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Motivation

• What happens when we use the IV/2SLS estimator to estimate:

Y = α + τD + X β + u, (1)

where D is an endogenous binary “treatment”, Z is a binary instrumental

variable for D and X is a vector of additional covariates.

• Following a series of papers by Imbens and Angrist (1994), Angrist and

Imbens (1995), and Angrist, Imbens, and Rubin (1996), most papers

interpret an IV estimate of τ as the local average treatment effect

(LATE)

• In fact: when X is nonempty, τ is a weighted average of X -specific LATEs

(Angrist and Imbens 1995) with rather undesirable weights (S loczyński

2022).

• This paper: weighting type estimators of the LATE with covariates

(mostly) based on Abadie (2003)
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Introduction

• Abadie (2003) demonstrates how to identify any parameter that is defined

in terms of moments of the joint distribution of the data for compliers by

“kappa weighting”.

• Abadie (2003)’s result has been used in applied work to:

• estimate mean covariate values for compliers (e.g., Angrist et al., 2013; Dahl

et al., 2014; Bisbee et al., 2017)

• approximate the conditional mean of an outcome of interest in this subpopu-

lation (e.g., Cruces and Galiani, 2007; Angrist et al., 2013; Goda et al., 2017)

• Yet, kappa weighting has been rarely discussed for the estimation of the

local average treatment effects

• Alternative way to construct weighting estimators of the LATE: the ratio

of the IPW (Inverse Probability Weighting) estimator of the ATE of the

instrument on the outcome and the IPW estimator of the ATE of the

instrument on the treatment (Frölich, 2007)
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This paper

A comprehensive treatment of different approaches to constructing weighting

estimators of the LATE with covariates (mostly based on Abadie; 2003):

• We stress the importance of normalization for the weighting type

estimators and provide an objective and intuitively appealing criterion.

• We show that in case of one-sided noncompliance certain unnormalized

estimators have also an appealing property

• We show with a certain choice of IPS (Instrument Propenstiy Score)

estimation we can have both properties together.
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This paper

We study estimation of each of these estimators in a unified framework of

M-estimation.

We illustrate our findings with a simulation study and three empirical

applications.

Empirical applications:

• In a replication of Angrist (1990), unnormalized estimators are highly vari-

able across specifications.

• In a replication of Card (1995), the unnormalized estimates are either “too

large” in magnitude or otherwise negative, which makes little sense for causal

effects of college education.

• In a replication of Angrist and Evans (1998), some of the unnormalized

estimates of the effects of childbearing on female labor market outcomes

are positive, which is again not believable.
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Running example: Card (1995)

Data: 3,010 workers with valid information on wage and education from the

1976 subset of the National Longitudinal Survey of Young Men (NLSYM).

Outcome: log wage in 1976

Treatment: whether completed at least one year, or at least four years of

college

Extra covariates: one specification based on Card (1995), XC ; another based

on Kitagawa (2015), XK

IV for treatment: whether lived close to a college as a teenager

IV estimates:

Some college Four-year degree

XC XK XC XK

IV 0.661 0.575 1.392 0.991

(0.294) (0.308) (0.798) (0.610)
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Outline

Recap of Abadie (2003)

Estimation of LATE

Empirical Illustrations

Stata Module KAPPALATE

Monte Carlo Simulations
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Framework & Notation

Potential outcomes: Y1 is outcome if D = 1, Y0 is outcome if D = 0; what

follows, Y = (1 −D)Y0 +DY1.

Treatment effect: Y1i − Y0i for individual i .

There are two potential treatments, too: D1 is treatment if Z = 1, D0 is

treatment if Z = 0; what follows, D = (1 − Z )D0 + ZD1.

Standard terminology: if D1 = 1 and D0 = 1, always takers; if D1 = 1 and

D0 = 0, compliers; if D1 = 0 and D0 = 1, defiers; finally, if D1 = 0 and

D0 = 0, never takers.

LATE

τLATE = E[Y1 − Y0|D1 > D0]. (2)
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Identifying Assumptions (Abadie, 2003)

Assumption 1 (Exclusion Restriction):
For d ∈ {0, 1} and almost all x ∈ X ,

P[Yd ,1 = Yd ,0|X = x ] = 1. □

Assumption 2 (Ignorability of Instrument):
Conditional on X , the potential outcomes are jointly independent of Z :

[Y0,Y1,D1,D0] ⊥ Z |X . □

Assumption 3 (Monotonicity):
P[D1 ≥ D0] = 1. □

Assumption 4 (Existence of Compliers):
P[D1 > D0] > 0. □

Assumption 5 (Overlap ):
For almost all x ∈ X

0 < P (Z = 1|X = x) < 1. □
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Main result in Abadie (2003)

Theorem (Abadie 2003, pp. 236–237)
Let g (·) be any measurable real function of (Y ,D,X ) such that E |g (Y ,D,X )| < ∞.

