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Bunching Designs

Recent line of identification strategies that leverage bunching phenomenon.

Original approaches successful in Public Finance following Saez (2010), focusing
on identification of the taxable income’s elasticity to changes in the marginal tax
rate.

Large applied literature leveraging bunching on outcome variable in structural
models. Few methodological studies: Blomquist and Newey (2017), Bertanha,
McCallum and Seegert (2022) and Goff (2022).

Line started with Caetano (2015) leverages bunching on treatment variable to
build tests of identification. More recent advancements following Caetano,
Caetano and Nielsen (2023) focus on identification in models with endogeneity.
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This Talk

We will discuss methods that leverage corner bunching on the treatment variable when
treatment is endogenous.

Methods use bunching and a menu of assumptions to achieve identification.

Do not require instrumental variables or panel data. Can be used when these are
not available, or when question cannot be answered with these.

Allow the study of heterogeneity along any dimension for which there are
bunched and non-bunched observations.

Not vulnerable to weak identification, not data hungry and very stable.

Can be combined with panel data.
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Bunching
Bunching: Concentration of observations at a point of an otherwise locally continuous

distribution.
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Some treatment variables with corner bunching
Consumption goods: number of tobacco products, alcoholic beverages, caffeinated drinks,
sugary drinks, fast food meals, dining out meals, subscription services, supplements and
vitamins, public transportation rides, books read, gym visits, doctor visits, trips, fuel usage
amounts, expenditure on health, fitness, travel, vacations, education, childcare.

Financial variables: credit access, bequests, savings, emergency fund levels, retirement
account contributions, mortgage balance, credit card debt, student loan debt, income from
investments, expenditure on ads, charitable donations, HSA and FSA balances, life insurance
coverage, number of trades.

Time use: few exceptions, like sleeping, eating and using the bathroom. Some examples:
exercising, working, watching TV, using digital devices, doing homework, doing chores,
volunteering, commuting.

Neighborhood characteristics: number of public transportation options or stops, retail
stores, coffee shops, rental units, affordable housing units, vacant units, electric vehicle
charging stations; length of biking lanes or walking paths; areas of green space, comercial
districts, sport fields, parking lots.

Variables with regulatory minimums: schooling time, wages, 401K contributions, coverage
for auto insurance, nutritional standards for school meals, bank capital, bank deposit
insurance, age started working, age started withdrawing from retirement accounts, age
retired.

Variables with regulatory maximums: 401K, Roth IRA, HSA, FSA contributions, untaxed
gifts, FHA loans, FDIC insurance, carbon emissions, liquor licenses, lot coverage,
contributions to political campaigns, data usage, grades, absences from school, class size,
commissions on sales.
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Fundamental Problem of Causality

Di : treatment variable

Yi (d): potential outcome for treatment level Di = d

Then

E[Yi |Di ]− E[Yi |Di = 0] = E[Yi (Di )− Yi (0)|Di ]︸ ︷︷ ︸
ATT(Di )

+E[Yi (0)|Di ]− E[Yi (0)|Di = 0]︸ ︷︷ ︸
Selection Bias

ATT(Di ): Average Treatment Effect of Di units on those treated Di units
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Nature of Selection under Constraints
We conceptually separate the treatment variable and the selection variable:

Di : treatment variable

D∗i : selection variable

Di ,D
∗
i0

E[Confounderi |Di ]

E[Confounderi |Di = 0]

At the bunching point, treatment does not vary, but selection does:

D∗i = Di + D∗i 1(D∗i ≤ 0), assume P(D∗i < 0) > 0
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Linear Model with Endogeneity and No Controls

Yi (d) = βd + Ui ,

where
E[Ui |D∗i ] = α+ δD∗i .

Then, we can write

Yi = α+ βDi + δD∗i + εi , where E[εi |D∗i ] = 0.

