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Motivation

We study treatment-effect estimation, using panel of groups (e.g. counties).

Yg,t may be affected by Dg,t , but also by Dg,t−1, Dg,t−2, etc.

Standard tool: TWFE reg. E.g. Yg,t = αg + γt +
∑L

l=0 βlDg,t−l + ug,t .

However recent literature (including this paper) shows that TWFE not robust
to heterogeneous treatment effects across groups and/or over time.

Heterogeneity-robust DID estimators have been proposed, but papers that
allow lagged D to affect outcome assume binary & absorbing treatment.

Of the 100 most-cited papers published by AER from 2015 to 2019, 26
estimate a TWFE regression, but only four have a binary-and-staggered
treatment. Existing het-robust DID estimators not widely applicable.
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This paper:

1 Proposes het-robust DID estimators, in applications where treatment either
non-binary and/or non-absorbing, and lagged D may affect outcome.

Estimators widely applicable: can be used in any design where some groups
keep their period-one treatment for several periods.
Computed by did multiplegt dyn Stata package.

2 Studies three TWFE regressions commonly used to estimate instantaneous
and dynamic effects in complex designs: local-projection, distributed lags and
event-study with group-specific treatment intensities:

All three regressions are non-robust to heterogeneous treatment effects.
Local-projection is non-robust even if treatment effect homogeneous!

3 Revisits Favara and Imbs, who study effect of financial liberalization on
volume of credit and housing prices:

Using LP regressions, authors had found short-lived effects.
On the contrary, our het-rob DID estimators indicate very persistent effects,
and our decompositions show that estimates of long-run effects based on LP
regressions biased towards 0.
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Group-level panel data

G groups observed at T periods, respectively indexed by g and t.

Typically, groups = geographical entities (states...) but a group could also
just be single individual or firm.

Estimators below not weighted by Ng,t , the population of cell (g , t). Just to
reduce notational complexity: proposing weighted estimators is a mechanical
extension. did multiplegt dyn has a weight option.

Also to reduce notational complexity: we assume panel is balanced. But
did multiplegt dyn can be used with imbalanced panel, see specific
documentation referenced in help file.
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Treatment and potential outcomes

When treatment assigned at (g , t) level: Dg,t = treatment of g at t.

When treatment varies within (g , t) cells (fuzzy design: groups are
geographical entities and individuals or firms within the same cell may not all
have same treatment): Dg,t = average treatment in cell (g , t).

Dg = (Dg,1, ..., Dg,T ) : vector stacking g ’s treatments from period 1 to T ,
and D = (D1, ..., DG) : vector stacking the treatments of all groups at every
period. We refer to D as the study’s design.

Let D be the set of values Dg can take.

For all (d1, ..., dT ) ∈ D, let Yg,t(d1, ..., dT ) denote potential outcome of g at
t if (Dg,1, ..., Dg,T ) = (d1, ..., dT ), and let Yg,t = Yg,t(Dg ) denote observed
outcome of g at t.

This dynamic potential outcome framework follows Robins (1986). Allows
groups’ outcome at t to depend on their past and future treatments.
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Conditioning on the design

When defining our target parameters, we will take the perspective of a social
planner, seeking to conduct a cost-benefit analysis comparing groups’ actual
treatments D to the counterfactual “status-quo” scenario where every group
would have kept the same treatment as in period 1 all the time.

Then, all our analysis is conditional on D, the study’s design.

This implies that our parameters of interest are dictated by the design, rather
than chosen by the researcher. A bit similar to LATE of Imbens & Angrist
(1994).

Conditional on D, only groups’ potential outcomes are random. Probabilistic
statements below are with respect to their joint probability distribution.
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Condition on the design for our estimators to be applicable.

Definition 1
(First treatment change) For all g, let Fg = min{t : t ≥ 2, Dg,t ̸= Dg,t−1}.

Convention: Fg = T + 1 if g ’s treatment never changes.

Design Restriction 1

∃(g , g ′) such that: (i) Dg,1 = Dg ′,1, (ii) Fg ̸= Fg ′ .

If groups’ period-one treatments are i.i.d. draws from a continuous distribution,
Dg,1 ̸= Dg ′,1 for all (g , g ′), so (i) fails. In our Web Appendix, we extend our
estimators to designs where (i) fails.

