Heteroskedasticity and Heterogeneity in Sample Selection Models

Alyssa H. Carlson

University of Missouri

November, 2024 Virtual Stata Symposium

3

4

5

Today's talk

- 1. What causes heteroskedasticity in Sample Selection models?
 - heterogeneity!
- 2. What are the consequences of heterosked asticity in Sample Selection models?
 - ▶ LIML vs FIML estimators
 - heteroskedasticity in outcome vs selection equation
- 3. Can we test for heteroskedasticity?
 - LIML over FIML (demeaned) Breusch and Pagan (1979) test and Hausman (1978) test
 - Validity of LIML MCC test
- 4. Is there an alternative estimator for sample selection models with general forms of heteroskedasticity.

gtsheckman

Carlson and Joshi (2024) "Sample Selection in linear panel data models with heterogenous coefficients," *Journal of Applied Econometrics*, 39(2), 237-255.

Carlson (2022) "GTSHECKMAN: Stata module to compute generalised two-step Heckman selection model," Statistical Software Components, Boston College Department of Economics.

▶ Forthcoming Stata Journal article (Carlson, forthcoming)

Carlson and Zhao (2023) "Heckman sample selection estimators under heteroskedasticity," Working Paper 2303, Department of Economics, University of Missouri.

Forthcoming Stata Journal article

Sample Selection Model

The outcome is modeled as

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

but the outcome is not always observed.

 y_i is only observed when $s_i = 1$,

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

both
$$\mathbf{x}_{1i}$$
 and \mathbf{x}_{2i} include a constant

 $\blacktriangleright \text{ often } \mathbf{x}_{2i} = (\mathbf{x}_{1i}, \mathbf{w}_i)$

Ex: Estimating married woman wages

$$\begin{aligned} \ln(wage_i) = &\beta_0 + educ_i\beta_1 + u_{1i} \\ inlf_i = &1(\delta_0 + educ_i\delta_1 + nwifinc_i\delta_2 + u_{2i} > 0) \end{aligned}$$

Sample Selection Model

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

Problem: want to estimate

$$\mathbf{E}(y_i|\mathbf{x}_{1i}) = \mathbf{x}_{1i}\boldsymbol{\beta}$$

but you can only use the observed sample,

$$\mathbf{E}(y_i|\mathbf{x}_{1i}, s_i = 1) \neq \mathbf{x}_{1i}\boldsymbol{\beta}$$

if u_{1i} is correlated with u_{2i}

Sample Selection Estimators

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

Heckman (1979) assumes

$$\begin{pmatrix} u_{1i} \\ u_{2i} \end{pmatrix} \begin{vmatrix} \mathbf{x}_{1i}, \mathbf{x}_{2i} \sim \mathcal{N} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & \rho\sigma \\ \rho\sigma & 1 \end{pmatrix} \end{pmatrix}$$
(3)

Which suggests two possible estimators:

Sample Selection Estimators

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

Heckman (1979) assumes

$$\begin{pmatrix} u_{1i} \\ u_{2i} \end{pmatrix} \begin{vmatrix} \mathbf{x}_{1i}, \mathbf{x}_{2i} \sim \mathcal{N} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & \rho\sigma \\ \rho\sigma & 1 \end{pmatrix} \end{pmatrix}$$
(3)

Which suggests two possible estimators:

1. Full information ML (FIML): maximum likelihood over the joint distribution of y_i and s_i .

Requires joint distribution to be correctly specified

FIML

Stata command:

heckman depvar [indepvars], select(depvars = varlist_s)

1. Maximize the joint log likelihood

$$\ell_{i} = (1 - s_{i}) \ln[1 - \Phi(\mathbf{x}_{2i}\boldsymbol{\delta})] + s_{i} \ln\left[\Phi\left(\frac{\mathbf{x}_{2i}\boldsymbol{\delta} + \rho(y_{i} - \mathbf{x}_{1i}\boldsymbol{\beta})/\sigma_{1}}{\sqrt{1 - \rho^{2}}}\right)\right] - s_{i}\left[\frac{(y_{i} - \mathbf{x}_{1i}\boldsymbol{\beta})^{2}}{2\sigma_{1}^{2}} + \ln(\sigma_{1})\right]$$

with respect to $\boldsymbol{\delta}, \boldsymbol{\beta}, \rho, \sigma_1$.

