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Introduction (1 / 23)

Topic of the chapter
Instrumental variables (IV) with heterogeneous treatment effects (HTEs)

→ Unobservable heterogeneity

Complicates IV methods tremendously

An enormous and sometimes contentious cross-disciplinary literature

Featured centrally in three Nobel prizes (Heckman, Imbens, Angrist)

→ Speaks to several fundamental issues in empirical methodology

Thematic organization of the chapter/this talk
1 Background: why are HTEs important with IV? Key concepts
2 Reverse Engineering: Interpreting Linear Estimators
3 Forward Engineering: Estimating Target Parameters
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IV in a Nutshell (2 / 23)

Observed variables
Yi outcome

Di endogenous variable (“treatment”)

Zi instrument Zi

Di Yi

εi

Three assumptions in every IV context
1 Exclusion: Zi has no causal effect on Yi

2 Exogeneity: Zi not associated with εi

3 Relevance: Zi and Di are associated

Our focus
Allowing unobserved heterogeneity in the causal effect of Di on Yi

Taking exclusion as given, exogeneity also (w/ a caveat)



Are Heterogeneous Treatment Effects Important? (3 / 23)

Is this complication worth it?
Constant effects will always be an escape back to safety

Slightly more generally, unsystematic HTEs (uncorrelated with Di)

Returns to college (Becker 1964, Griliches 1977, Card 1999)
“Ability” — but how about heterogeneous skills/complementarity?

College important for turning abstract reasoning skills into $$$

Not important for turning “working with hands” skills into $$$

⇒ Systematic HTEs due to unobservables (skills)

An example of a general phenomenon
HTEs due to nature and “production function”

Agent chooses Di while considering effect on Yi (a common IV story!)

⇒ Systematic HTEs — unobserved heterogeneity correlated with Di
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The Classical Linear Model (4 / 23)

Yi = β0 + β1Di + εi

Two restrictions of this model (interpreted literally . . . )
1 Linear treatment effect: Not our focus (not restrictive if Di ∈ {0, 1})
2 Constant treatment effect: β1 does not vary with i

→ More generally, does not vary with unobservables (no HTEs)

Notation for relaxing constant treatment effects

Nonseparable model: Yi = g(Di, εi)

Potential outcomes: Yi(d), with Yi = Yi(Di)

e.g. Yi = (1− Di)Yi(0) + DiYi(1) if Di ∈ {0, 1}

Potential outcomes notation more popular (but it’s just notation)
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Selection Models (5 / 23)

Why do HTEs complicate IV?
It matters “who” takes treatment

Modeling selection a way to organize (and restrict) this relationship

Consider Di ∈ {0, 1} for now

Threshold-crossing model (e.g. Heckman 1979)

Di = 1[Vi ≤ γZi]

Potential treatments with monotonicity (Imbens & Angrist 1994)

Di = (1− Zi)Di(0) + ZiDi(1) and P[Di(1) ≥ Di(0)] = 1︸ ︷︷ ︸
the monotonicity condition

always-takers, never-takers, compliers — no defiers

Different notation for the same model (Vytlacil, 2002)
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Weak vs. Strong Exogeneity (6 / 23)

Weak exogeneity
(Yi(0),Yi(1)) independent of Zi given covariates

Nonparametric analog of E[εiZi] = 0

Strong exogeneity
(Yi(0),Yi(1),Di(0),Di(1)) independent of Zi given covariates

Equivalently, (Yi(0),Yi(1),Vi) independent of Zi given covariates

Implications of strong exogeneity
Can identify the causal effect of the instrument on treatment

Selection model is “causal” vs. statistical first stage

Different correlated instruments cannot be considered in isolation

→ Zi2 is part of Vi (or Di(0),Di(1)) if not controlled for

e.g. tuition and distance in returns to college literature
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Target Parameters (7 / 23)

HTEs require confronting a new question
Who do we want to estimate treatment effects for?

Not a question we had to ask in the classical model (one effect: β)

Choice will (naturally) involve trade-offs — what should guide them?

Target parameter: the object we are trying to estimate

Why are we attempting causal inference to begin with?

Policy — trying to inform a decision

→ Usually provides a clear target parameter (Heckman & Vytlacil 2005)

“Science” — knowledge for the sake of knowledge (?)