(ii) requires that there is heterogeneity in the date at which groups change
treatment for the first time. (ii) fails if groups’ treatment is extremely
non-persistent, so that Dg,1 ̸= Dg,2 and Fg = 2 for all g (e.g.:
treatment=rainfall).
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Commonly-found designs

Design 1
(Binary and staggered treatment) Dg,t = 1{t ≥ Fg }, with Fg ≥ 2.

Design 2
(Binary treatment, groups join and then leave treatment) Dg,t = 1{Eg ≥ t ≥ Fg }.

Special case of Design 2: Eg = Fg , “one-shot-treatment design”.

Design 3
(Staggered design with group-specific intensities) Dg,t = Ig 1{t ≥ Fg }, Fg ≥ 2.

Design 4
(Zero treatment at baseline) Dg,1 = 0 (Designs 1-3 special cases of Design 4).
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Commonly-found designs

Design 5
(Discrete treatment at baseline) Dg,1 ∈ {0, 1, ..., K}.
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No-anticipation

Assumption 1

(No Anticipation) ∀g, ∀(d1, ..., dT ) ∈ D, Yg,t(d1, ..., dT ) = Yg,t(d1, ..., dt).
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Parallel trends

Let Dr
1 = {d : ∃(g , g ′) ∈ {1, ..., G}2 : Dg,1 = Dg′,1 = d , Fg ̸= Fg′ } be set of

period-one-treatment values such that two groups with different values of Fg have
that period-one treatment.

For any d in Dr
1 and any t, let dt denote a 1 × t vector of ds.

For any k, let Dg,1,k be a 1 × k vector whose coordinates are all equal to Dg,1.

Yg,t(Dg,1,t) is g ’s period-t outcome in a counterfactual where it keeps its
period-one treatment till period t. “Status-quo” PO.

Assumption 2
(Parallel trends for the status-quo outcome, conditional on the period-one treatment)
∀(g , g ′), if Dg,1 = Dg′,1 ∈ Dr

1, then ∀t ≥ 2,

E [Yg,t(Dg,1,t) − Yg,t−1(Dg,1,t−1)|D] = E [Yg′,t(Dg′,1,t) − Yg′,t−1(Dg′,1,t−1)|D].

Assumption 2 requires that if two groups have same period-one treatment, then
they have same expected evolution of status-quo outcome.
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Parallel trends, continued

Assumption 2: generalization of standard parallel-trends assumption in DID models
to our set-up that allows for dynamic effects and for potentially complicated designs
where groups may not all be untreated at period one.

In Design 4, Dr
1 = {0}, so Assumption 2 only restricts the never-treated potential

outcome Yg,t(0t), and is similar to identifying assumption considered by CS (2021)
and SA (2021).

Assumption 2 restricts one PO per group, so Assumption 2 does not restrict
groups’ treatment effects.
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Non-normalized actual-versus-status-quo (AVSQ) effects

For every g , let
Tg = max

g ′:Dg′,1=Dg,1
Fg ′ − 1

denote last period where there is still a group with the same period-one
treatment as g and whose treatment has not changed since the start of the
panel.

For any g such that Fg ≤ Tg , and for any ℓ ∈ {1, ..., Tg − Fg + 1}, let

δg,ℓ = E
[
Yg,Fg −1+ℓ − Yg,Fg −1+ℓ(Dg,1, ..., Dg,1)|D

]
(1)

be expected diff between g ’s actual outcome at Fg − 1 + ℓ and its
counterfactual “status quo” outcome. AVSQ effect of g at Fg − 1 + ℓ.
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Estimation of non-normalized AVSQ effects

Let
Ng

t = #{g ′ : Dg′,1 = Dg,1, Fg′ > t}
be number of groups g ′ with the same period-one treatment as g , and that have
kept the same treatment from period 1 to t.

To estimate δg,ℓ:

DIDg,ℓ = Yg,Fg −1+ℓ−Yg,Fg −1− 1
Ng

Fg −1+ℓ

∑
g′:Dg′,1=Dg,1,Fg′ >Fg −1+ℓ

(Yg′,Fg −1+ℓ−Yg′,Fg −1),

(2)

DID estimator comparing Fg − 1-to-Fg − 1 + ℓ outcome evolution of g to groups
with same baseline treatment, and that have kept that treatment from period 1 to
Fg − 1 + ℓ.