Sample Selection Estimators

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

Heckman (1979) assumes

$$\begin{pmatrix} u_{1i} \\ u_{2i} \end{pmatrix} \begin{vmatrix} \mathbf{x}_{1i}, \mathbf{x}_{2i} \sim \mathcal{N} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & \rho\sigma \\ \rho\sigma & 1 \end{pmatrix} \end{pmatrix}$$
(3)

Which suggests two possible estimators:

- 2. Limit information ML (LIML): two-step estimator based on the conditional distribution of $y_i \mid s_i = 1$
 - Requires Minimial Consistency Condition (MCC) (Wooldridge, 2010, Assumption 19.1):

$$u_{2i} \mid \mathbf{x}_{1i}, \mathbf{x}_{2i} \sim \mathcal{N}(0, 1)$$

$$\mathcal{E}(u_{1i} \mid u_{2i}, \mathbf{x}_{1i}, \mathbf{x}_{2i}) = \gamma u_{2i}$$

$$(4)$$

LIML

Under MCC

$$E(y_i \mid s_i = 1, \mathbf{x}_{1i}, \mathbf{x}_{2i}) = \mathbf{x}_{1i}\boldsymbol{\beta} + \gamma\lambda(\mathbf{x}_{2i}\boldsymbol{\delta})$$
(5)

where

$$\lambda(\mathbf{x}_{2i}\boldsymbol{\delta}) \equiv \frac{\phi(\mathbf{x}_{2i}\boldsymbol{\delta})}{\Phi(\mathbf{x}_{2i}\boldsymbol{\delta})} = \mathrm{E}(u_{2i} \mid s_i = 1, \mathbf{x}_{1i}, \mathbf{x}_{2i})$$

Stata command:

heckman depvar [indepvars], select($depvar_s = varlist_s$) twostep

1. Estimate the binary choice in equation (2) using probit, calculate the estimated inverse mills ratio:

$$\widehat{\lambda}_i = \frac{\phi(\mathbf{x}_{2i}\widehat{\boldsymbol{\delta}})}{\Phi(\mathbf{x}_{2i}\widehat{\boldsymbol{\delta}})}$$

2. Estimate the following augmented regression:

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + \gamma \widehat{\lambda}_i + \varepsilon_i$$

FIML and LIML in Stata

. use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz, clear

. reg lwage educ

Source	SS	df	MS	Numbe	r of obs	; =	428
Model Residual	26.3264237 197.001028	1 426	26.3264237 .462443727	Prob R-squ	> F ared	= =	0.0000
Total	223.327451	427	.523015108	Adj R Root	-squared MSE	=	0.1158 .68003
lwage	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
educ _cons	.1086487 1851969	.0143998 .1852259	7.55 -1.00	0.000 0.318	.08034 54926	151 574	.1369523 .1788735

Mroz (1987) PSID data on the wages of 428 working, married women

FIML and LIML in Stata

. heckman lwage educ, select(inlf = educ nwifeinc) nolog

Heckman selection model	Number of obs	=	753
(regression model with sample selection)	Selected	=	428
	Nonselected	=	325
	Wald chi2(1)	=	49.21
Log likelihood = -929.6295	Prob > chi2	=	0.0000

Coefficient	Std. err.	z	P> z	[95% conf	. interval]
.1176578	.0167722	7.02	0.000	.0847848	.1505307
3920955	.2700523	-1.45	0.147	9213882	.1371972
.1433212	.0226377	6.33	0.000	.0989522	.1876902
0216104	.0043381	-4.98	0.000	0301129	0131079
-1.144077	.2656869	-4.31	0.000	-1.664813	6233399
.209972	.2003914	1.05	0.295	1827879	.6027318
3759879	.0415655	-9.05	0.000	4574549	2945209
.2069397	.1918098			180779	.5389906
.6866106	.0285393			.6328924	.7448884
.142087	.1351505			1228031	.4069771
	.1176578 3920955 .1433212 0216104 -1.144077 .209972 3759879 .2069397 .6866106 .142087	Coefficient Std. err. .1176578 .0167722 .3920955 .2700523 .1433212 .0226377 .0216104 .0043381 -1.144077 .2656869 .209972 .2003914 3759879 .0415655 .2065397 .1918098 .6866106 .0285393 .142087 .1351505	Coefficient Std. err. Z .1176578 .0167722 7.02 .3920955 .2700523 -1.45 .1433212 .0226377 6.33 .0216104 .0043381 -4.98 -1.144077 .2656869 -4.31 .209972 .2003914 1.05 .3759879 .0415655 -9.05 .2069397 .1918098 .6866106 .0285393 .142087 .1351505	Coefficient Std. err. z P>[2] .1176578 .0167722 7.02 0.000 3920955 .2700523 -1.45 0.147 .1433212 .0226377 6.33 0.000 0216104 .0043381 -4.98 0.000 -1.144077 .2656869 -4.31 0.000 .209972 .2003914 1.05 0.295 3759879 .0415655 -9.05 0.000 .2069397 .1918098 .6866106 .028333 .142087 .1351505 .355 .355	Coefficient Std. err. z P>[z] [95% conf .1176578 .0167722 7.02 0.000 .0847848 .3920955 .2700523 -1.45 0.147 9213882 .1433212 .0226377 6.33 0.000 .0989522 0216104 .0043381 -4.98 0.000 0301129 -1.144077 .2656869 -4.31 0.000 -1.664813 .209972 .2003914 1.05 0.295 1827879 3759879 .0415655 -9.05 0.000 4874549 .2069397 .1918098 1827893 .6328924 .142087 .1351505 1228031