Let p(X ) = P(Z = 1|X ). Define

κ0 = (1 −D)
(1 − Z )− (1 − p(X ))

p(X ) (1 − p(X ))
,

κ1 = D
Z − p(X )

p(X ) (1 − p(X ))
,

κ = κ0 (1 − p(X )) + κ1p(X ) = 1 − D (1 − Z )

1 − p(X )
− (1 −D)Z

p(X )
.

Under Assumption 2.1 (Abadie 2003, pp. 234–235),

(a) E [g (Y ,D,X )|D1 > D0] =
1

P(D1>D0)
E [κ g (Y ,D,X )]. Also,

(b) E [g (Y0,X )|D1 > D0] =
1

P(D1>D0)
E [κ0 g (Y ,X )], and

(c) E [g (Y1,X )|D1 > D0] =
1

P(D1>D0)
E [κ1 g (Y ,X )].
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Identification of LATE

• To see how Abadie’s theorem identifies the LATE, take g(Y0,X ) = Y0

and g(Y1,X ) = Y1, and write:

τLATE =
1

Pr [D1 > D0]
E [κ1Y ]− 1

Pr [D1 > D0]
E [κ0Y ] . (3)

• Equivalently:

τLATE =
1

Pr [D1 > D0]
E [(κ1 − κ0)Y ]

=
1

Pr [D1 > D0]
E

[
Y

Z − p(X )

p(X ) (1 − p(X ))

]
. (4)

• As noted by Abadie (2003), Pr [D1 > D0] = E [κ].

• Similarly, Pr [D1 > D0] = E [κ1] and Pr [D1 > D0] = E [κ0].
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Estimation of LATE

Given a random sample {(Di ,Zi ,Xi ,Yi ) : i = 1, . . . ,N}, equation (4) suggests

that we can consistently estimate τLATE as follows:

τ̂LATE =
1

P̂r [D1 > D0]

[
N−1

N

∑
i=1

Yi
Zi − p(Xi )

p(Xi ) (1 − p(Xi ))

]
, (5)

where P̂r [D1 > D0]
p→ Pr [D1 > D0] > 0.

Our discussion so far also implies that there are three candidate estimators for

Pr [D1 > D0], namely N−1 ∑N
i=1 κi , N

−1 ∑N
i=1 κi1, and N−1 ∑N

i=1 κi0.
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Three estimators of LATE

It follows from equation (5) that we have the following consistent estimators of

τLATE :

τ̂a =

[
N

∑
i=1

κi

]−1 [ N

∑
i=1

Yi
Zi − p(Xi )

p(Xi ) (1 − p(Xi ))

]
, (6)

τ̂a,1 =

[
N

∑
i=1

κi1

]−1 [ N

∑
i=1

Yi
Zi − p(Xi )

p(Xi ) (1 − p(Xi ))

]
, (7)

τ̂a,0 =

[
N

∑
i=1

κi0

]−1 [ N

∑
i=1

Yi
Zi − p(Xi )

p(Xi ) (1 − p(Xi ))

]
. (8)

Even though E [κ] = E [κ1] = E [κ0], N
−1 ∑N

i=1 κi , N
−1 ∑N

i=1 κi1, and

N−1 ∑N
i=1 κi0 will generally be different.
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Tan (2006)’s estimator

Given our interest in weighting estimators, a natural candidate estimator is

τ̂t =

[
N

∑
i=1

DiZi

p(Xi )
−

N

∑
i=1

Di (1 − Zi )

1 − p(Xi )

]−1 [ N

∑
i=1

YiZi

p(Xi )
−

N

∑
i=1

Yi (1 − Zi )

1 − p(Xi )

]
,

which was first suggested by Tan (2006).

This is by far the most popular weighting estimator of the LATE. See, for

example, Frölich (2007), MaCurdy et al. (2011), Donald et al. (2014a,b), and

Abdulkadiroğlu et al. (2017).

