
ddml: Double/debiased machine learning in
Stata

Mark E Schaffer (Heriot-Watt University, IZA)

Achim Ahrens (ETH Zürich)
Christian B Hansen (University of Chicago)
Thomas Wiemann (University of Chicago)

Package website: https://statalasso.github.io/

Latest version available here

2023 Stata Economics Virtual Symposium
November 9, 2023

https://statalasso.github.io/
https://statalasso.github.io/pdf/pres_ddml.pdf

Introduction
A rich and growing literature exploits machine learning to facilitate
causal inference.

A central focus: high-dimensional controls and/or instruments,
which can arise if
I we observe many controls/instruments
I controls/instruments enter through an unknown function

Belloni, Chernozhukov, and Hansen (2014) and Belloni et al.
(2012) propose estimators relying on the Lasso that allow for
high-dimensional controls/instruments.
⇒ Available via pdslasso in Stata (Ahrens, Hansen, and

Schaffer, 2020)

1 / 40

Introduction
What if we don’t want to use the lasso?
I The Lasso might not be the best-performing machine learner

for a particular problem.
I The Lasso relies on the approximate sparsity assumption,

which might not be appropriate in some settings.

Chernozhukov et al. (2018) propose Double/Debiased Machine
Learning (DDML or sometimes "Double ML") which allow to
exploit machine learners other than the Lasso.

Our contribution:
I We introduce ddml, which implements DDML for Stata.
I We provide simulation evidence on the finite sample

performance of DDML.
I Our recommendation is to use DDML in combination with

Stacking.

2 / 40

Background
Motivating example. The partially-linear model:

yi = θdi︸︷︷︸
causal part

+ g(xi)︸ ︷︷ ︸
nuisance

+εi .

How do we account for confounding factors xi? — The standard
approach is to assume linearity g(xi) = x ′i β and consider
alternative combinations of controls.

Problems:
I Non-linearity & unknown interaction effects
I High-dimensionality: we might have “many” controls
I We don’t know which controls to include

3 / 40

Background
Motivating example. The partially-linear model:

yi = θdi︸︷︷︸
causal part

+ g(xi)︸ ︷︷ ︸
nuisance

+εi .

Post-double selection (Belloni, Chernozhukov, and Hansen, 2014)
and post-regularization (Chernozhukov, Hansen, and Spindler,
2015) provide data-driven solutions for this setting.

Both “double” approaches rely on the sparsity assumption and use
two auxiliary lasso regressions: yi xi and di xi .

Related approaches exist for optimal IV estimation (Belloni et al.,
2012) and/or IV with many controls (Chernozhukov, Hansen, and
Spindler, 2015).

4 / 40

Background
These methods have been implemented for Stata in pdslasso
(Ahrens, Hansen, and Schaffer, 2020), dsregress (StataCorp)
and R (hdm; Chernozhukov, Hansen, and Spindler, 2016).

Example 1:

. clear

. use https://statalasso.github.io/dta/AJR.dta

. pdslasso logpgp95 avexpr ///
(lat_abst edes1975 avelf temp* humid* steplow-oilres)

Variables in parentheses are treated as high-dimensional controls.
The lasso selects from them.

5 / 40

Background
These methods have been implemented for Stata in pdslasso
(Ahrens, Hansen, and Schaffer, 2020), dsregress (StataCorp)
and R (hdm; Chernozhukov, Hansen, and Spindler, 2016).

Example 2:
Select controls, but specify that logem4 is an unpenalized
instrument (using partial(logem4)).

. ivlasso logpgp95 (avexpr=logem4) ///
(lat_abst edes1975 avelf temp* humid* steplow-oilres), ///
partial(logem4)

6 / 40

Background
There are advantages of relying on lasso:
I intuitive assumption of (approximate) sparsity
I computationally relatively cheap (due to plugin lasso penalty;

no cross-validation needed)
I Linearity has its advantages (e.g. extension to fixed effects;

Belloni et al., 2016)

But there are also drawbacks:
I What if the sparsity assumption is not plausible?
I There is a wide set of machine learners at disposable—Lasso

might not be the best choice.
I Lasso requires careful feature engineering to deal with

non-linearity & interaction effects.