LR test of indep. eqns. (rho = 0): chi2(1) = 0.85 Prob > chi2 = 0.3575

FIML and LIML in Stata

. heckman lwage educ, select(inlf = educ nwifeinc) twostep

Heckman select (regression mo	tion model odel with samp	Number of obs = 5 Selected = 6 Nonselected = 5				
				Wald ch	i2(1) =	34.07
				Prob >	chi2 =	0.0000
	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
lwage						
educ	.1282506	.021972	5.84	0.000	.0851862	.171315
_cons	6339939	.4179628	-1.52	0.129	-1.453186	.1851981
inlf						
educ	.1418686	.0225342	6.30	0.000	.0977025	.1860348
nwifeinc	0213744	.0043692	-4.89	0.000	0299378	0128109
_cons	-1.130936	.2644248	-4.28	0.000	-1.649199	6126727
/mills						
lambda	.306887	.2544542	1.21	0.228	1918341	.8056081
rho	0.42874					
sigma	.71578623					

What causes heteroskedasticity in Sample Selection models? Variation in wages is changing for different education levels

What causes heteroskedasticity in Sample Selection models?

Heterogeneous effects

$$\ln(wage_i) = \beta_0 + educ_i b_{1i} + u_{1i}$$

$$inlf_i = 1(\delta_0 + educ_i d_{1i} + nwifinc_i d_{2i} + u_{2i} > 0)$$
(7)

Heterogeneous enects

$$n(wage_i) = \beta_0 + educ_i b_{1i} + u_{1i}$$

$$(6)$$

$$inlf = 1(\delta + educ_i d + multiplicat d + u_{1i} > 0)$$

$$(7)$$

$$inlf_i = 1(\delta_0 + educ_i d_{1i} + nwifinc_i d_{2i} + u_{2i} > 0)$$
(7)

let $\beta_1 = \mathcal{E}(b_{1i})$, $\delta_1 = \mathcal{E}(d_{1i})$, and $\delta_2 = \mathcal{E}(d_{2i})$, then

$$\ln(wage_i) = \beta_0 + educ_i\beta_1 + \tilde{u}_{1i} \tag{8}$$

$$inlf_i = 1(\delta_0 + educ_i\delta_1 + nwifinc_i\delta_2 + \tilde{u}_{2i} > 0)$$
(9)

where

$$\tilde{u}_{1i} = u_{1i} + (b_{1i} - \beta_1) e duc_i \tag{10}$$

$$\tilde{u}_{2i} = u_{2i} + (d_{1i} - \delta_1) educ_i + (d_{2i} - \delta_2) nwifinc_i$$
(11)

What causes heteroskedasticity in Sample Selection models?

Heterogeneous effects

$$\ln(wage_i) = \beta_0 + educ_i b_{1i} + u_{1i} \tag{6}$$

$$inlf_i = 1(\delta_0 + educ_i d_{1i} + nwifinc_i d_{2i} + u_{2i} > 0)$$
(7)

let $\beta_1 = \mathcal{E}(b_{1i})$, $\delta_1 = \mathcal{E}(d_{1i})$, and $\delta_2 = \mathcal{E}(d_{2i})$, then

$$\ln(wage_i) = \beta_0 + educ_i\beta_1 + \tilde{u}_{1i} \tag{8}$$

$$inlf_i = 1(\delta_0 + educ_i\delta_1 + nwifinc_i\delta_2 + \tilde{u}_{2i} > 0)$$
(9)

then

$$\begin{aligned} \operatorname{Var}(\tilde{u}_{1i} \mid educ_{i}, nwifinc_{i}) &= \sigma^{2} + \sigma_{b1}^{2}educ_{i}^{2} \\ \operatorname{Var}(\tilde{u}_{2i} \mid educ_{i}, nwifinc_{i}) &= 1 + \sigma_{d1}^{2}educ_{i}^{2} + \sigma_{d2}^{2}nwifinc_{i}^{2} \\ &+ \sigma_{d1d2}^{2}educ_{i} \times nwifinc_{i} \\ \operatorname{Cov}(\tilde{u}_{1i}, \tilde{u}_{2i} \mid educ_{i}, nwifinc_{i}) &= \rho\sigma + \sigma_{b1,d1}educ_{i}^{2} + \sigma_{b1,d2}educ_{i} \times nwifinc_{i} \\ (\operatorname{assuming}(u_{1i}, u_{2i}) \perp (b_{1i}, d_{1i}, d_{2i})) \end{aligned}$$

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

Suppose we have heteroskedasticity

$$\begin{pmatrix} u_{1i} \\ u_{2i} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{1i}^2 & \rho_i \sigma_{1i} \sigma_{2i} \\ \rho_i \sigma_{1i} \sigma_{2i} & \sigma_{2i}^2 \end{pmatrix}\right)$$
(12)

What are the consequences?