Remark

τ̂t = τ̂a,1.

S loczyński, Uysal and Wooldridge “Weighting Estimators of LATE” 13



Tan (2006)’s estimator

Given our interest in weighting estimators, a natural candidate estimator is

τ̂t =

[
N

∑
i=1

DiZi

p(Xi )
−

N

∑
i=1

Di (1 − Zi )

1 − p(Xi )

]−1 [ N

∑
i=1

YiZi

p(Xi )
−

N

∑
i=1

Yi (1 − Zi )

1 − p(Xi )

]
,

which was first suggested by Tan (2006).

This is by far the most popular weighting estimator of the LATE. See, for
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Running example: Card (1995)

Something is really off here. . .

Some college Four-year degree

XC XK XC XK

τ̂a –0.319 2.248 –0.594 4.317

(1.182) (0.971) (2.184) (2.485)

τ̂t = τ̂a,1 –0.321 2.053 –0.601 3.651

(1.201) (0.813) (2.251) (1.780)

τ̂a,0 –0.290 2.846 –0.501 7.241

(1.036) (1.592) (1.728) (7.245)
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Unnormalized and normalized weights

An important point, due to Imbens (2004), Millimet and Tchernis (2009), and

Busso et al. (2014) in the context of treatment effects under

unconfoundedness, is that weighting estimators perform badly when the

weights are not normalized or, in other words, when they do not sum to

one in finite samples.

It follows immediately that τ̂t is likely inferior to the ratio of two normalized

estimators of the ATE under unconfoundedness:

τ̂t,norm =

[
∑N

i=1
Zi

p(Xi )

]−1
∑N

i=1
YiZi

p(Xi )
−

[
∑N

i=1
1−Zi

1−p(Xi )

]−1
∑N

i=1
Yi (1−Zi )
1−p(Xi )[

∑N
i=1

Zi

p(Xi )

]−1
∑N

i=1
DiZi

p(Xi )
−

[
∑N

i=1
1−Zi

1−p(Xi )

]−1
∑N

i=1
Di (1−Zi )
1−p(Xi )

,

which was first suggested by Uysal (2011) and subsequently discussed by

Bodory and Huber (2018) and Heiler (2021).
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τ̂a, τ̂a,1, and τ̂a,0 are unnormalized

To see that τ̂a, τ̂a,1, and τ̂a,0 are unnormalized, note that each of these

estimators can equivalently be represented as an analogue of equation (3):

τ̂a =

[
N

∑
i=1

κi

]−1 [ N

∑
i=1

κi1Yi

]
−

[
N

∑
i=1

κi

]−1 [ N

∑
i=1

κi0Yi

]
,

τ̂a,1 =

[
N

∑
i=1

κi1

]−1 [ N

∑
i=1

κi1Yi

]
−

[
N

∑
i=1

κi1

]−1 [ N

∑
i=1

κi0Yi

]
,

τ̂a,0 =

[
N

∑
i=1

κi0

]−1 [ N

∑
i=1

κi1Yi

]
−

[
N

∑
i=1

κi0

]−1 [ N

∑
i=1

κi0Yi

]
.

It turns out that neither of these estimators is properly normalized. For

example, τ̂a uses weights of
[
∑N

i=1 κi

]−1
κi1 and

[
∑N

i=1 κi

]−1
κi0, which do not

sum to unity across i .
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estimators can equivalently be represented as an analogue of equation (3):

τ̂a =

[
N

∑
i=1

κi

]−1 [ N

∑
i=1

κi1Yi

]
−

[
N

∑
i=1

κi

]−1 [ N

∑
i=1

κi0Yi

]
,

τ̂a,1 =

[
N

∑
i=1

κi1

]−1 [ N

∑
i=1

κi1Yi

]
−

[
N

∑
i=1

κi1

]−1 [ N

∑
i=1

κi0Yi

]
,

τ̂a,0 =

[
N

∑
i=1

κi0

]−1 [ N

∑
i=1

κi1Yi

]
−

[
N

∑
i=1

κi0

]−1 [ N

∑
i=1

κi0Yi

]
.

It turns out that neither of these estimators is properly normalized. For

example, τ̂a uses weights of
[
∑N

i=1 κi

]−1
κi1 and

[
∑N

i=1 κi

]−1
κi0, which do not

sum to unity across i .
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How to normalize?

It is straightforward to construct a normalized Abadie estimator of the LATE.