The separation between the selection variable and the treatment at the bunching point
causes a discontinuity in the expected outcome at the bunching point:

E[Yi |Di ] = α+ (β + δ)Di + δE[D∗i |D
∗
i ≤ 0]1(Di = 0)
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Sign of Selection Bias is Identified
E[Yi |Di ] = α+ (β + δ)Di + δE[D∗i |D

∗
i ≤ 0]1(Di = 0)

So,

∆ := lim
d↓0

E[Yi |Di = d ]− E[Yi |Di = 0]︸ ︷︷ ︸
Outcome Discontinuity at Di=0

= −δE[D∗i |D
∗
i ≤ 0]
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Simple Bound for the Treatment Effect

E[Yi |Di ] = α+ (β + δ)Di + δE[D∗i |D
∗
i ≤ 0]1(Di = 0)

∆ = −δE[D∗i |D
∗
i ≤ 0]

1 (β + δ) and ∆ obtained from the regression of Yi onto Di and 1(Di = 0), since

E[Yi |Di ] = α+ (β + δ)Di −∆1(Di = 0).

2 Since E[D∗i |D
∗
i ≤ 0] < 0, δ has the same sign as ∆, so

If ∆ > 0, then δ > 0, and β = (β + δ) − δ < (β + δ) = −0.38

If ∆ < 0, then δ < 0, and β = (β + δ) − δ > (β + δ)

If ∆ = 0, then δ = 0, and β = (β + δ)

3 For each value E of E[D∗i |D
∗
i ≤ 0], the function of possible treatment effects is

β(E) = (β + δ) +
∆

E
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Path of Treatment Effects for Values of E[D∗i |D∗i ≤ 0]

β(E) = (β + δ) +
∆

E

Figure: Non-cognitive Skills
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Opposite Bound: No High Peaks

If fD∗ (d) ≤ fD(0+) := limd↓0 fD(d) for all d ≤ 0,

then E[D∗i |D
∗
i ≤ 0] ≤ −

1

2

P(Di = 0)

fD(0+)
← Expectation of Uniform Distribution
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Slow and Fast Descent Densities

Figure: TV hours per week
0

.0
1

.0
2

.0
3

.0
4

.0
5

.0
6

Pr
ob

ab
ilit

y 
D

en
si

ty
 F

un
ct

io
n

-30 -20 -10 0 10 20 30 40 50
              X*                                                  X=X*               

fD(0+)

D∗i Di = D∗i

fast descentslow descent



12/32

Introduction Setup Bounds Point Identification Controls Nonlinearities Conclusion

Slow and Fast Descent Densities

Figure: TV hours per week
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Amount of Bunching and Distribution Categories

D∗i

fD(0+)

fD(0+) + f ′D(0+)D∗i

fD∗ (D∗i )

Large Bunching

D∗i

fD(0+)

fD(0+) + f ′D(0+)D∗i

fD∗ (D∗i )

Small Bunching

Large Bunching: P(Di = 0) >
1

2

fD(0+)2

f ′D(0+)
. If “no high peaks” holds, then Slow Descent
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Our Application: Slow Descent
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Better Opposite Bound: Large Bunching Convex Class

fD∗ (d) no high peaks: E[D∗|D∗ ≤ 0] ≤ −
1

2

P(Di = 0)

fD(0+)
← Uniform Distribution

fD∗ (d) convex: E[D∗|D∗ ≤ 0] ≤ −
2

3

P(Di = 0)

fD(0+)
← Triangular Distribution
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Non-Nested Bounds: Bi-Log Concave Class
fD∗ (d) is Bi-log concave ( =⇒ fD∗ (d) has locally bounded derivatives).

−
P(Di = 0)

fD(0+)
≤ E[D∗i |D

∗
i ≤ 0] ≤

P(Di > 0)

fD(0+)

(
1 +

log(P(Di > 0))

P(Di = 0)

)
.
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Combining Non-Nested Classes
fD∗ (d) is convex and Bi-log concave (convex of bounded variation)
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Identification of the Value of β

E[Yi |Di ] = α+ (β + δ)Di + δE[D∗i |D
∗
i ≤ 0]1(Di = 0)

For Di > 0,
E[Yi |Di = d + 1]− E[Yi |Di = d ] = β + δ

The Selection Bias can be written as

δ =
∆

E[D∗i |D
∗
i ≤ 0]

=
limd↓0 E[Yi |Di = d ]− E[Yi |Di = 0]

limd↓0 E[D∗i |Di = d ]− E[D∗i |Di = 0]

IV parallel: we want to identify the “effect” of the selection variable D∗i on Yi ,
and Di is a local IV around the bunching point.