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

Suppose we have heteroskedasticity

$$\begin{pmatrix} u_{1i} \\ u_{2i} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{1i}^2 & \rho_i \sigma_{1i} \sigma_{2i} \\ \rho_i \sigma_{1i} \sigma_{2i} & \sigma_{2i}^2 \end{pmatrix}\right)$$
(12)

What are the consequences?

- 1. FIML
 - ▶ joint distribution is misspecified \rightarrow inconsistent!
 - robust standard errors does not fix this!

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

Suppose we have heteroskedasticity

$$\begin{pmatrix} u_{1i} \\ u_{2i} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{1i}^2 & \rho_i \sigma_{1i} \sigma_{2i} \\ \rho_i \sigma_{1i} \sigma_{2i} & \sigma_{2i}^2 \end{pmatrix}\right)$$
(12)

What are the consequences?

1. FIML

- ▶ joint distribution is misspecified \rightarrow inconsistent!
- robust standard errors does not fix this!
- 2. LIML
 - ▶ if MCC holds \rightarrow **consistent**

$$\sigma_{2i} = 1$$
$$\rho_i \sigma_{1i} = \gamma$$

but need robust standard errors!

• if MCC does not hold \rightarrow inconsistent!

Stata LIML estimator does not produce heteroskedastic robust standard errors,

. heckman lwage educ, select(inlf = educ nwifeinc) twostep vce(robust)
vcetype robust not allowed
r(198);

DGP 1: Homoskedastic

Estimator	N	Bias	StdDev	SE	RSE	CR	RCR
FIML	500	-0.004	0.108	0.103	0.104	0.94	0.94
LIML	500	-0.004	0.112	0.111	0.110	0.95	0.94
FIML	1000	-0.002	0.075	0.073	0.073	0.94	0.94
LIML	1000	-0.003	0.079	0.078	0.078	0.95	0.94
FIML	2000	0.000	0.052	0.051	0.051	0.95	0.95
LIML	2000	0.002	0.056	0.055	0.055	0.95	0.94

DGP 2: Heteroskedastic (MCC)

Estimator	N	Bias	StdDev	SE	RSE	CR	RCR
FIML	500	0.240	0.264	0.115	0.180	0.38	0.64
LIML	500	-0.010	0.249	0.144	0.236	0.76	0.95
FIML	1000	0.253	0.182	0.081	0.134	0.23	0.48
LIML	1000	-0.008	0.188	0.103	0.176	0.72	0.94
FIML	2000	0.263	0.111	0.057	0.099	0.07	0.21
LIML	2000	0.001	0.130	0.073	0.128	0.74	0.96

Estimator	N	Bias	StdDev	SE	RSE	CR	RCR
FIML	500	0.898	0.163	0.171	0.158	0.00	0.00
LIML	500	0.807	0.146	0.171	0.138	0.00	0.00
FIML	1000	0.896	0.110	0.121	0.111	0.00	0.00
LIML	1000	0.800	0.098	0.121	0.097	0.00	0.00
FIML	2000	0.894	0.078	0.085	0.078	0.00	0.00
LIML	2000	0.799	0.070	0.085	0.068	0.00	0.00

DGP 3: Heteroskedastic (no MCC)

What are the consequences of heteroskedasticity?

- If there is heteroskedasiticty in outcome equation FIML is inconsistent, LIML can be consistent
- ▶ If MCC does not hold both FIML and LIML are inconsistent

Can we test for this?

What are the consequences of heteroskedasticity?

- If there is heteroskedasiticty in outcome equation FIML is inconsistent, LIML can be consistent
- ▶ If MCC does not hold both FIML and LIML are inconsistent

Can we test for this? Yes!