Lemma 1
If Assumptions 1 and 2 hold, then for every (g , ℓ) such that 1 ≤ ℓ ≤ Tg − Fg + 1,
E [DIDg,ℓ|D] = δg,ℓ.
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Interpretability of AVSQ effects: no-crossing condition
Assume that g0 is such that Dg0,1 = 1, Dg0,2 = 2, Dg0,3 = 0. Then,

δg0,2 =E [Yg0,3(1, 2, 0) − Yg0,3(1, 1, 1)]
=E [Yg0,3(1, 2, 0) − Yg0,3(1, 1, 0)] − E [Yg0,3(1, 1, 1) − Yg0,3(1, 1, 0)]

Both effects could be positive but δg0,2 negative.

For all (g , ℓ) such that at Fg − 1 + ℓ g has experienced treatments strictly below
and strictly above period-one treatment, δg,ℓ = linear combination, with negative
weights, of effects of increasing different treatment lags.

We assume away the existence of such (g , ℓ)s.

Design Restriction 2
∀g ∈ {1, ..., G}, either Dg,t ≥ Dg,1 for every t, or Dg,t ≤ Dg,1 for every t.

Restriction 2 implied by Design 4. It also holds automatically when the treatment is
binary, or when groups’ treatment can only change once.

When Restriction 2 fails, one can just discard cells (g , t) such that at t, g has
experienced treatments strictly below and strictly above its period-one treatment.

did multiplegt dyn drops those cells if drop larger lower option specified.
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Non-normalized event-study effects
Let L = maxg (Tg − Fg + 1) be largest ℓ such that δg,ℓ can be estimated for one g .

For every ℓ ∈ {1, ..., L}, let Nℓ = #{g : Fg − 1 + ℓ ≤ Tg } be number of groups for
which δg,ℓ can be estimated.

For all g such that Fg ≤ T , let Sg = 1{Dg,Fg > Dg,1} − 1{Dg,Fg < Dg,1} be equal
to 1 (resp. -1) for groups whose treatment increases (resp. decreases) at Fg .

Then, let

δℓ = 1
Nℓ

∑
g :Fg −1+ℓ≤Tg

Sg δg,ℓ. (3)

Under Restriction 2, for groups with Sg = −1, Dg,t ≤ Dg,1 for all t, so δg,ℓ is effect
of being exposed to weakly lower treatment dose for ℓ periods. Taking negative of
δg,ℓ for those groups ensures that δℓ is average effect of having been exposed to a
weakly larger dose for ℓ periods.

For every ℓ ∈ {1, ..., L}, let

DIDℓ = 1
Nℓ

∑
g :Fg −1+ℓ≤Tg

Sg DIDg,ℓ. (4)

DIDℓ conditionally unbiased for δℓ under Assumptions 1, 1, and 2.
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Interpreting non-normalized event-study effects

In Design 1,

δℓ = 1
Nℓ

∑
g :Fg −1+ℓ≤Tg

E
[
Yg,Fg −1+ℓ(0Fg −1, 1ℓ) − Yg,Fg −1+ℓ(0Fg −1+ℓ)|D

]
.

Outside of Design 1, interpretation of δℓ more complicated:
E.g.: in Design 2 (Dg,t = 1{Eg ≥ t ≥ Fg }), for all g such that Fg − 1 + ℓ > Eg ,

δg,ℓ = E
[
Yg,Fg −1+ℓ(0Fg −1, 1Eg −Fg +1, 0Fg −1+ℓ−Eg ) − Yg,Fg −1+ℓ(0Fg −1+ℓ)|D

]
,

effect of having been treated for Eg − Fg + 1 periods, Fg − 1 + ℓ − Eg periods
before outcome is measured: number and recency of treatment periods
generating δg,ℓ vary across groups, complicating interpretation of δℓ.