=⇒ DDML (Chernozhukov et al., 2018)
7 / 40

Review of DDML
The partially-linear model:

Y = θ0D + g0(X) + U
D = m0(X) + V

Naive idea: We estimate conditional expectation functions (CEFs)
`0(X) = E [Y |X] and m0(X) = E [D|X] using ML and partial out
the effect of X (in the style of Robinson, 1988):

θ̂DDML =
(
1
n
∑

i
V̂ 2

i

)−1 1
n
∑

i
V̂i (Yi − ˆ̀),

where V̂ = D − m̂i .

8 / 40

Review of DDML
Yet, there is a problem:
I The estimation error of the first step (CEF estimation) may

spill-over to the second step (estimation of structural
parameters).

I For example, the estimation error `(xi)− ˆ̀ and vi may be
correlated due to over-fitting, leading to poor finite sample
performance (own-observation bias).

DDML relies on two ingredients:
1. cross-fitting: sample splitting with swapped samples
2. Neyman-orthogonal scores: score functions which are

robust to small perturbations

9 / 40

Review of DDML

Cross-fitting for the partially-linear model (DML 2)
Split the sample {(Yi ,Di ,Xi)}n

i=1 randomly in K folds of approximately
equal size. Denote Ik the set of observations included in fold k and Ick its
complement.

1. For each k ∈ {1, . . . ,K}:
1.1 Fit a CEF estimator to the sub-sample Ick using Yi as the

outcome and Xi as predictors. Obtain the out-of-sample
predicted values ˆ̀Ic

k
(Xi) for i ∈ Ik .

1.2 Fit a CEF estimator to the sub-sample Ick using Di as the
outcome and Xi as predictors. Obtain the out-of-sample
predicted values m̂Ic

k
(Xi) for i ∈ Ik .

2. Compute
θ̂n =

1
n
∑n

i=1
(
Yi − ˆ̀Ic

ki
(Xi)

)(
Di − m̂Ic

ki
(Xi)

)
1
n
∑n

i=i
(
Di − m̂Ic

ki
(Xi)

)2 . (1)

10 / 40

The importance of cross-fitting: An MC illustration
DDML+learner (orange) does almost as well as the oracle (green).
Learner with no cross-fitting (blue) is biased.
(Learner (a) is gradient-boosted trees; Learner (b) is neural net.)

(a) n = 1000 (b) n = 1000
Notes: Figures (a) and (b) compare the bias of the oracle estimator (which knows
the true data-generating process) and gradient-boosted trees with and without sample
splitting. We generate 1’000 samples of size n = 1000 using the partially-linear model
Yi = θ0Di + g(Xi) + εi , Di = g(Xi) + ui where the nuisance function is g(Xi) =
1{Xi1 > 0.3}1{Xi2 > 0}1{Xi3 > −1}. Gradient boosting uses 1200 trees, a maximum
tree depth of 6, a learning rate of 0.1, and early stopping with 20% validation sample.

11 / 40

Remarks
Remark 1: Number of folds.
I The number of cross-fitting folds K is a necessary tuning

choice. Theoretically, any finite value is admissable.
I Based on our simulation experience, we find that more folds

tends to lead to better performance, especially when the
sample size is small.

12 / 40

Remarks
Remark 2: Cross-fitting repetitions.

We recommend running the cross-fitting procedure more than once
using different random folds to assess randomness introduced via
the sample splitting.

Let θ̂(r)
n denote the DDML estimate from the r th cross-fit

repetition and ŝ(r)
n its associated standard error estimate with

r = 1, . . . ,R:

˘̂θn = median
((
θ̂(r)

n

)R

r=1

)

˘̂sn =

√√√√median
((

(ŝ(r)
n)2 + (θ̂(r)

n − ˘̂
θn)2

)R

r=1

)
.

ddml facilitates this using the rep(integer) options.

13 / 40

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Interactive model

Y = g0(D,X) + U (2)

where D is a scalar binary variable and that D is not required to be
additively separable from the controls X . In this setting, the
parameters of interest are

θATE
0 ≡ E [g0(1,X)− g0(0,X)]

θATET
0 ≡ E [g0(1,X)− g0(0,X)|D = 1],

(3)

which correspond to the average treatment effect (ATE) and
average treatment effect on the treated (ATET), respectively.

14 / 40

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Partially-linear IV model

Y = θ0D + g0(X) + U,

where we leverage instrumental variables Z for identification.

Let `0(X) ≡ E [Y |X], m0(X) ≡ E [D|X], and r0(X) ≡ E [Z |X].