We are missing one component, as we do not observe the average selection
among the bunched observations.
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Identification of E[D∗|D∗ ≤ 0]: Gaussian Family

D∗i ∼ N (µ, σ2) =⇒ E[D∗i |D
∗
i ≤ 0] = µ− σλ(µ/σ),

where λ(x) = φ(x)/Φ(x) is the inverse Mills Ratio.

Estimate µ and σ by running a Tobit regression of Di onto a constant. The
constant is µ̂, and the variance is σ̂2. Our estimate: -3.07.
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Parametric distributions can be tested (e.g. Kolmogorov-Smirnoff test and
Goldman and Kaplan (2018)).
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Identification of E[D∗|D∗ ≤ 0]: Tail Symmetric Family

D∗i ∼ Symmetric below 0 and above quantile 1− P(Di = 0) (call it q0).

E[D∗i |D
∗
i ≤ 0] = q0 − E[Di |Di ≥ q0]

Estimate q0 as the (1− P(Di = 0))-th quantile of Di and E[Di |Di ≥ q0] as the
average of the Di above q0. Our estimate: -2.11.
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Tail symmetry not testable, but full symmetry is testable between 0 and q0.



21/32

Introduction Setup Bounds Point Identification Controls Nonlinearities Conclusion

A Taste of Nonparametric Identification of E[D∗|D∗ ≤ 0]

We will set up the problem of identification of E[D∗i |D
∗
i ≤ 0] as a problem of

identification in a nonparametric censoring model. Let Xi be a vector of covariates.

Since D∗i = Di + D∗i 1(Di = 0), E[D∗i ] = E[Di ] + E[D∗i |D
∗
i ≤ 0]P(Di = 0). So,

E[D∗i |D
∗
i ≤ 0] =

E[D∗i ]− E[Di ]

P(Di = 0)
=

E[E[D∗i |Xi ]]− E[Di ]

P(Di = 0)
.

All pieces of this equation are identified, except for E[D∗i |Xi ].

Define m(Xi ) = E[D∗i |Xi ]. Then,

D∗i = m(Xi ) + ηi , where E[ηi |Xi ] = 0,

Di = max{D∗i , 0},

which is a standard nonparametric censoring model.

We can identify m(Xi ) using any of the techniques in the censoring literature, e.g.
Powell (1984), Powell (1986); Horowitz (1986); Chen and Khan (2000); Newey
(2001); Lewbel and Linton (2002); Chen, Dahl and Khan (2005).
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Implementation Through Control Function
The method may be implemented by estimating all the pieces and plugging them into
the identification formulas.

A more convenient approach is to consider the equation

E[Yi |Di ] = α+ (β + δ)Di + δE[D∗i |D
∗
i ≤ 0]1(Di = 0),

and reorganize it

E[Yi |Di ] = α+ βDi + δ [Di + E[D∗i |D
∗
i ≤ 0]1(Di = 0)]︸ ︷︷ ︸

Control Function

.

For any consistent estimator Ê [D∗i |D
∗
i ≤ 0], build the control function

Di + Ê[D∗i |D
∗
i ≤ 0]1(Di = 0)

and add it to the regression to control for the endogeneity of Di .

Same approach can be used for all bounds of β. Simply substitute the expectation
bound estimator in place of Ê[D∗i |D

∗
i ≤ 0] in the control function formula and run the

same regression.

The standard errors need to be corrected for the fact that we use Ê [D∗i |D
∗
i ≤ 0]

instead of E [D∗i |D
∗
i ≤ 0], but we showed that the bootstrap works.
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Implementation Through Control Function
The method may be implemented by estimating all the pieces and plugging them into
the identification formulas.