δℓ can be interpreted as average effect of having been exposed to a weakly
higher treatment for ℓ periods, but very “reduced-form”.
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Comparison with existing estimators

When groups all initially untreated, DIDℓ = estimator obtained by redefining
treatment as an indicator equal to one if group g has ever received a
non-zero treatment at t, and computing ES estimators of CS (2021).

When groups’ period-one treatment varies, redefining treatment as 1{group
g ’s treatment has ever changed at t} and computing the estimators of CS, as
was for instance done in East et al (AER, 2023), does not yield estimators
numerically equivalent to DIDℓ.

DIDℓ only compares switchers and non-switchers with same period-one
treatment, whereas “naively-extended” CS estimator compares switchers and
non-switchers with different period-one treatments.

Accordingly, naively-extended CS relies on unconditional parallel trends
assumption for status-quo outcome.

Stronger than Assumption 2.

When combined with standard parallel-trends on groups’ never-treated
outcome, implies that lagged treatments cannot affect the outcome! Very
strong.
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Normalized AVSQ effects

Let

δD
g,ℓ =

ℓ−1∑
k=0

(Dg,Fg +k − Dg,1) (5)

be difference between total treatment dose received by group g from Fg to
Fg − 1 + ℓ, and total dose would have received in status-quo.

Then, let

δn
g,ℓ = δg,ℓ

δD
g,ℓ

. (6)

δn
g,ℓ : normalized AVSQ effect of group g at Fg − 1 + ℓ.

DIDg,ℓ/δD
g,ℓ is conditionally unbiased for δn

g,ℓ.
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δn
g ,ℓ: average of effects of current treat and ℓ − 1 first lags

For k ∈ {0, ..., ℓ − 1}, let

sg,ℓ,k =E
[
Yg,Fg −1+ℓ(Dg,1,Fg −1, Dg,Fg , ..., Dg,Fg −1+ℓ−k−1, Dg,Fg −1+ℓ−k , Dg,1,k)

− Yg,Fg −1+ℓ(Dg,1,Fg −1, Dg,Fg , ..., Dg,Fg −1+ℓ−k−1, Dg,1, Dg,1,k)|D
]

/(Dg,Fg −1+ℓ−k − Dg,1)

be slope of PO of g at Fg − 1 + ℓ wrt its kth treatment lag (the underlined term),
when that lag is switched from Dg,1 to actual value Dg,Fg −1+ℓ−k .

For any k ∈ {0, ..., ℓ − 1}, let

wg,ℓ,k =
Dg,Fg −1+ℓ−k − Dg,1

δD
g,ℓ

.

Under Restriction 2, wg,ℓ,k ≥ 0. Moreover,
∑ℓ−1

k=0 wg,ℓ,k = 1.

Lemma 2
δn

g,ℓ =
∑ℓ−1

k=0 wg,ℓ,ksg,ℓ,k .
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Normalized event-study effects

Let δD
ℓ = 1

Nℓ

∑
g :Fg −1+ℓ≤Tg

|δD
g,ℓ| and

δn
ℓ = 1

Nℓ

∑
g :Fg −1+ℓ≤Tg

|δD
g,ℓ|
δD

ℓ

δn
g,ℓ. (7)

We have:

δn
ℓ = δℓ

δD
ℓ

. (8)

One can show that

DIDn
ℓ := 1

Nℓ

∑
g :Fg −1+ℓ≤Tg

|δD
g,ℓ|
δD

ℓ

DIDg,ℓ

δD
g,ℓ

(9)

is conditionally unbiased for δn
ℓ .

did multiplegt dyn computes normalized effects, if normalized option
specified.
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Interpretation of δn
ℓ

Follows from Lemma 2 that δn
ℓ is weighted average of effects of groups’

current and ℓ − 1 first treatment lags on outcome.

The total weight assigned by δn
ℓ to the effect of the kth-lag (for

0 ≤ k ≤ ℓ − 1) is equal to

wℓ,k = 1
Nℓ

∑
g :Fg −1+ℓ≤Tg

|Dg,Fg −1+ℓ−k − Dg,1|
δD

ℓ

.

In one-shot treatment designs , wℓ,ℓ−1 = 1.

When groups’ treatment can only change once, wℓ,k = 1/ℓ, so ℓ 7→ wℓ,k is
decreasing for ℓ ≥ k + 1: δn

ℓ assigns less weight to the effect of recent
treatments when ℓ increases.