It turns out that the two denominators in equation (3) need to be estimated

separately, using different estimators of Pr [D1 > D0], N
−1 ∑N

i=1 κi1 and

N−1 ∑N
i=1 κi0. The resulting estimator becomes

τ̂a,10 =

[
N

∑
i=1

κi1

]−1 [ N

∑
i=1

κi1Yi

]
−

[
N

∑
i=1

κi0

]−1 [ N

∑
i=1

κi0Yi

]
, (9)

where both sets of weights,
[
∑N

i=1 κi1

]−1
κi1 and

[
∑N

i=1 κi0

]−1
κi0, necessarily

sum to unity across i .
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Why is it so important that weights sum to unity?

Many of the recommendations to date are based on simulation results (e.g.,

Millimet and Tchernis, 2009; Busso et al., 2014), and it is not clear to what

extent such evidence should guide estimator choice (cf. Advani et al., 2019).

We provide an objective and intuitively appealing criterion that differentiates

the normalized from the unnormalized estimators.

Let Y be a vector of observed data on outcomes and W = (D Z X) be a

matrix of observed data on the remaining variables.
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S loczyński, Uysal and Wooldridge “Weighting Estimators of LATE” 18



Why is it so important that weights sum to unity?

Many of the recommendations to date are based on simulation results (e.g.,

Millimet and Tchernis, 2009; Busso et al., 2014), and it is not clear to what

extent such evidence should guide estimator choice (cf. Advani et al., 2019).

We provide an objective and intuitively appealing criterion that differentiates

the normalized from the unnormalized estimators.

Let Y be a vector of observed data on outcomes and W = (D Z X) be a

matrix of observed data on the remaining variables.
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Why is it so important that weights sum to unity?

TI (Translation Invariance)

We say that an estimator τ̂ = τ̂ (Y,W) is translation invariant if

τ̂ (Y,W) = τ̂ (Y+ k,W) for all Y, W, and k.

SI (Scale Invariance)

We say that an estimator τ̂ = τ̂ (Y,W) is scale invariant with respect to g if

τ̂ (f (Y),W) = τ̂ (f (aY),W), f (Y) = (g(Y1), . . . , g(YN )), for all Y > 0, W,

and a > 0.

Proposition

τ̂t,norm and τ̂a,10 are translation invariant and scale invariant with respect to

the natural logarithm. τ̂a, τ̂t (= τ̂a,1), and τ̂a,0 are not translation invariant

and not scale invariant with respect to the natural logarithm.
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Near-zero denominators



Near-zero denominators

Weighting estimators of the LATE, like two-stage least squares and many other

IV methods, are an example of ratio estimators. A common problem with such

estimators is that they behave badly if their denominator is close to zero.

In this paper, we identify two situations under which certain unnormalized

estimators have the advantage of being based on a denominator that is

nonnegative by construction and bounded away from zero in all practically

relevant situations.

To be specific, τ̂t = τ̂a,1 has this property when there are no always-takers

while τ̂a,0 has this property when there are no never-takers.
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Simplified formulas for κ, κ1, and κ0

κ sgn(κ) κ1 sgn(κ1) κ0 sgn(κ0)

Z = 1,D = 1 1 + 1
p(X ) + 0 0

Z = 1,D = 0 − 1−p(X )
p(X )

− 0 0 − 1
p(X ) −

Z = 0,D = 1 − p(X )
1−p(X )

− − 1
1−p(X ) − 0 0

Z = 0,D = 0 1 + 0 0 1
1−p(X ) +

Remark
If there are no always-takers, N−1 ∑N

i=1 κi1 > P̂r [D = 1] > 0.

Remark
If there are no never-takers, N−1 ∑N

i=1 κi0 > P̂r [D = 0] > 0.
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Estimation of the Instrument Propensity

Score (IPS)



Estimation of the Instrument Propensity Score (IPS) by Maximum Likeli-

hood

• In practice the IPS (p(X )) is usually unknown

• Typically researchers adopt a parametric model for p(X ), say F (X , α), and

estimate the unknown parameters by maximum likelihood.

• The corresponding score function

E

[
(Zi − F (Xi , α))

F (Xi , α)(1 − F (Xi , α))
∇αF (Xi , α)

]
(10)

• Solve for α̂ML and plug in F (Xi , α̂ML)
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Estimation of the Instrument Propensity Score (IPS) by covariate balancing

approach

• Alternatively, one could estimate the IPS using the covariate balancing

approach proposed by Imai and Ratkovis (2014).