- Testing for heteroskedasiticty in outcome equation (demeaned) Breusch and Pagan (1979) test and Hausman (1978) test
- Testing for MCC MCC test (using gtsheckman command)

Testing for heteroskedasticity in outcome equation

▶ Without sample selection – Breusch and Pagan (1979) test

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

homoskedasticity implies $E(u_{1i}^2 \mid \mathbf{x}_{1i}) = \sigma_1^2$

- 1. Regress y_i on \mathbf{x}_{1i} , obtain residuals squared, \hat{u}_{1i}^2 .
- 2. Regress \hat{u}_{1i}^2 on \mathbf{x}_{1i} evaluate overall test of significance

Testing for heteroskedasticity in outcome equation

▶ With sample selection – Naive Breusch and Pagan (1979) test

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

1. Estimate the sample selection model using LIML, obtain residuals squared for the observed sample,

$$\widehat{u}_{1i}^2 = (y_i - \mathbf{x}_{1i}\widehat{\boldsymbol{\beta}})^2$$

2. Regress \hat{u}_{1i}^2 on \mathbf{x}_{1i} on the observed sample and evaluate overall test of significance

Naive Breusch Pagan test

. quietly heckman lwage educ, select(inlf = educ nwifeinc) twostep

. gen uhatsq = (lwage - (_b[lwage:_cons]+_b[lwage:educ]*educ))^2 if inlf==1
(325 missing values generated)

. reg uhatsq educ

Source	SS	df	MS	Numbe	er of obs	=	428
Model Residual	.006770959 447.077377	1 426	.006770959 1.04947741	Prob R-squ	> F ared	=	0.9360 0.0000
Total	447.084148	427	1.04703548	Adj F Root	t-squared MSE	=	-0.0023 1.0244
uhatsq	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
educ _cons	.0017424 .4804915	.0216928 .2790351	0.08 1.72	0.936 0.086	04089 06796	58 54	.0443806 1.028948

Testing for heteroskedasticity in outcome equation

▶ With sample selection – Naive Breusch and Pagan (1979) test

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

1. Estimate the sample selection model using LIML, obtain residuals squared for the observed sample,

$$\widehat{u}_{1i}^2 = (y_i - \mathbf{x}_{1i}\widehat{\boldsymbol{\beta}})^2$$

- 2. Regress \hat{u}_{1i}^2 on \mathbf{x}_{1i} on the observed sample and evaluate overall test of significance
- But this is not a valid test!

Testing for heteroskedasticity in outcome equation

▶ With sample selection – Naive Breusch and Pagan (1979) test

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

1. Estimate the sample selection model using LIML, obtain residuals squared for the observed sample,

$$\widehat{u}_{1i}^2 = (y_i - \mathbf{x}_{1i}\widehat{\boldsymbol{\beta}})^2$$

2. Regress \hat{u}_{1i}^2 on \mathbf{x}_{1i} on the observed sample and evaluate overall test of significance

But this is not a valid test!

Even with homoskedasticity in u_{1i} , conditioning on the selected sample looks like heteroskedasticity

$$E(u_{1i}^2 \mid \mathbf{x}_{1i}, \mathbf{x}_{2i}, s_i = 1) = \sigma_1^2 - \gamma^2 \lambda(\mathbf{x}_{2i}\boldsymbol{\delta}) \mathbf{x}_{2i}\boldsymbol{\delta}$$

Why was it asymmetric?

Depends on how the selection relates to the heteroskedasticity

How should we test for heteroskedasticity in outcome equation with sample selection?

How should we test for heteroskedasticity in outcome equation with sample selection?

- Demeaned Breusch and Pagan (1979) test
 - With homoskedasticity in u_{1i} ,

$$\mathbb{E}(u_{1i}^2 \mid \mathbf{x}_{1i}, \mathbf{x}_{2i}, s_i = 1) = \sigma_1^2 - \gamma^2 \lambda(\mathbf{x}_{2i}\boldsymbol{\delta}) \mathbf{x}_{2i}\boldsymbol{\delta}$$

instead we can demean it!

$$\mathbb{E}(\underbrace{u_{1i}^2 + \gamma^2 \lambda(\mathbf{x}_{2i}\boldsymbol{\delta})\mathbf{x}_{2i}\boldsymbol{\delta}}_{\tilde{u}_{1i}^2} \mid \mathbf{x}_{1i}, \mathbf{x}_{2i}, s_i = 1) = \sigma_1^2$$

How should we test for heteroskedasticity in outcome equation with sample selection?

- Demeaned Breusch and Pagan (1979) test
 - With homoskedasticity in u_{1i} ,

$$\mathbb{E}(u_{1i}^2 \mid \mathbf{x}_{1i}, \mathbf{x}_{2i}, s_i = 1) = \sigma_1^2 - \gamma^2 \lambda(\mathbf{x}_{2i}\boldsymbol{\delta}) \mathbf{x}_{2i}\boldsymbol{\delta}$$

instead we can demean it!

$$\mathbf{E}(\underbrace{u_{1i}^2 + \gamma^2 \lambda(\mathbf{x}_{2i}\boldsymbol{\delta})\mathbf{x}_{2i}\boldsymbol{\delta}}_{\tilde{u}_{1i}^2} \mid \mathbf{x}_{1i}, \mathbf{x}_{2i}, s_i = 1) = \sigma_1^2$$