One always has w1,0 = 1 and wℓ,0 ≤ 1 for ℓ ≥ 2: δn
1 only averages effects of

groups’ current treatment, δn
ℓ also averages effects of lags for ℓ ≥ 2.

We recommend reporting k 7→ wℓ,k : document which lags contribute most to
δn

ℓ .
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Extensions (Stata implementation)

Cost benefit ratio, average total effect per unit of treatment.

Inference, conditional on design.

Placebo estimators to test parallel trends/no anticipation (placebo)

Continuous treatment at period one (continuous, coming up soon,
command can already be tweaked to get non-normalized effects in that case).

Controlling for covariates (controls).

Group-specific linear trends (trends lin, coming up soon).

Supergroup-specific trends (trends nonparam).

Estimating heterogeneous effects (hetx, coming up soon).
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Favara and Imbs, 2015

In 1994, the Interstate Banking and Branching Efficiency Act (IBBEA)
allowed US Banks to operate across state borders without formal
authorization from state authorities.

Initially, all states still imposed 4 types of restrictions, but several states
deregulated later, by lifting heterogeneous number of restrictions at
heterogeneous times.

Treatment: number of restrictions lifted, ranging from 0 to 4.

Use 1994-to-2005 county-level data to estimate the effect of the number of
regulations lifted on the growth of mortgages originated by banks, and on the
growth of houses prices.

Local projection regressions. To estimate effect on growth rate of loan
volume, regress, for every ℓ ∈ {1, ..., 9}, ∆ ln(Lg,t−1+ℓ), the log growth rate
of loans in county g in year t − 1 + ℓ, on county and year FEs, and Dg,t
(number of deregulations in county g and year t).
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Stata implementation of our estimators

ssc install did multiplegt dyn

net get did multiplegt dyn

use favara imbs did multiplegt dyn.dta, clear

Non-normalized event-study estimators:

did multiplegt dyn Dl vloans b county year inter bra, effects(8)
placebo(3) cluster(state n)

Normalized event-study estimators:

did multiplegt dyn Dl vloans b county year inter bra, effects(8)
placebo(3) cluster(state n) normalized same switchers
effects equal
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A split second later (thanks Mélitine and Doulo!):
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Figure 1: Effect of banking deregulations on loan volume and houses prices.
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Decompositions of LP regressions

We use one of our results to decompose LP regression coefficients.

β̂lp,1 is a weighted sum of 7,626 effects δg,k/D̄g,k , where 4,670 effects are
weighted positively and 2,956 effects are weighted negatively, and where
positive and negative weights respectively sum to 1.067 and −0.125.

β̂lp,1, supposed to measure effect of one year of exposure, contaminated by
effects of other exposure lengths: weights on effects of one year of exposure
sum to 0.294, weights on other exposure lengths sum to 0.648.

β̂lp,2 is a weighted sum of 7,626 effects, where 4,424 effects are weighted
positively and 3,202 effects are weighted negatively, and where positive and
negative weights sum to 1.085 and −0.584. Weights sum to much less than
one. Then, even if δg,k/D̄g,k does not vary across g or k, β̂lp,2 severely
biased towards zero.

β̂lp,2 contaminated by effects of other lengths of exposure than two years.
Most effects weighted positively, except for effects of one year of exposure.

Intuitively, groups with Dg,t = 0, Dg,t+1 > 0 used as “control groups” by β̂lp,2
(Yg,t+1 on Dg,t), whereas treated at t + 1.
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Decompositions of LP regressions

Results similar for β̂lp,3, except that weights only sum to 0.069.

For β̂lp,4, weights sum to −0.018. Even if δg,k/D̄g,k constant across g and k,
E

[
β̂lp,4

]
of a different sign than the treatment effect.
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Thank you!

C. de Chaisemartin & X. D’Haultfœuille Intertemporal Treatment Effects November 9, 2023 32 / 35


	Introduction
	Setup, design, and identifying assumptions
	Target parameters and estimators
	Non-normalized actual-versus-status-quo and event-study effects
	Normalized actual-versus-status-quo and event-study effects
	Extensions

	Application

