+1)

n → 0 and n[hpT
n / ln n]3 → ∞.

3. The pdf of X, fX , is C1 and bounded away from 0 on its bounded support.
4. γ0 is C ℓ+2 on Supp(X ).
5. Either |Supp(α|X = x)| > T/2 for all x ∈ Supp(X ), or

x 7→ |Supp(α|X = x) is constant.

• Point 5 needed b/c qt and qt not differentiable at all m ∈ ∂Mt if t ≥ 3.
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