We assume E [Cov(U,Z |X)] = 0 and E [Cov(D,Z |X)] 6= 0, and
consider the score function

ψ(W ; θ, `,m, r) =
(
Y − `(X)− θ(D −m(X))

)(
Z − r(X)

)
,

where W ≡ (Y ,D,X ,Z).

15 / 40

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Flexible Partially-Linear IV Model

Y = θ0D + g0(X) + U,

where we leverage instrumental variables Z for identification.

Let p0(Z ,X) ≡ E [D|Z ,X].

We assume E [U|Z ,X] = 0 and E [Var(E [D|Z ,X]|X)] 6= 0, and
consider the score function

ψ(W ; θ, `,m, p) =
(
Y − `(X)− θ(D −m(X))

)(
p(Z ,X)−m(X)

)
.

The Flexible Partially-Linear IV Model allows for approximation of
optimal instruments.

16 / 40

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Interactive IV model

Y = g0(D,X) + U

where D takes values in {0, 1}. The parameter of interest we
target is the local average treatment effect (LATE)

θ0 = E [g0(1,X)− g0(0,X)| p0(1,X) > p0(0,X)] , (4)

where p0(Z ,X) ≡ Pr(D = 1|Z ,X).

17 / 40

The choice of machine learner
Which machine learner should we use?

ddml supports a range of ML programs: pylearn, lassopack,
randomforest. — Which one should we use?

We don’t know whether we have a sparse or dense problem; linear
or non-linear. We don’t know whether, e.g., lasso or random
forests will perform better.

Stacking, as implemented in pystacked, provides a solution: We
use an ‘optimal’ combination of base learners.

18 / 40

The choice of machine learner
Which machine learner should we use?

The choice of CEF estimator can make a huge difference.
Left: the non-linear learner struggles with the linear DGP.
Right: the linear learner struggles with the non-linear DGP.

(a) Linear DGP (b) Non-linear DGP
Notes: Figures (a) and (b) compare the bias of the oracle estimator (which knows the true data-generating process),
cross-validated lasso and gradient-boosted trees under two alternative data-generating processes. We generate 1’000
samples of size n = 1000 using the partially-linear model Yi = θ0Di + g(Xi) + εi , Di = g(Xi) + ui where the
nuisance function is either g(Xi) =

∑
j

0.9j Xij (linear) or g(Xi) = 1{Xi1 > 0.3}1{Xi2 > 0}1{Xi3 > −1}

(non-linear DGP). Gradient boosting uses 1000 trees, a learning rate of 0.01 and early stopping with 20% validation
sample. See Ahrens et al. (2023, Section 4.2) for details. 19 / 40

The choice of machine learner
Which machine learner should we use?

We have already seen one answer: stacking.

DDML + stacking involves two layers of re-sampling:
1. Cross-fitting (upper) layer: Divide the sample into K

cross-fitting folds. In each cross-fitting step k ∈ {1, . . . ,K},
the stacking learner is trained on the training sample
Tk ≡ I \ Ik .

2. Cross-validation (lower) layer: Fitting the stacking learner
requires subdividing the training sample Tk further into V
cross-validation folds. We denote the cross-validation folds by
Tk,1, . . . ,Tk,V .

A DDML-specific variant: ‘pooled stacking’, i.e., stack once at the
end to get a single stacked learner (a single set of stacking weights
instead of K sets of weights).

20 / 40

The choice of machine learner

I1 I2 I3 I4 I5

1. Split sample into K cross-fitting folds (here K = 5).

2. For each k, define stacking training sample Tk ≡
I \ Ik, and split into V folds (here V = 3).

Tk,1 Tk,2 Tk,3

3. For each (k, v, j), fit base learner j on T c
k,v ≡

Tk \ Tk,v and obtain out-of-sample predicted values

ℓ̂
(j)
Tc
k,v

(Xi) for i ∈ Tk,v .

Tk,1 Tk,2 Tk,3

Learner j = 1

j = 2

j = 3

4. For each k, fit Y against ℓ̂
(1)
Tc
k
(Xi), . . . , ℓ̂

(J)
Tc
k
(Xi) with

i ∈ Tk to obtain stacking weights ŵk,j . Obtain out-of-

sample predicted values as
∑

j
ŵk,j ℓ̂

(j)
Tk

for i ∈ Ik.

21 / 40

The choice of machine learner
Short-stacking takes a short-cut and is computationally much
cheaper. The final learner is fit on the cross-fitted predicted values.