Execute in the following steps

1. Estimate the sample selection model using LIML, obtain demeaned residuals squared for the observed sample,

$$\tilde{u}_{1i}^2 = (y_i - \mathbf{x}_{1i}\widehat{\boldsymbol{\beta}})^2 + \widehat{\gamma}^2 \widehat{\lambda}_i \mathbf{x}_{2i} \widehat{\boldsymbol{\delta}}$$

2. Regress \tilde{u}_{1i}^2 on \mathbf{x}_{1i} on the observed sample and evaluate overall test of significance

Demeaned Breusch Pagan test

. quietly heckman lwage educ, select(inlf = educ nwifeinc) twostep mills(lambdah > at)

```
. gen uhatsq_dm = uhatsq +_b[/mills:lambda]^2*lambdahat*(_b[inlf:_cons]+_b[inlf:
```

```
> educ]*educ +_b[inlf:nwifeinc]*nwifeinc)
```

.4218472

(325 missing values generated)

. reg uhatsq_dm educ

cons

428	5 =	Number of obs	S	MS	df	SS	Source
0.11 0.7419 0.0003	= = =	F(1, 426) Prob > F R-squared		.113992 1.05001	1 426	.113992521 447.307608	Model Residual
1.0247	u = =	Root MSE	2576	1.04782	427	447.421601	Total
interval]	conf.	t [95% d	P	t	Std. err.	Coefficient	uhatsq_dm
0497985	998	42 - 03549	3 0	A 33	0216984	0071494	educ

1.51

0.131

-.126751

.9704453

.2791069

How should we test for heteroskedasticity in outcome equation with sample selection?

- ▶ Hausman (1978) test
 - With homoskedasticity both FIML and LIML are consistent, FIML is efficient
 - ▶ Without homoskedasticity (with MCC), only LIML is consistent
 - In Stata,

hausman FIML LIML

Hausman test

- . quietly heckman lwage educ, select(inlf = educ nwifeinc) twostep
- . estimates store LIML
- . quietly heckman lwage educ, select(inlf = educ nwifeinc)
- . estimates store FIML
- . hausman LIML FIML

	<pre> Coeffic (b) LIML </pre>	ients —— (B) FIML	(b-B) Difference	sqrt(diag(V_b-V_B)) Std. err.
educ	.1282506	.1176578	.0105929	.0141937

b = Consistent under H0 and Ha; obtained from **heckman**. B = Inconsistent under Ha, efficient under H0; obtained from **heckman**.

Test of H0: Difference in coefficients not systematic

chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 0.56 Prob > chi2 = 0.4555

Consistency of LIML is fundamentally reliant on MCC

- ▶ Can we test for this?
- ▶ Can we get a consistent estimator without MCC?

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

Suppose we have heteroskedasticity

$$\begin{pmatrix} u_{1i} \\ u_{2i} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{1i}^2 & \rho_i \sigma_{1i} \sigma_{2i} \\ \rho_i \sigma_{1i} \sigma_{2i} & \sigma_{2i}^2 \end{pmatrix}\right)$$
(12)

Can we still derive a correction?

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\delta} + u_{2i} > 0) \tag{2}$$

Suppose we have heteroskedasticity

$$\begin{pmatrix} u_{1i} \\ u_{2i} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{1i}^2 & \rho_i \sigma_{1i} \sigma_{2i} \\ \rho_i \sigma_{1i} \sigma_{2i} & \sigma_{2i}^2 \end{pmatrix}\right)$$
(12)

Can we still derive a correction? Yes!

$$\lambda_i \equiv \frac{\phi(\mathbf{x}_{2i}\boldsymbol{\delta}/\sigma_{2i})}{\sigma_{2i}\Phi(\mathbf{x}_{2i}\boldsymbol{\delta}/\sigma_{2i})}$$
$$\gamma_i \equiv \rho_i \sigma_{1i}\sigma_{2i}$$

then

$$E(y_i \mid s_i = 1, \mathbf{x}_{1i}, \mathbf{x}_{2i}) = \mathbf{x}_{1i}\boldsymbol{\beta} + \gamma_i\lambda_i$$
(13)

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\gamma} + u_{2i} > 0) \tag{2}$$

Estimation depends on modeling σ_{2i} and γ_i

$$\lambda_i = \frac{\phi(\mathbf{x}_{2i}\boldsymbol{\delta}/\sigma_{2i})}{\sigma_{2i}\Phi(\mathbf{x}_{2i}\boldsymbol{\delta}/\sigma_{2i})}$$

$$E(y_i \mid s_i = 1, \mathbf{x}_{1i}, \mathbf{x}_{2i}) = \mathbf{x}_{1i}\boldsymbol{\beta} + \gamma_i\lambda_i$$
(13)

