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Today’s talk

1. What causes heteroskedasticity in Sample Selection models?
▶ heterogeneity!

2. What are the consequences of heteroskedasticity in Sample Selection
models?
▶ LIML vs FIML estimators
▶ heteroskedasticity in outcome vs selection equation

3. Can we test for heteroskedasticity?
▶ LIML over FIML – (demeaned) Breusch and Pagan (1979) test and

Hausman (1978) test
▶ Validity of LIML – MCC test

4. Is there an alternative estimator for sample selection models with
general forms of heteroskedasticity.
▶ gtsheckman
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Today’s talk

Carlson and Joshi (2024) “ Sample Selection in linear panel data
models with heterogenous coefficients,” Journal of Applied
Econometrics, 39(2), 237-255.

Carlson (2022) “GTSHECKMAN: Stata module to compute
generalised two-step Heckman selection model,” Statistical Software
Components, Boston College Department of Economics.
▶ Forthcoming Stata Journal article (Carlson, forthcoming)

Carlson and Zhao (2023) “Heckman sample selection estimators under
heteroskedasticity,” Working Paper 2303, Department of Economics,
University of Missouri.
▶ Forthcoming Stata Journal article
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Sample Selection Model

The outcome is modeled as

yi = x1iβ + u1i (1)

but the outcome is not always observed.

yi is only observed when si = 1,

si = 1(x2iδ + u2i > 0) (2)

▶ both x1i and x2i include a constant
▶ often x2i = (x1i,wi)
▶ Ex: Estimating married woman wages

ln(wagei) =β0 + educiβ1 + u1i

inlfi =1(δ0 + educiδ1 + nwifinciδ2 + u2i > 0)
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Sample Selection Model

yi =x1iβ + u1i (1)

si =1(x2iδ + u2i > 0) (2)

Problem: want to estimate

E(yi|x1i) = x1iβ

but you can only use the observed sample,

E(yi|x1i, si = 1) ̸= x1iβ

if u1i is correlated with u2i
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Sample Selection Estimators

yi =x1iβ + u1i (1)

si =1(x2iδ + u2i > 0) (2)

Heckman (1979) assumes(
u1i

u2i

)∣∣∣∣x1i,x2i ∼ N

((
0
0

)
,

(
σ2 ρσ
ρσ 1

))
(3)

Which suggests two possible estimators:

1. Full information ML (FIML): maximum likelihood over the joint
distribution of yi and si.
▶ Requires joint distribution to be correctly specified
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FIML

Stata command:

heckman depvar
[
indepvars

]
, select(depvars = varlists)

1. Maximize the joint log likelihood

ℓi =(1− si) ln[1− Φ(x2iδ)] + si ln

[
Φ

(
x2iδ + ρ(yi − x1iβ)/σ1√

1− ρ2

)]

− si

[
(yi − x1iβ)

2

2σ2
1

+ ln(σ1)

]
with respect to δ,β, ρ, σ1.
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Sample Selection Estimators

yi =x1iβ + u1i (1)

si =1(x2iδ + u2i > 0) (2)

Heckman (1979) assumes(
u1i

u2i

)∣∣∣∣x1i,x2i ∼ N

((
0
0

)
,

(
σ2 ρσ
ρσ 1

))
(3)

Which suggests two possible estimators:

2. Limit information ML (LIML): two-step estimator based on the
conditional distribution of yi | si = 1
▶ Requires Minimial Consistency Condition (MCC) (Wooldridge,

2010, Assumption 19.1):

u2i | x1i,x2i ∼ N(0, 1)

E(u1i | u2i,x1i,x2i) = γu2i

(4)
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LIML

Under MCC

E(yi | si = 1,x1i,x2i) = x1iβ + γλ(x2iδ) (5)

where

λ(x2iδ) ≡
ϕ(x2iδ)

Φ(x2iδ)
= E(u2i | si = 1,x1i,x2i)

Stata command:

heckman depvar
[
indepvars

]
, select(depvars = varlists) twostep

1. Estimate the binary choice in equation (2) using probit, calculate the
estimated inverse mills ratio:

λ̂i =
ϕ(x2iδ̂)

Φ(x2iδ̂)

2. Estimate the following augmented regression:

yi = x1iβ + γλ̂i + εi.
13



FIML and LIML in Stata

Mroz (1987) PSID data on the wages of 428 working, married women
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FIML and LIML in Stata

15



FIML and LIML in Stata
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Introducing Heteroskedasticity

What causes heteroskedasticity in Sample Selection models?
▶ Variation in wages is changing for different education levels
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Introducing Heteroskedasticity

What causes heteroskedasticity in Sample Selection models?
▶ Heterogeneous effects

ln(wagei) =β0 + educib1i + u1i (6)

inlfi =1(δ0 + educid1i + nwifincid2i + u2i > 0) (7)

let β1 = E(b1i), δ1 = E(d1i), and δ2 = E(d2i), then

ln(wagei) =β0 + educiβ1 + ũ1i (8)

inlfi =1(δ0 + educiδ1 + nwifinciδ2 + ũ2i > 0) (9)

where

ũ1i = u1i + (b1i − β1)educi (10)

ũ2i = u2i + (d1i − δ1)educi + (d2i − δ2)nwifinci (11)
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Introducing Heteroskedasticity