I1 I2 I3 I4 I5

1. Split sample into K cross-fitting folds (here K = 5).

2. For each (k, j), fit learner j on the train-
ing sample j and obtain cross-fitted values as
ℓ̂
(j)
Ic
k
(Xi) for i ∈ Ik.

3. Use final learner to fit Y against ℓ̂
(1)
Ic
k
(Xi), . . . , ℓ̂

(J)
Ic
k
(Xi) on

full sample, obtain short-stacking weights ŵj and cross-fitted

short-stacked values as
∑

j
ŵj ℓ̂

(j)
Ic
k
(Xi).

22 / 40

The ddml package
We introduce ddml for Stata:
I Compatible with various ML programs in Stata (e.g.

lassopack, pylearn, randomforest).
→ Any program with the classical “reg y x” syntax and

post-estimation predict will work.
I Short (one-line) and flexible multi-line version
I Five models supported: partially-linear model, interactive

model, interactive IV model, partially-linear IV model, flexible
partially-linear IV.

I ddml supports data-driven combinations of multiple machine
learners via stacking by leveraging pystacked (Ahrens,
Hansen, and Schaffer, 2022; Pedregosa et al., 2011; Buitinck
et al., 2013).

I Standard stacking, short-stacking, pooled stacking all
supported.

I Forthcoming ddml paper in The Stata Journal (working paper
version: Ahrens, Hansen, and Schaffer (2022)).

23 / 40

Extended ddml syntax
Step 1: Initialize ddml and select model.

ddml init model
[

, kfolds(integer) fcluster(varname)
foldvar(varlist) reps(integer) mname(name) prefix

]
where model is partial, interactive, iv, fiv, or interactiveiv.

The reps option repeats the estimation for the specified number of
different random cross-fit splits. In this case ddml will report the median
or mean estimated coefficient(s) of interest across resamples.

Step 2: Add ML programs for estimating conditional expectations.

ddml cond_exp : command depvar vars
[

, cmdopt
]

where cond_exp selects the conditional expectation to be estimated by
the machine learning program command. command is a ML program
that supports the standard reg y x-type syntax. cmdopt are specific to
that program.

Multiple estimation commands per equation are allowed.
24 / 40

Extended ddml syntax

cond_exp partial interactive iv fiv late
E[Y|X] X X X
E[Y|X,D] X
E[Y|X,Z] X

E[D|X] X X X X
E[D|Z,X] X X

E[Z|X] X X

Table: The table lists the conditional expectations which need to be
specified for each model.

25 / 40

Extended ddml syntax
Step 3: Cross-fitting.

This step implements the cross-fitting algorithm (the most
time-consuming step).

ddml crossfit
[

, mname(name) shortstack poolstack

nostdstack finalest(name)
]

Standard stacking and pooled-stacking rely on ddml’s pystacked
integration; short-stacking is available with all learners.

Step 4: Estimation of causal effects

In the last step, we estimate the parameter of interest for all combination
of learners added in Step 2.

ddml estimate
[

, mname(name) robust cluster(varname)
vce(vcetype) att trim spec(string) rep(string)

]

26 / 40

Quick syntax: qddml

Syntax for Partially-Linear and Interactive Model

qddml depvar treatment_vars (controls),
model(partial|interactive)

[
options

]

Syntax for IV models

qddml depvar (controls) (treatment_vars=excluded_instruments) ,

model(iv|late|fiv)
[

options
]

where ddml_options options are internally passed to the ddml
subroutines.

We illustrate with a qddml at the end of this presentation.

27 / 40

Simple ddml example
We demonstrate the use of ddml using the partially-linear model
by extending the analysis of 401(k) eligibility and total financial
wealth of Poterba, Venti, and Wise (1995). The data consists of
n = 9915 households from the 1991 SIPP.

In this simple example, we use two learners, OLS and
cross-validated lasso. This gives us 4 possible combinations of
learners for Y and D; ddml will report all 4 and the minimum-MSE
specification in detail.

Step 0: Load data, define globals
. use "sipp1991.dta", clear
. global Y net_tfa
. global X age inc educ fsize marr twoearn db pira hown
. global D e401

Step 1: Initialise ddml and select model:
. set seed 123
. ddml init partial, kfolds(4) 28 / 40

Simple ddml example (cont’d.)
Step 2: Add supervised ML programs for estimating conditional
expectations. We used pystacked as the front-end for
sklearn.linear_model.LassoCV.