Consider parametric models for the heteroskedasticity:

$$\sigma_{2i}^2 = \operatorname{Var}(u_{2i} \mid \mathbf{x}_{1i}, \mathbf{x}_{2i}) = \{\exp(\mathbf{z}_{2i}\boldsymbol{\pi})\}^2$$
(14)

$$\gamma_i = \operatorname{Cov}(u_{1i}, u_{2i} \mid \mathbf{x}_{1i}, \mathbf{x}_{2i}) = \mathbf{z}_{12i}\boldsymbol{\rho}$$
(15)

What to include in \mathbf{z}_{2i} and \mathbf{z}_{12i} ?

 \mathbf{z}_{2i} are the covariates in the conditional variance of the binary sample selection equation

- never includes a constant (binary response only identified to scale)
- ▶ variables with a heterogeneous effect on sample selection

$$\begin{aligned} \operatorname{Var}(\tilde{u}_{2i} \mid educ_i, nwifinc_i) = & 1 + \sigma_{d1}^2 educ_i^2 + \sigma_{d2}^2 nwifinc_i^2 \\ & + \sigma_{d1d2}^2 educ_i \times nwifinc_i \end{aligned}$$

What to include in \mathbf{z}_{2i} and \mathbf{z}_{12i} ?

 \mathbf{z}_{12i} are the covariates in the conditional covariance across the outcome and sample selection equations

- ▶ it always includes a constant (first element)
- variables whose heterogeneous effects could be correlated across equations

 $\operatorname{Cov}(\tilde{u}_{1i}, \tilde{u}_{2i} \mid educ_i, nwifinc_i) = \rho\sigma + \sigma_{b1,d1} educ_i^2 + \sigma_{b1,d2} educ_i \times nwifinc_i$

generalized two-step Heckman Estimator

1. Estimate the binary choice in equation (2) with exponential heteroskedasticity in equation (14) via a MLE approach using **hetprobit**, calculate the scaled estimated inverse mills ratio:

$$\widehat{\lambda}_{i} = \frac{\phi(\mathbf{x}_{2i}\widehat{\boldsymbol{\delta}}/\exp(\mathbf{z}_{2i}\widehat{\boldsymbol{\pi}}))}{\Phi(\mathbf{x}_{2i}\widehat{\boldsymbol{\delta}}/\exp(\mathbf{z}_{2i}\widehat{\boldsymbol{\pi}}))\exp(\mathbf{z}_{2i}\widehat{\boldsymbol{\pi}})}$$

2. Estimate the following augmented regression

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + \widehat{\lambda}_i \mathbf{z}_{12i}\boldsymbol{\rho} + \varepsilon_i.$$
(16)

Stata command:

gtsheckman depvar [indepvars], select($depvar_s = varlist_s$) [het($varlist_1$) clp($varlist_2$) vce(vcetype)]

. gtsheckman lwage educ, select(inlf = educ nwifeinc) het(educ nwifeinc c.educ#c > .nwifeinc) clp(c.educ#c.(educ nwifeinc)) vce(robust) nolog

Generalized	Two Step	Heckman	Estimator	Number of obs	=	753
				Selected	=	428
				Nonselected	=	325
First-stage	heterosk	edastic p	probit estimates			

inlf	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
inlf						
educ	.1064374	.1287153	0.83	0.408	14584	.3587147
nwifeinc	0196065	.0230412	-0.85	0.395	0647664	.0255534
_cons	820798	1.024283	-0.80	0.423	-2.828355	1.186759
lnsigma						
educ	0543857	.0859826	-0.63	0.527	2229085	.1141371
nwifeinc	.0208967	.056284	0.37	0.710	089418	.1312114
c.educ#						
c.nwifeinc	.0000222	.0039891	0.01	0.996	0077964	.0078407

	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
lwage						
educ	.2219466	.142621	1.56	0.120	- 0575855	.5014787
lambda	1.019362	1.11739	0.91	0.362	-1.170681	3.209405
c.lambda# c.educ#c.educ	0063103	.0054442	-1.16	0.246	0169808	.0043603
c.lambda# c.educ#						
c.nwifeinc	.0004444	.0007381	0.60	0.547	0010023	.001891
_cons	-1.7458	2.280336	-0.77	0.444	-6.215176	2.723576

Second-stage augmented regression estimates

Consistency of LIML is fundamentally reliant on MCC

$$\begin{aligned}
 u_{2i} \mid \mathbf{x}_{1i}, \mathbf{x}_{2i} \sim \mathcal{N}(0, 1) \\
 E(u_{1i} \mid u_{2i}, \mathbf{x}_{1i}, \mathbf{x}_{2i}) = \gamma u_{2i}
\end{aligned} \tag{4}$$

Can we test for this?