• The moment function that balances the first moments of the covariates:

E

[
(Zi − F (Xi , α))

F (Xi , α)(1 − F (Xi , α))
Xi

]
= 0 (11)

• Solve the sample counterpart of the moment equation for α̂cb and get the

estimated IPS plug in F (Xi , α̂cb)
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Estimation of the Instrument Propensity Score (IPS) by covariate balancing

approach

Proposition

If X includes a constant, τ̂t (= τ̂a,1), τ̂a,0, τ̂a,10, and τ̂t,norm are numerically

identical when estimated with the covariate balancing IPS.

Note: We denote any of those by τ̂cb.

• Any of these estimators with covariate balancing IPS is translation

invariant and scale invariant with respect to g(Y ) = log(Y ).

• At the same time, because they share the structure of τ̂t (= τ̂a,1) and τ̂a,0,

it avoids near-zero denominators when there are no always-takers and also

when there are instead no never-takers.
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Empirical Illustrations



Stata Module KAPPALATE

• You can install the module

ssc install kappalate

• The syntax of the kappalate command is:

kappalate depvar [indepvars] (treatment = instrument) [if]

[in] [, options]

Options Description

zmodel(string) select the approach to estimating the instrument propensity

score; options include logit, probit, and cbps; default is cbps

vce(vcetype) vcetype is passed on to Stata’s gmm command and specifies

the type of standard error reported; default is robust

std(string) string may be on or off, which determines whether nonbinary

covariates are standardized prior to estimation; default is on

which(string) string may be all or norm, which determines whether all

estimates or only normalized estimates are displayed; default is

norm
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Example 1: Angrist (1990)

• Study of causal effects of military service using the draft eligibility

instrument

• Data: a sample of 3,027 individuals from the 1984 Survey of Income

andProgram Participation (SIPP)

• Outcome: log(wage(dollars)), log(wage(cents))

• Treatment: an indicator for being veteran

• Instrument: an indicator for whether an individual had a lottery number

below the draft eligibility ceiling

• Controls: because the ceilings were cohort specific, it is essential to

control for age in subsequent analysis.

S loczyński, Uysal and Wooldridge “Weighting Estimators of LATE” 26



Example 1: Angrist (1990) cont’d

. kappalate lwage (nvstat=rsncode) age, which(all) zmodel(logit)

Weighting estimation of the LATE

Outcome : lwage

Treatment : nvstat

Instrument : rsncode

IPS : logit

Number of obs = 3027

lwage Coefficient Std. err. z P>|z| [95% conf. interval]

tau_a .0146861 .206792 0.07 0.943 -.3906189 .4199911

tau_a,1 .0155666 .2191482 0.07 0.943 -.4139559 .4450892

tau_a,0 .0141231 .1988904 0.07 0.943 -.3756948 .4039411

tau_a,10 .2267641 .2037929 1.11 0.266 -.1726627 .6261909

tau_t,norm .2341665 .2110309 1.11 0.267 -.1794465 .6477794

. kappalate lwage (nvstat=rsncode) age, zmodel(cbps)

Weighting estimation of the LATE

Outcome : lwage

Treatment : nvstat

Instrument : rsncode

IPS : CBPS

Number of obs = 3027

lwage Coefficient Std. err. z P>|z| [95% conf. interval]

tau_t,norm .2294623 .2130195 1.08 0.281 -.1880483 .6469729
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Example 1: Angrist (1990) cont’d

. kappalate lwage_cnt (nvstat=rsncode) age, which(all) zmodel(logit)

Weighting estimation of the LATE

Outcome : lwage_cnt

Treatment : nvstat

Instrument : rsncode

IPS : logit

Number of obs = 3027

lwage_cnt Coefficient Std. err. z P>|z| [95% conf. interval]

tau_a -.4293729 .2582931 -1.66 0.096 -.9356181 .0768723

tau_a,1 -.4551167 .2785057 -1.63 0.102 -1.000978 .0907445

tau_a,0 -.4129138 .2456693 -1.68 0.093 -.8944167 .0685892

tau_a,10 .2267641 .2037929 1.11 0.266 -.1726627 .6261909

tau_t,norm .2341665 .2110309 1.11 0.267 -.1794465 .6477794

. kappalate lwage_cnt (nvstat=rsncode) age, zmodel(cbps)