Less guidance on the appropriate target parameter

Easy to interpret? Generalizable? Difficulty to identify/estimate?
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Two Approaches to Incorporating HTEs into IV (8 / 23)

Reverse engineering: interpreting linear estimators
Start with a commonly-used estimator (linear IV/TSLS)

Determine assumptions under which it estimates something interesting

“Reverse” because it starts with the tool

→ The literature on local average treatment effects (LATEs)

Forward engineering: estimating target parameters
Start with a target parameter

Derive an estimator of it under some assumptions

“Forward” because it starts with the problem

→ The literature on selection corrections/control functions
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Estimators, Estimands, and Weak Causality (9 / 23)

Reverse engineering requires a new definition
Estimator: a procedure mapping data into a number

Estimand: what an estimator is consistent for (what it estimates)

What’s the thought process?
Classical linear IV model misspecified with HTEs (and/or nonlinearity)

Maybe estimand has a useful interpretation robust to misspecification?

Useful interpretation?
Usually: convex-weighted average of subgroup treatment effects:

the estimand =
∑

g

non-negative weights that sum to one︷︸︸︷
ω(g)E[Yi(1)− Yi(0)|Gi = g]︸ ︷︷ ︸

subgroup treatment effects

Weak causality: all effects positive⇒ estimand positive
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Baseline LATE: Binary/Binary, No Covariates (10 / 23)

Imbens & Angrist (1994) local average treatment effect (LATE)
Given monotonicity and strong exogeneity,

E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Di|Zi = 1]−E[Di|Zi = 0]︸ ︷︷ ︸
Wald estimand

= E[Yi(1)− Yi(0)|
subpopulation of compliers (Gi = (0, 1))︷ ︸︸ ︷

Di(0) = 0,Di(1) = 1]︸ ︷︷ ︸
average treatment effect for compliers (LATE)

Misspecification-robust interpretation of linear IV

LATE =

because Zi is binary (and only in that case)︷ ︸︸ ︷
E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Di|Zi = 1]−E[Di|Zi = 0]︸ ︷︷ ︸
Wald estimand

=
C[Yi,Zi]

C[Di,Zi]︸ ︷︷ ︸
simple linear IV estimand

The “simple” linear IV estimand instruments [1,Di]
′ with [1,Zi]

′

→ e.g. ivregress 2sls y (d = z) coefficient on d
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Generalizing the LATE Interpretation (11 / 23)

Departures from the baseline case
Instrument: multivalued — no longer a simple binary contrast
Weighted average of LATEs with weights that depend on the distribution of Z

Assumptions: failure of monotonicity
e.g. unordered instruments like judges (Frandsen et al 2023), multiple instruments (Mogstad et al

2021), or just because it’s a questionable assumption (Angrist et al 1996, Angrist & Evans 1998)

Treatment: multivalued — ordered or unordered
Multivalued ordered extends nicely; unordered case is complicated

Covariates: controlling for them (or interacting them)
Parametric assumptions become necessary for weakly causal interpretation (Blandhol et al 2022)

All of these cases caveat the LATE interpretation of linear IV
Might lead to multiple possible choices of a reasonable estimator

Structure of estimand becomes complicated, hard to transfer

Additional assumptions may be needed for a “good” interpretation
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Covariates (based on Blandhol et al 2022) (12 / 23)

Two roles for covariates
1 Support exogeneity of the instrument
2 Reduce residual variation and help tighten inference (standard errors)

Nonparametric conditioning
Sample selection (e.g. married women 21–35, only married once, . . . )

Doesn’t create any conceptual complications

But runs into the curse of dimensionality quickly

Linearly controlling for covariates
The usual way of implementing fine-grained “conditioning”

Changes the estimand in a non-obvious way

(Linear regression is both beautiful and complicated . . . )
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LATE Interpretations with Covariates (13 / 23)

The linear IV estimand
Control for a vector of covariates Xi:

E[YiZ̃i]

E[DiZ̃i]
where Z̃i ≡ Zi − X′i

coefficients from regressing Zi onto Xi (δ)︷ ︸︸ ︷
E[XiX′i ]

−1 E[XiZi]︸ ︷︷ ︸
population fitted values from linear regression of Zi onto Xi

≡ Zi − X′iδ.

Both Zi and Xi variation gets used

numerator of IV estimand︷ ︸︸ ︷
E[YiZ̃i] = E

[
E[YiZ̃i|Xi]

]
=

variation in Yi caused by Zi︷ ︸︸ ︷
E
[

C[Yi,Zi|Xi]
]

+

covariation between Yi and Xi︷ ︸︸ ︷
E
[
Yi E[Z̃i|Xi]

]

The first term is what we intuitively want from an IV estimand

The second term is bad variation . . .
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Level-Dependence of Linear IV with Covariates (14 / 23)

The problematic second term again
covariation between Yi and Xi︷ ︸︸ ︷

E
[
YiE[Z̃i|Xi]

]

Problematic because it introduces level-dependence
The levels of Yi reflect always-takers, never-takers

Level-dependent estimands are not weakly causal

→ Effects could all be positive, but estimand negative due to levels

When does level-dependence go away?
Classical linear model with constant effects

Rich covariates: E[Zi|Xi] = δ′Xi is actually linear . . .