Consistency of LIML is fundamentally reliant on MCC

$$u_{2i} \mid \mathbf{x}_{1i}, \mathbf{x}_{2i} \sim \mathcal{N}(0, 1)$$

$$\mathcal{E}(u_{1i} \mid u_{2i}, \mathbf{x}_{1i}, \mathbf{x}_{2i}) = \gamma u_{2i}$$

$$(4)$$

Can we test for this?

the gtsheckman command does not rely on MCC

$$u_{2i} \mid \mathbf{x}_{1i}, \mathbf{x}_{2i} \sim \mathrm{N}(0, \{\exp(\mathbf{z}_{2i}\boldsymbol{\pi})\}^2)$$
$$\mathrm{E}(u_{1i} \mid u_{2i}, \mathbf{x}_{1i}, \mathbf{x}_{2i}) = \frac{\mathbf{z}_{12i}\boldsymbol{\rho}}{\{\exp(\mathbf{z}_{2i}\boldsymbol{\pi})\}^2} u_{2i}$$
(17)

but MCC holds if

$$\boldsymbol{\pi} = 0 \text{ and } \mathbf{z}_{12i} \boldsymbol{\rho} = \gamma$$

in other words, test of all the heteroskedasticity terms and all covariance terms (not including the constant)

. hetprobit inlf educ nwifeinc, het(educ nwifeinc c.educ#c.nwifeinc) nolog

Heteroskedastic probit model	Number of obs Zero outcomes Nonzero outcomes	-	753 325 428
Log likelihood = - 486.2947	Wald chi2(2) Prob > chi2	=	0.73 0.6959

	inlf	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
inlf							
	educ	.1064374	.1287153	0.83	0.408	14584	.3587147
nwi	feinc	0196065	.0230412	-0.85	0.395	0647664	.0255534
	_cons	820798	1.024283	-0.80	0.423	-2.828355	1.186759
lnsigma							
	educ	0543857	.0859826	-0.63	0.527	2229085	.1141371
nwi	feinc	.0208967	.056284	0.37	0.710	089418	.1312114
c.educ#c.nwi	feinc	.0000222	.0039891	0.01	0.996	0077964	.0078407

LR test of lnsigma=0: chi2(3) = 5.00

Prob > chi2 = 0.1721

. quietly gtsheckman lwage educ, select(inlf = educ nwifeinc) het(educ nwifeinc

> c.educ#c.nwifeinc) clp(c.educ#c.(educ nwifeinc)) vce(robust) nolog

. test c.lambda#c.educ#c.educ c.lambda#c.educ#c.nwifeinc

(1) [lwage]c.lambda#c.educ#c.educ = 0
(2) [lwage]c.lambda#c.educ#c.nwifeinc = 0

chi2(2) = 1.34 Prob > chi2 = 0.5106

Conclusion

- 1. What causes heteroskedasticity in Sample Selection models?
 - heterogeneity!
- 2. What are the consequences of heteroskedasticity in Sample Selection models?
 - ▶ LIML vs FIML estimators
 - heteroskedasticity in outcome vs selection equation
- 3. Can we test for heteroskedasticity?
 - LIML over FIML (demeaned) Breusch and Pagan (1979) test and Hausman (1978) test
 - Validity of LIML MCC test
- 4. Is there an alternative estimator for sample selection models with general forms of heteroskedasticity.

gtsheckman

- BREUSCH, T. S., AND A. R. PAGAN (1979): "A simple test for heteroscedasticity and random coefficient variation," *Econometrica*, 47(5), 1287–1294.
- CARLSON, A. (2022): "GTSHECKMAN: Stata module to compute a generalized two-step Heckman selection model," Statistical Software Components, Boston College Department of Economics, revised 06 Aug 2024.

(forthcoming): "gtsheckman: Generalized two-step Heckman estimator," The Stata Journal.

- CARLSON, A., AND R. JOSHI (2024): "Sample selection in linear panel data models with heterogeneous coefficients," Journal of Applied Econometrics, 39(2), 237–255.
- CARLSON, A., AND W. ZHAO (2023): "Heckman sample selection estimators under heteroskedasticity," Working Papers 2303, Department of Economics, University of Missouri.
- HAUSMAN, J. A. (1978): "Specification tests in econometrics," *Econometrica*, 46(6), 1251–1271.
- HECKMAN, J. J. (1979): "Sample selection bias as a specification error," *Econometrica*, 47(1), 153–161.
- MROZ, T. A. (1987): "The sensitivity of an empirical model of married women's hours of work to economic and statistical assumptions," *Econometrica*, 55(4), 765–799.
- WOOLDRIDGE, J. M. (2010): Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge, MA, 2nd edn.