Weighting estimation of the LATE

Outcome : lwage_cnt

Treatment : nvstat

Instrument : rsncode

IPS : CBPS

Number of obs = 3027

lwage_cnt Coefficient Std. err. z P>|z| [95% conf. interval]

tau_t,norm .2294623 .2130195 1.08 0.281 -.1880483 .6469729
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Example 1: Angrist (1990) cont’d

Table 1: Causal Effects of Military Service on Log Wages

Controls age age cubic in age cubic in age i.age i.age

Outcome ln(dollars) ln(cents) ln(dollars) ln(cents) ln(dollars) ln(cents)

τa 0.015 -0.429* 0.314 0.537* 0.241 0.241

(0.207) (0.258) (0.252) (0.322) (0.229) (0.229)

τa,1 0.016 -0.455 0.302 0.515* 0.241 0.241

(0.219) (0.279) (0.240) (0.301) (0.229) (0.229)

τa,0 0.014 -0.413* 0.317 0.540* 0.241 0.241

(0.199) (0.246) (0.255) (0.326) (0.229) (0.229)

τa,10 0.227 0.227 0.204 0.204 0.241 0.241

(0.204) (0.204) (0.239) (0.239) (0.229) (0.229)

τt,norm 0.234 0.234 0.202 0.202 0.241 0.241

(0.211) (0.211) (0.235) (0.235) (0.229) (0.229)

τcb 0.229 0.229 0.208 0.208 0.241 0.241

(0.213) (0.213) (0.232) (0.232) (0.229) (0.229)
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Example 2: Card (1995)

• Data: 3,010 workers with valid information on wage and education from

the 1976 subset of the National Longitudinal Survey of Young Men

(NLSYM).

• Outcome: log of wage measured in dollars or in cents (1976)

• Treatment: whether completed at least one year, or at least four years of

college

• Extra covariates: one specification based on Card (1995), XC ; another

based on Kitagawa (2015), XK

• IV for treatment: whether lived close to a college as a teenager
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Example 2: Card (1995)

Table 2: Causal Effects of College Education on Log Wages

treatment Some College College Graduate

controls XC XK XC XK
outcome ln(dollars) ln(cents) ln(dollars) ln(cents) ln(dollars) ln(cents) ln(dollars) ln(cents)

τa 0.170 -0.319 0.842** 2.248** 0.315 -0.594 1.617* 4.317*

(0.370) (1.182) (0.362) (0.971) (0.696) (2.184) (0.891) (2.485)

τa,1 0.171 -0.321 0.769** 2.053** 0.319 -0.601 1.367** 3.651**

(0.367) (1.201) (0.308) (0.813) (0.687) (2.251) (0.648) (1.780)

τa,0 0.154 -0.290 1.066* 2.846* 0.266 -0.501 2.712 7.241

(0.354) (1.036) (0.574) (1.592) (0.639) (1.728) (2.577) (7.246)

τa,10 0.346* 0.346* 0.293 0.293 0.586* 0.586* 0.836 0.836

(0.200) (0.200) (0.252) (0.252) (0.356) (0.356) (0.821) (0.821)

τt,norm 0.331 0.331 0.356 0.356 0.619 0.619 0.628 0.628

(0.202) (0.202) (0.244) (0.244) (0.387) (0.387) (0.448) (0.448)

τcb 0.376* 0.376* 0.331 0.331 0.853 0.853 0.588 0.588

(0.223) (0.223) (0.236) (0.236) (0.549) (0.549) (0.433) (0.433)
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Example 3: Angrist and Evans (1998)

• Data: Farbmacher et al.’s (2018) subsample of the 1980 US Census that

consists of all women aged 21–35 with at least two children (sample size

= 394,840)

• Outcome: log income and an indicator for labor force participation

• Treatment: having more than two children

• Covariates: age, age at first birth, sex of the first and second children, and

indicators for whether Black, whether Hispanic, and whether another race

• IV for treatment: whether the first two children areof the same sex
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Example 3: Angrist and Evans (1998)

Table 3: Causal Effects of Childbearing on Labor Force Participation and Log Income

outcome labor force participation log income

unit 0,1 1,2 1,0 dollars cents 1,000s $ 100,000s $

τa -0.100*** -0.070*** -0.131*** 0.143 0.286** -0.073 -0.216**

(0.025) (0.026) (0.025) (0.102) (0.113) (0.093) (0.093)