. *** add learners for E[Y|X]

. ddml E[Y|X]: reg $Y $X
Learner Y1_reg added successfully.
. ddml E[Y|X]: pystacked $Y c.($X)##c.($X), type(reg) m(lassocv)
Learner Y2_pystacked added successfully.
. *** add learners for E[D|X]
. ddml E[D|X]: reg $D $X
Learner D1_reg added successfully.
. ddml E[D|X]: pystacked $D c.($X)##c.($X), type(reg) m(lassocv)
Learner D2_pystacked added successfully.

Step 3: Cross-fitting with 4 folds
. ddml crossfit
Cross-fitting E[y|X] equation: net_tfa
Cross-fitting fold 1 2 3 4 ...completed cross-fitting
Cross-fitting E[D|X] equation: e401
Cross-fitting fold 1 2 3 4 ...completed cross-fitting

29 / 40

Simple ddml example (cont’d.)
Step 4: Estimation of causal effects

. ddml estimate, robust allcombos

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_reg Y2_pystacked

D equations (1): e401
e401 learners: D1_reg D2_pystacked

DDML estimation results:
spec r Y learner D learner b SE

1 1 Y1_reg D1_reg 5986.657 (1523.694)
2 1 Y1_reg D2_pystacked 9563.875 (1389.172)
3 1 Y2_pystacked D1_reg 9175.519 (1371.065)

* 4 1 Y2_pystacked D2_pystacked 9788.291 (1339.797)
* = minimum MSE specification for that resample.
Min MSE DDML model
y-E[y|X] = y-Y2_pystacked_1 Number of obs = 9915
D-E[D|X] = D-D2_pystacked_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 9788.291 1339.797 7.31 0.000 7162.337 12414.24
_cons 90.93481 534.8139 0.17 0.865 -957.2813 1139.151

30 / 40

Extended ddml example
We use the same dataset and model as before, but employ stacking
with a wider range of learner. pystacked does the standard
stacking; ddml does the short-stacking and pooled stacking.

We could ask for all versions of stacking at the cross-fitting stage.
Instead, for illustration purposes, we first estimate using only
standard stacking and then re-stack to get the short-stacking and
pooled stacking results (re-stacking is very fast).

Step 0: Load data, define globals
. use "sipp1991.dta", clear
. global Y net_tfa
. global X age inc educ fsize marr twoearn db pira hown
. global D e401

Step 1: Initialise ddml and select model:
. set seed 123
. ddml init partial, kfolds(4)
warning - model m0 already exists
all existing model results and variables will
be dropped and model m0 will be re-initialized

31 / 40

Extended ddml example (cont’d.)
Step 2: Add supervised ML programs for estimating conditional
expectations.

. *** add learners for E[Y|X]

. ddml E[Y|X]: pystacked $Y $X || ///
> method(ols) || ///
> m(lassocv) xvars(c.($X)##c.($X)) || ///
> m(ridgecv) xvars(c.($X)##c.($X)) || ///
> m(rf) pipe(sparse) opt(max_features(5)) || ///
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning_rate(0.01)) , ///
> njobs(5)
Learner Y1_pystacked added successfully.
. *** add learners for E[D|X]
. ddml E[D|X]: pystacked $D $X || ///
> method(ols) || ///
> m(lassocv) xvars(c.($X)##c.($X)) || ///
> m(ridgecv) xvars(c.($X)##c.($X)) || ///
> m(rf) pipe(sparse) opt(max_features(5)) || ///
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning_rate(0.01)) , ///
> njobs(5)
Learner D1_pystacked added successfully.

32 / 40

Extended ddml example (cont’d.)
Step 3: Cross-fitting with 4 folds; also report stacking weights

. qui ddml crossfit

. ddml extract, show(stweights)
mean stacking weights across folds/resamples for D1_pystacked (e401)
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .01557419 .01557419

lassocv 2 .10077907 .10077907
ridgecv 3 .43674242 .43674242

rf 4 .02946916 .02946916
gradboost 5 .41743516 .41743516
mean stacking weights across folds/resamples for Y1_pystacked (net_tfa)
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .09662631 .09662631

lassocv 2 .46475744 .46475744
ridgecv 3 .32388159 .32388159

rf 4 .09392877 .09392877
gradboost 5 .0145518 .0145518

Note that these are mean weights across 4 cross-fits.
33 / 40

Extended ddml example (cont’d.)
Step 4: Estimation of causal effects - standard stacking only