Level-Dependence of Linear IV with Covariates (14 / 23)

The problematic second term again
covariation between Yi and Xi︷ ︸︸ ︷

E
[
YiE[Z̃i|Xi]

]
Problematic because it introduces level-dependence

The levels of Yi reflect always-takers, never-takers

Level-dependent estimands are not weakly causal

→ Effects could all be positive, but estimand negative due to levels

When does level-dependence go away?
Classical linear model with constant effects

Rich covariates: E[Zi|Xi] = δ′Xi is actually linear . . .



Level-Dependence of Linear IV with Covariates (14 / 23)

The problematic second term again
covariation between Yi and Xi︷ ︸︸ ︷

E
[
YiE[Z̃i|Xi]

]
Problematic because it introduces level-dependence

The levels of Yi reflect always-takers, never-takers

Level-dependent estimands are not weakly causal

→ Effects could all be positive, but estimand negative due to levels

When does level-dependence go away?
Classical linear model with constant effects

Rich covariates: E[Zi|Xi] = δ′Xi is actually linear . . .



Rich Covariates (15 / 23)

Definition

E[Z̃i|Xi = x] = E[Zi|Xi = x]︸ ︷︷ ︸
must be linear

−δ′x = 0 for all x

Necessity of rich covariates
If it doesn’t hold, then linear IV is not weakly causal (necessarily)

Level-dependence!

Ensuring rich covariates

Satisfied if Xi and Zi are independent (e.g. experiment, fuzzy RD)

Satisfied with an extremely flexible specification of Xi

e.g. “saturate and weight” in Mostly Harmless

Otherwise it’s a parametric assumption

→ At odds with the motivation for reverse-engineering
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→ At odds with the motivation for reverse-engineering
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Thoughts on Reverse Engineering (16 / 23)

LATE interpretations of linear IV
It holds in special cases, not general cases

Recent textbooks discuss binary/binary case but nothing else

Yet widely invoked in empirical literature (Blandhol et al 2022)

Mostly Harmless wishcasting (Angrist & Pischke 2009, pg. 173):
The econometric tool remains 2SLS and the interpretation remains fundamentally
similar to the basic LATE result, with a few bells and whistles . . . These results
provide a simple casual [sic] interpretation for 2SLS in most empirically relevant
settings.

Does this matter “in practice?”
Interesting question: reverse engineering is a purely theoretical exercise

→ Same number, different interpretation

So the theory is the practice
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Forward engineering: choose target parameter, then the estimator

Roughly five approaches

1 Assume constant treatment effects (always an option!)
2 Estimate LATEs directly

→ Not often done, but there are several proposed/promising methods
3 Estimate selection model jointly with outcome (control function)

→ Follows a long line of literature dating to Gronau-Heckman (1974)
4 Bounds that do not use a selection model

→ e.g. Manski (1994), but less often used in practice
5 Rank invariance (e.g. Chernozhukov & Hansen 2005)

→ Generally viewed as too strong in practice

Today I’ll talk briefly about 2 and 3
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Estimating LATEs (18 / 23)

The problem with forward engineering
Using a parametric estimator but wanting nonparametric robustness

(And not acknowledging implicit parametric assumptions!)

Obvious solution: change the estimator

Double/debiased machine learning (Chernozhukov et al 2018)

One approach: use DDML to ensure rich covariates

→ Estimand will be weakly causal, but still a weighted average of LATEs
Another approach: use DDML to estimate a more natural object:

E[Yi(1)− Yi(0)|Di(1) > Di(0)]︸ ︷︷ ︸
unconditional LATE

=
E [E[Yi|Zi = 1,Xi]−E[Yi|Zi = 0,Xi]]

E [E[Di|Zi = 1,Xi]−E[Di|Zi = 0,Xi]]

Requires estimating three functions of Xi (rf/fs, plus E[Zi|Xi])

ddml for Stata (Ahrens et al 2023) DoubleML for R (Bach et al 2021)
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Selection Corrections (19 / 23)

Idea
Model Yi(d) and Di(z) jointly (given Xi) — “control function”

No magic here, but makes target parameters/parameterizations explicit

Notation
Easier to formalize with latent variable notation for selection:

Di = 1[Vi ≤ g(Zi,Xi)] normalized to Di = 1[Ui ≤ p(Zi,Xi)]

where Ui ∼ Unif[0, 1]︸ ︷︷ ︸
latent resistance to treatment

and p(z, x) ≡ P[Di = 1|Zi = z,Xi = x]︸ ︷︷ ︸
the propensity score

Recall: equivalent to the monotonicity condition (Vytlacil, 2002)