τa,1 -0.099*** -0.069*** -0.129*** 0.140 0.282** -0.072 -0.213**

(0.025) (0.025) (0.025) (0.100) (0.111) (0.092) (0.091)

τa,0 -0.102*** -0.071*** -0.133*** 0.145 0.291** -0.074 -0.220**

(0.025) (0.026) (0.026) (0.104) (0.115) (0.094) (0.094)

τa,10 -0.117*** -0.117*** -0.117*** -0.132 -0.132 -0.132 -0.132

(0.025) (0.025) (0.025) (0.093) (0.093) (0.093) (0.093)

τt,norm -0.117*** -0.117*** -0.117*** -0.135 -0.135 -0.135 -0.135

(0.025) (0.025) (0.025) (0.092) (0.092) (0.092) (0.092)

τcb -0.117*** -0.117*** -0.117*** -0.135 -0.135 -0.135 -0.135

(0.025) (0.025) (0.025) (0.092) (0.092) (0.092) (0.092)
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Monte Carlo Simulations



DGP

We focus on data-generating processes from Heiler (2022):

Z = 1[u < π(X )],

π(X ) = 1/ (1 + exp (−µz (X ) · θ0)) ,

Dz = 1[µd (X , z) > v ],

Y1 = µy1 (X ) + ε1,

Y0 = ε0,

where u and X are i.i.d. standard uniform, ε1

ε0

v

 ∼ N


 0

0

0

 ,

 1 0 0.5

0 1 0

0.5 0 1


, θ0 = ln((1 − δ)/δ), and

δ ∈ {0.01, 0.02, 0.05}.
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Designs

Table 4: Simulation Designs

Design A.1 Design A.2 Design B Design C Design D

µd (x , z) 4z 4 (z − 1)
−1 + 2x +

2.122z

−1 + 2x +

2.122z

−1 + 2x +

2.122z

µy1 (x) 0.3989 0.3989 0.3989 9 (x + 3)2 9 (x + 3)2

µz (x) 2x − 1 2x − 1 2x − 1 2x − 1 x + x2 − 1

S loczyński, Uysal and Wooldridge “Weighting Estimators of LATE” 35



Designs

• To illustrate our findings from on near-zero denominators

• Design A.1: with no never-takers.

• Design A.2: with no always takers

• Designs A.1 and A.2 correspond to the case of a fully independent

instrument while in the remaining designs the instrument is conditionally

independent.

• In Designs A.1, A.2, and B, treatment effect heterogeneity is only due to

the correlation between ε1 and v

• In Designs C and D, on the other hand, the dependence of µy1 (X ) on X

constitutes another source of heterogeneity.

• The linear IV estimator that controls for X is expected to perform very

well in Designs A.1, A.2, and B but not necessarily elsewhere.
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Estimation

• The linear IV estimator as a benchmark

• Normalized estimators τ̂t,norm, τ̂a,10 (with the IPS estimated by MLE) and

τ̂cb, controlling for X .

• Unnormalized estimators τ̂a, τ̂a,1 (= τ̂t), and τ̂a,0 with the IPS estimated

by MLE, also controlling for X .

• We consider three sample sizes, N = 500, N = 1,000, and N = 5,000, and

10,000 replications for each combination of a design, a value of δ, and a

sample size.
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Summary of Simulation Results

• τ̂t , τ̂a, and τ̂a,10, are mostly very unstable when overlap is sufficiently poor

and samples are small

• τ̂a,0 does not suffer from instability in no never takers case

• τ̂a,1 does not suffer from instability in no always takers case

• τ̂t,norm and τ̂cb perform better than other weighting estimators in term of

MSE (in many cases also in terms of bias)

• Design D: τ̂cb dominates all other estimators in terms of MSE, bias, and

coverage.
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Conclusion

This paper studies the properties of various weighting estimators of the local

average treatment effect (LATE), several of which are based on the

identification results of Abadie (2003) and Frölich (2007).

We make several novel observations:

• on the scale invariance with respect to the natural logarithm and

translation invariance of normalized estimators

• on the advantages of some estimators in case of one-sided noncompliance

• on the desirable properties of some estimator when IPS is estimated by the

covariate balancing method

We illustrate our findings with a simulation study and three empirical

applications.

• In simulations, the covariate balancing estimator and the normalized

version of Tan’s (2006) estimator perform relatively well in every setting

under consideration.

• In empirical applications, each of the unnormalized estimators appears to

be unreliable in at least some cases.
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