. ddml estimate, robust

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_pystacked

D equations (1): e401
e401 learners: D1_pystacked

DDML estimation results:
spec r Y learner D learner b SE

st 1 Y1_pystacked D1_pystacked 9406.385 (1300.170)
Stacking DDML model
y-E[y|X] = y-Y1_pystacked_1 Number of obs = 9915
D-E[D|X] = D-D1_pystacked_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 9406.385 1300.17 7.23 0.000 6858.099 11954.67
_cons 199.9921 535.7477 0.37 0.709 -850.0541 1250.038

Stacking final estimator: nnls1

34 / 40

Extended ddml example (cont’d.)
Step 4: Estimation of causal effects - all stacking approaches

. ddml estimate, robust shortstack poolstack

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_pystacked

D equations (1): e401
e401 learners: D1_pystacked

DDML estimation results:
spec r Y learner D learner b SE

st 1 Y1_pystacked D1_pystacked 9406.385 (1300.170)
ss 1 [shortstack] [ss] 9602.257 (1300.825)
ps 1 [poolstack] [ps] 9500.180 (1298.057)

Shortstack DDML model
y-E[y|X] = y-Y_net_tfa_ss_1 Number of obs = 9915
D-E[D|X] = D-D_e401_ss_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 9602.257 1300.825 7.38 0.000 7052.686 12151.83
_cons 83.96648 533.9871 0.16 0.875 -962.6289 1130.562

Stacking final estimator: nnls1

35 / 40

Extended ddml example (cont’d.)
Step 3: Cross-fitting details - pooled stacking weights

. ddml extract, show(psweights)
pool-stacked weights across resamples for e401
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .01402517 .01402517

lassocv 2 .07247975 .07247975
ridgecv 3 .45850746 .45850746

rf 4 .02897607 .02897607
gradboost 5 .42601154 .42601154
pool-stacked weights across resamples for net_tfa
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .07029722 .07029722

lassocv 2 .54372578 .54372578
ridgecv 3 .28352699 .28352699

rf 4 .10245001 .10245001
gradboost 5 0 0

Pooled stacking uses a single set of weights across 4 cross-fits.

36 / 40

Extended ddml example (cont’d.)
Step 3: Cross-fitting details - short-stacking weights

. ddml extract, show(ssweights)
short-stacked weights across resamples for e401
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 0 0

lassocv 2 .24106979 .24106979
ridgecv 3 .34172854 .34172854

rf 4 .05456544 .05456544
gradboost 5 .36263623 .36263623
short-stacked weights across resamples for net_tfa
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .07689168 .07689168

lassocv 2 0 0
ridgecv 3 .79121732 .79121732

rf 4 0 0
gradboost 5 .131891 .131891

Short-stacking uses a single set of weights. Standard stacking is
not required so estimation using just short-stacking is fast.

37 / 40

qddml example: partially-linear model
qddml is the one-line (‘quick’) version of ddml and uses a syntax
similar to pds/ivlasso.

The qddml default when used with pystacked is to do
short-stacking only (much faster than standard stacking).

NB: This can also be done with ddml- use the nostdstack option
at the cross-fit stage.

Here is how to do the same DDML estimation in one line using
qddml. We choose a different model name for the Mata object and
use the prefix option so the estimated model and conditional
expectations in Stata’s memory don’t overwrite those from the
previous estimation.

NB: All ddml postestimation commands and utilities also work
after qddml. Below we illustrate the use of the replay option of
ddml estimate.

38 / 40

qddml example: partially-linear model (cont’d.)
. global pystacked_opts || ///
> method(ols) || ///
> m(lassocv) xvars(c.($X)##c.($X)) || ///
> m(ridgecv) xvars(c.($X)##c.($X)) || ///
> m(rf) pipe(sparse) opt(max_features(5)) || ///
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning_rate(0.01)) , ///
> njobs(5)
.
. set seed 123
. // suppress output with quietly
. qui qddml $Y $D ($X), model(partial) kfolds(4) robust ///
> pystacked($pystacked_opts)
.
. // illustrate replay option
. ddml estimate, spec(ss) rep(1) notable replay
Shortstack DDML model
y-E[y|X] = y-Y_net_tfa_ss_1 Number of obs = 9915
D-E[D|X] = D-D_e401_ss_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 9602.257 1300.825 7.38 0.000 7052.686 12151.83
_cons 83.96648 533.9871 0.16 0.875 -962.6289 1130.562

Stacking final estimator:

39 / 40

Summary
I ddml implements Double/Debiased Machine Learning for

Stata:
I Compatible with various ML programs in Stata
I Short (one-line) and flexible multi-line version
I Uses Stacking Regression as the default machine learner;

implemented via separate program pystacked
I 5 models supported

I The advantage to pdslasso is that we can make use of
almost any machine learner.