Marginal treatment response
m(d|u, x) ≡ E[Yi(d)|Ui = u,Xi = x] — contains all (mean) information

Organizes systematic unobservable variation in potential outcomes



Selection Corrections (19 / 23)

Idea
Model Yi(d) and Di(z) jointly (given Xi) — “control function”

No magic here, but makes target parameters/parameterizations explicit

Notation
Easier to formalize with latent variable notation for selection:

Di = 1[Vi ≤ g(Zi,Xi)] normalized to Di = 1[Ui ≤ p(Zi,Xi)]

where Ui ∼ Unif[0, 1]︸ ︷︷ ︸
latent resistance to treatment

and p(z, x) ≡ P[Di = 1|Zi = z,Xi = x]︸ ︷︷ ︸
the propensity score

Recall: equivalent to the monotonicity condition (Vytlacil, 2002)

Marginal treatment response
m(d|u, x) ≡ E[Yi(d)|Ui = u,Xi = x] — contains all (mean) information

Organizes systematic unobservable variation in potential outcomes



Selection Corrections (19 / 23)

Idea
Model Yi(d) and Di(z) jointly (given Xi) — “control function”

No magic here, but makes target parameters/parameterizations explicit

Notation
Easier to formalize with latent variable notation for selection:

Di = 1[Vi ≤ g(Zi,Xi)] normalized to Di = 1[Ui ≤ p(Zi,Xi)]

where Ui ∼ Unif[0, 1]︸ ︷︷ ︸
latent resistance to treatment

and p(z, x) ≡ P[Di = 1|Zi = z,Xi = x]︸ ︷︷ ︸
the propensity score

Recall: equivalent to the monotonicity condition (Vytlacil, 2002)

Marginal treatment response
m(d|u, x) ≡ E[Yi(d)|Ui = u,Xi = x] — contains all (mean) information

Organizes systematic unobservable variation in potential outcomes



Linear Regression Implementation (20 / 23)

Parameterize the MTR

Assume m(d|u, x) =
∑L

`=1 θ`b`(d|u, x) for some known functions b

e.g. m(0|u, x) = θ1 + θ2u + θ3u2 + θ′4x, m(1|u, x) = θ5 + θ6u + θ7u2 + θ′8x

Identification determined by flexibility relative to instrument

Allows for extrapolation via u if desired

Linear regression with observed outcomes

⇒ E[Yi|Di,Xi,Zi] =
∑L

`=1 θ`b̄`(Di,Xi,Zi) for identified b̄`(d, x, z)

Simply regress Yi onto b̄(Di,Xi,Zi)→ estimate of θ, and thus m

Integrate appropriately to estimate your favorite target parameter

Bootstrap for inference (generated regressor)

Do the integration for me!
mtefe for Stata (Andresen, 2018), ivmte for R (Shea & Torgovitsky, 2023)
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Marginal treatment effect (Heckman & Vytlacil 1999, 2005)
Looked at m(1|u, x)− m(0|u, x) directly (subtle but key difference)

Traditionally focused on continuous instruments, kernel estimation

Discrete instruments: Brinch et al (2017), Mogstad et al (2018)

→ The latter paper also considers partial identification (bounds) — ivmte

Linear basis (semiparametric/nonparametric) approaches easier to apply

Empirical applications of MTE methods are numerous and growing
Arnold, Dobbie, Yang (2018), Kline, Walters (2016), Cornelissen, Dustmann, Raute, Schonberg (2018),

Autor, Kostol, Mogstad, Setzler (2019), Ito, Ida, Tanaka (2023), Agan, Doleac, Harvey (2023), . . .

Frontiers of the methodology
Multivalued Di (e.g. Rose & Shem-Tov 2021, Norris et al 2023)

Binary Di when monotonicity fails (e.g. Mogstad et al 2021)
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Instrumental variables with heterogeneous treatment effects
Complicated, but we think it’s worth it — many seem to agree

Interesting that there is not so much disagreement on the model

However there is disagreement on the right way to use it

Reverse engineering (e.g. Mostly Harmless)
Seductively easy (same estimator!)

But doesn’t actually have firm theoretical foundations

Even when it does, the estimand is hard to interpret/transfer

Forward engineering
Selection correction/control function is most popular

MTE for binary treatment is tested — other cases more experimental

Or estimate LATEs directly — several methods, not well tested (yet)
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The End (23 / 23)

Thank you

Additional comments welcome, please email:
torgovitsky@uchicago.edu
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