A more convenient approach is to consider the equation

E[Yi |Di ] = α+ (β + δ)Di + δE[D∗i |D
∗
i ≤ 0]1(Di = 0),

and reorganize it

E[Yi |Di ] = α+ βDi + δ [Di + E[D∗i |D
∗
i ≤ 0]1(Di = 0)]︸ ︷︷ ︸

Control Function

.

For any consistent estimator Ê [D∗i |D
∗
i ≤ 0], build the control function

Di + Ê[D∗i |D
∗
i ≤ 0]1(Di = 0)

and add it to the regression to control for the endogeneity of Di .

Same approach can be used for all bounds of β. Simply substitute the expectation
bound estimator in place of Ê[D∗i |D

∗
i ≤ 0] in the control function formula and run the

same regression.

The standard errors need to be corrected for the fact that we use Ê [D∗i |D
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∗
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Including Controls in the Model

Suppose that Xi is a vector of controls,

Yi (d) = β(Xi )d + Ui , where E[Ui |D∗i ,Xi ] = α(Xi ) + δ(Xi )D
∗
i .

Then, we can write

Yi = α(Xi ) + β(Xi )Di + δ(Xi )D
∗
i + εi , where E[εi |D∗i ,Xi ] = 0.

Therefore,

E[Yi |Di ,Xi ] = α(Xi ) + β(Xi )Di + δ(Xi ) [Di + E[D∗i |D
∗
i ≤ 0,Xi ]1(Di = 0)]︸ ︷︷ ︸

Control Function

.

Say β(Xi ) = β0 + β1Xi1, α(Xi ) = α0 + X ′i α1, and δ(Xi ) = δ. Then we estimate

E[Yi |Di ,Xi = x] = α0+β0Di+β1X1iDi+X ′i α1+δ[Di+E[D∗i |D
∗
i ≤ 0,Xi = x]1(Di = 0)],

which allows the study of heterogeneous treatment effects in X1i , and the linear
inclusion of covariates, including fixed effects.
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Discrete Controls

If Xi ∈ {x1, . . . , xK}. For a specific value of the controls, say xk , the model reverts to
the previous model:

E[Yi |Di ,Xi = xk ] = αk + βkDi + δk [Di + E[D∗i |D
∗
i ≤ 0,Xi = xk ]1(Di = 0)].

=⇒ if the controls are discrete, all the procedures can be done within each subgroup
separately, as if there were no controls.

Alternatively, let

Ci = (1(Xi = x1), . . . , 1(Xi = xK ))′

α = (α(x1), . . . , α(xK ))′, β = (β(x1), . . . , β(xK ))′, δ = (δ(x1), . . . , δ(xK ))′

Ei = (E[D∗i |D
∗
i ≤ 0,Xi = x1], . . . ,E[D∗i |D

∗
i ≤ 0,Xi = xK ])′Ci

Then the following model is equivalent:

E[Yi |Di ,Ci ] = C ′i α+ DiC
′
i β + (Di + Ei1(Di = 0))C ′i δ,

which can be estimated with a single regression.
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Control Discretization Through Clustering

Clustering methods (e.g. hierarchical clustering) distribute the Xi into K sets:
C1, . . . , CK , where the Xi are as similar as possible.

Define Ci = (1(Xi ∈ C1), . . . , 1(Xi ∈ CK ))′ and calculate

Ê[D∗|D∗ ≤ 0,Xi ] = Ê[D∗|D∗ ≤ 0,Ci ]

and proceed as in the discrete control case.

Figure: Non-Cognitive Estimates per Cluster Number
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Relaxing Linearity Using Controls
Model with controls:

Yi = α(Xi ) + β(Xi )Di + δ(Xi )D
∗
i + εi , where E[εi |D∗i ,Xi ] = 0

Allows treatment effects and selection effects to change with Xi , including to
change the sign.

Because Di and Xi are correlated, the use of covariates weakens the linearity
assumptions indirectly.