I But which machine learner should we use?
I We suggest stacking. We don’t know which learner is best

suited for a particular problem.
I Stacking allows to consider multiple learners in a joint

framework, and thus reduces the risk of misspecification.
I ddml supports 3 forms of stacking: standard stacking,

short-stacking and pooled stacking. NB: Our MC results
(separate paper) suggest short-stacking performs as well or
better than the other two versions and is much faster; our
recommended default.

40 / 40

References I
Ahrens, Achim, Christian B. Hansen, and Mark E. Schaffer (2020).

“lassopack: Model selection and prediction with regularized regression
in Stata”. In: The Stata Journal 20.1, pp. 176–235. url:
https://doi.org/10.1177/1536867X20909697.

– (2022). pystacked: Stacking generalization and machine learning in
Stata. Forthcoming in The Stata Journal. url:
https://arxiv.org/abs/2208.10896.

Ahrens, Achim et al. (2023). ddml: Double/debiased machine learning in
Stata. Forthcoming in The Stata Journal. url:
https://arxiv.org/abs/2301.09397.

Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen (2014).
“Inference on treatment effects after selection among high-dimensional
controls”. In: Review of Economic Studies 81, pp. 608–650. url:
https://doi.org/10.1093/restud/rdt044.

https://doi.org/10.1177/1536867X20909697
https://arxiv.org/abs/2208.10896
https://arxiv.org/abs/2301.09397
https://doi.org/10.1093/restud/rdt044

References II
Belloni, Alexandre et al. (2012). “Sparse Models and Methods for

Optimal Instruments With an Application to Eminent Domain”. In:
Econometrica 80.6. Publisher: Blackwell Publishing Ltd,
pp. 2369–2429. url: http://dx.doi.org/10.3982/ECTA9626.

Belloni, Alexandre et al. (2016). “Inference in High Dimensional Panel
Models with an Application to Gun Control”. In: Journal of Business &
Economic Statistics 34.4. Genre: Methodology, pp. 590–605. url:
https://doi.org/10.1080/07350015.2015.1102733 (visited on
02/14/2015).

Buitinck, Lars et al. (2013). “API design for machine learning software:
experiences from the scikit-learn project”. In: ECML PKDD Workshop:
Languages for Data Mining and Machine Learning, pp. 108–122.

Chernozhukov, Victor, Christian Hansen, and Martin Spindler (May
2015). “Post-Selection and Post-Regularization Inference in Linear
Models with Many Controls and Instruments”. In: American Economic
Review 105.5, pp. 486–490. url:
https://doi.org/10.1257/aer.p20151022.

http://dx.doi.org/10.3982/ECTA9626
https://doi.org/10.1080/07350015.2015.1102733
https://doi.org/10.1257/aer.p20151022

References III
Chernozhukov, Victor, Christian Hansen, and Martin Spindler (2016).

“High-dimensional metrics in R”. In: 401, pp. 1–32.
Chernozhukov, Victor et al. (2018). “Double/debiased machine learning

for treatment and structural parameters”. In: The Econometrics
Journal 21.1. tex.ids= Chernozhukov2018a publisher: John Wiley &
Sons, Ltd (10.1111), pp. C1–C68. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12, pp. 2825–2830.

Poterba, James M, Steven F Venti, and David A Wise (1995). “Do 401
(k) contributions crowd out other personal saving?” In: Journal of
Public Economics 58.1, pp. 1–32.

Robinson, P. M. (1988). “Root-N-Consistent Semiparametric
Regression”. In: Econometrica 56.4. ISBN: 00129682, p. 931. url:
http://www.jstor.org/stable/1912705?origin=crossref.

https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097
https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097
http://www.jstor.org/stable/1912705?origin=crossref

	Appendix
	References