Figure: Average TV Hours per Cluster
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Relaxing the Constant Selection Effects Assumption

Constant selection effects are required only locally around the bunching point:

E[Ui |D∗i ] = α+ δD∗i , for D∗i ≤ ζ,

for some ζ > 0.

In this case, the control function model holds locally around the bunching point:

E[Yi |Di ] = α+ βDi + δ[Di + E[D∗i |D
∗
i ≤ 0]1(Di = 0)], for D∗i ≤ ζ.

Then,

β = lim
d↓0

d

dDi
E[Yi |Di ]

∣∣∣
Di=d

−
∆

E[D∗i |D
∗
i ≤ 0]

.

Estimation may be done in two steps:

1 Estimate δ̂ = ∆̂/Ê [D∗i |D
∗
i ≤ 0].

2 Estimate a local linear regression of Yi − δ̂Di onto Di at Di = 0 using only
observations such that Di > 0. The coeffcient of the constant is α̂, and the
slope coefficient is β̂.
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Relaxing the Constant Treatment Effects Assumption

In the general setting, we can write

E[Yi |Di ] = E[Yi (Di )− Yi (0)|Di ]︸ ︷︷ ︸
ATTi (Di )

+E[Yi (0)|D∗i ],

so without loss of generality we can write

Yi (d) = ATT(Di ) + Ui , where E[Ui |D∗i ] = E[Yi (0)|D∗i ].

Heterogeneous treatment effects and nonlinearities in the treatment effects are not a
problem. Supposing that the constant selection effects assumption holds:

E[Yi (0)|D∗i ] = α+ δD∗i ,

then

E[Yi |Di ] = α+ ATT (Di ) + δ [Di + E[D∗i |D
∗
i ≤ 0]1(Di = 0)]︸ ︷︷ ︸

Control Function

.

ATT(Di ) can be estimated parametrically with GMM or nonparametrically with a
partially linear method.
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Relaxing Constant Treatment and Selection Effects

Assume local constant selection effects around the bunching point:

E[Ui |D∗i ] = α+ δD∗i , for D∗i ≤ ζ,

for some ζ > 0.

Then

E[Yi |Di ] = α+ ATT (Di ) + δ[Di + E[D∗i |D
∗
i ≤ 0]1(Di = 0)], for D∗i ≤ ζ.

With some continuous differentiability conditions,

limd↓0
d

dDi
ATT (Di )

∣∣∣
Di=d

= limd↓0 E[Y ′i (0)|Di = d ] Extensive Margin Effect for the
Marginal Observations

This quantity can be identified:

lim
d↓0

E[Y ′i (0)|Di = d ] = lim
d↓0

d

dDi
E[Yi |Di ]

∣∣∣
Di=d

−
∆

E[D∗i |D
∗
i ≤ 0]

.
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Relaxing All Linearity Restrictions

Without loss of generality, we can write

Yi = ATT(Di ) + E[Yi |D∗i ] + εi , where E[εi |D∗i ] = 0.

Assume:

1 D∗i continuously distributed around D∗i = 0

2 E[Yi (0)|D∗i ] monotonic and continuously differentiable near the bunching point

3 εi and D∗i are independent at the bunching point

Then

lim
d↓0

E[Y ′i (0)|Di = d ] = sgn(∆) ·
limd↓0 fD(d)

P(Di = 0) · fE[Y (0)|D∗](limd↓0 E[Yi |Di = 0])
.

For Di = 0, Yi = E[Yi (0)|D∗i ] + εi is a convolution.

The density fE[Y (0)|D∗] can be deconvoluted using the distribution of Yi at the
bunching point, and the distribution of Yi near the bunching point.



30/32

Introduction Setup Bounds Point Identification Controls Nonlinearities Conclusion

Relaxing All Linearity Restrictions

Without loss of generality, we can write

Yi = ATT(Di ) + E[Yi |D∗i ] + εi , where E[εi |D∗i ] = 0.

Assume:

1 D∗i continuously distributed around D∗i = 0

2 E[Yi (0)|D∗i ] monotonic and continuously differentiable near the bunching point

3 εi and D∗i are independent at the bunching point

Then

lim
d↓0

E[Y ′i (0)|Di = d ] = sgn(∆) ·
limd↓0 fD(d)

P(Di = 0) · fE[Y (0)|D∗](limd↓0 E[Yi |Di = 0])
.

For Di = 0, Yi = E[Yi (0)|D∗i ] + εi is a convolution.

The density fE[Y (0)|D∗] can be deconvoluted using the distribution of Yi at the
bunching point, and the distribution of Yi near the bunching point.



31/32

Introduction Setup Bounds Point Identification Controls Nonlinearities Conclusion

Final Remarks

Find link to Stata codes used to implement the approach on my website.

For applied researchers interested on these methods: our JOLE paper on the
effect of maternal labor supply on children’s skills showcases many of these
techniques in actual empirical work.

We developed several tests of the assumptions, and many other informal
robustness checks for the assumptions. See appendix of the paper that
introduces the endogeneity correction (JBES) and applied papers.

Bunching can also be used to test identification in other types of models. We
can test parallel trends in two-way fixed effects models without the need of using
pre-trends. Simply add a dummy of the bunching point, or a dummy of the
bunching point interacted with one of the periods.

Econometricians: huge amount of unanswered questions, requiring all types of
technical skills. Many opportunities for specialists in nonparametric
identification, boundary estimation, quantiles, measurement error,
deconvolutions, censoring, etc.
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Thank You!
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Estimation Details in General Models

lim
d↓0

E[Y ′i (0)|Di = d ] = lim
d↓0

d

Di
E[Yi |Di = d ] +

∆

E[D∗i |D
∗
i ≤ 0]

More efficient but less convenient:

1 limd↓0
d

dDi
E[Yi |Di = d ] is estimated with a specialized boundary derivative

estimator, e.g. Dai, Tong and Genton (2016).

2 ∆ = E[Yi |Di = 0+]− E[Yi |Di = 0], estimate E[Yi |Di = 0+] with local linear
regression, and E[Yi |Di = 0] by simple average at bunching point.
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Estimation - Limits of Densities

We use Pinkse and Schurter (2021)’s estimator:

f̂D(0+) =
1

D

1

nh

n∑
i=1

k (Di/h) ,

D =
3

2
·

2 + L̂′D(0)2h2 − e L̂
′
D (0)h(2− 2L̂′D(0)h)

L̂′D(0)3h3

L̂′D(0) =
1
nh

∑n
i=1(1− 2Di/h)1(0 ≤ Di ≤ h)

1
nh

∑n
i=1 Di (1− Di/h)1(0 ≤ Di ≤ h)

,
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Relaxing All Linearity Restrictions - More Details
Yi = ATT(Di ) + E[Yi |D∗i ] + εi , where E[εi |D∗i ] = 0.

Differentiating near the bunching point, we get

E[Y ′i (0)|D∗i = 0] = lim
d↓0

d

dDi
E[Yi |Di ]

∣∣∣
Di=d

− lim
d↓0

d

dDi
E[Yi (0)|Di ]

∣∣∣
Di=d

.

Assume continuous selection effects at the bunching point, then

lim
d↓0

d

dDi
E[Yi (0)|Di ]

∣∣∣
Di=d

=
d

dDi
E[Yi (0)|D∗i ]

∣∣∣
D∗i =0

.

Assume that E[Yi (0)|D∗i ] is monotonic at the bunching point. Then, by the change in
variables theorem,

d

dDi
E[Yi (0)|D∗i ]

∣∣∣
D∗i =0

= sgn(∆) ·
fD∗ (0)

fE[Y (0)|D∗](E[Yi (0)|D∗i = 0])
.

Assume that fD∗ (d) is continuous at d = 0, then fD∗ (0) = limd↓0 fD(d).

For D∗i ≤ 0, Yi = E[Yi (0)|D∗i ] + εi . Assume that εi and D∗i are independent at the
bunching point, then we can deconvolute fE[Y (0)|D∗](E[Yi (0)|D∗i = 0]) using
observations at the bunching point.
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