What causes heteroskedasticity in Sample Selection models?
▶ Heterogeneous effects

ln(wagei) =β0 + educib1i + u1i (6)

inlfi =1(δ0 + educid1i + nwifincid2i + u2i > 0) (7)

let β1 = E(b1i), δ1 = E(d1i), and δ2 = E(d2i), then

ln(wagei) =β0 + educiβ1 + ũ1i (8)

inlfi =1(δ0 + educiδ1 + nwifinciδ2 + ũ2i > 0) (9)

then

Var(ũ1i | educi, nwifinci) =σ2 + σ2
b1educ

2
i

Var(ũ2i | educi, nwifinci) =1 + σ2
d1educ

2
i + σ2

d2nwifinc2i

+ σ2
d1d2educi × nwifinci

Cov(ũ1i, ũ2i | educi, nwifinci) =ρσ + σb1,d1educ
2
i + σb1,d2educi × nwifinci

(assuming (u1i, u2i) ⊥ (b1i, d1i, d2i))
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Introducing Heteroskedasticity

yi =x1iβ + u1i (1)

si =1(x2iδ + u2i > 0) (2)

Suppose we have heteroskedasticity(
u1i

u2i

)
∼ N

((
0
0

)
,

(
σ2
1i ρiσ1iσ2i

ρiσ1iσ2i σ2
2i

))
(12)

What are the consequences?

1. FIML
▶ joint distribution is misspecified → inconsistent!
▶ robust standard errors does not fix this!

2. LIML
▶ if MCC holds → consistent

σ2i = 1

ρiσ1i = γ

but need robust standard errors!
▶ if MCC does not hold → inconsistent!
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Introducing Heteroskedasticity

Stata LIML estimator does not produce heteroskedastic robust
standard errors,
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Introducing Heteroskedasticity
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Introducing Heteroskedasticity
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Introducing Heteroskedasticity
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Introducing Heteroskedasticity

What are the consequences of heteroskedasticity?
▶ If there is heteroskedasiticty in outcome equation – FIML is

inconsistent, LIML can be consisent
▶ If MCC does not hold – both FIML and LIML are inconsistent

Can we test for this?

Yes!
▶ Testing for heteroskedasiticty in outcome equation – (demeaned)

Breusch and Pagan (1979) test and Hausman (1978) test
▶ Testing for MCC – MCC test (using gtsheckman command)
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Testing for Heteroskedasticity

Testing for heteroskedasticity in outcome equation
▶ Without sample selection – Breusch and Pagan (1979) test

yi = x1iβ + u1i (1)

homoskedasticity implies E(u2
1i | x1i) = σ2

1

1. Regress yi on x1i, obtain residuals squared, û2
1i.

2. Regress û2
1i on x1i evaluate overall test of significance
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Testing for Heteroskedasticity

Testing for heteroskedasticity in outcome equation
▶ With sample selection – Naive Breusch and Pagan (1979) test

yi =x1iβ + u1i (1)

si =1(x2iδ + u2i > 0) (2)

1. Estimate the sample selection model using LIML, obtain residuals
squared for the observed sample,

û2
1i = (yi − x1iβ̂)

2

2. Regress û2
1i on x1i on the observed sample and evaluate overall test of

significance
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Testing for Heteroskedasticity

Naive Breusch Pagan test
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E(u2
1i | x1i,x2i, si = 1) = σ2

1 − γ2λ(x2iδ)x2iδ
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Testing for Heteroskedasticity
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Testing for Heteroskedasticity

Why was it asymmetric?
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Depends on how the selection relates to the heteroskedasticity
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Testing for Heteroskedasticity

How should we test for heteroskedasticity in outcome equation with
sample selection?

▶ Demeaned Breusch and Pagan (1979) test
▶ With homoskedasticity in u1i,

E(u2
1i | x1i,x2i, si = 1) = σ2

1 − γ2λ(x2iδ)x2iδ

instead we can demean it!

E(u2
1i + γ2λ(x2iδ)x2iδ︸ ︷︷ ︸

ũ2
1i

| x1i,x2i, si = 1) = σ2
1

Execute in the following steps

1. Estimate the sample selection model using LIML, obtain demeaned
residuals squared for the observed sample,

ũ2
1i = (yi − x1iβ̂)

2 + γ̂2λ̂ix2iδ̂

2. Regress ũ2
1i on x1i on the observed sample and evaluate overall test of

significance
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Testing for Heteroskedasticity

Demeaned Breusch Pagan test
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Testing for Heteroskedasticity

How should we test for heteroskedasticity in outcome equation with
sample selection?
▶ Hausman (1978) test

▶ With homoskedasticity both FIML and LIML are consistent, FIML is
efficient

▶ Without homoskedasticity (with MCC), only LIML is consistent
▶ In Stata,

hausman FIML LIML
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Testing for Heteroskedasticity

Hausman test
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Testing for Heteroskedasticity
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Estimation with Heteroskedasticity

Consistency of LIML is fundamentally reliant on MCC
▶ Can we test for this?
▶ Can we get a consistent estimator without MCC?
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Estimation with Heteroskedasticity

yi =x1iβ + u1i (1)

si =1(x2iδ + u2i > 0) (2)

Suppose we have heteroskedasticity(
u1i

u2i

)
∼ N

((
0
0

)
,

(
σ2
1i ρiσ1iσ2i

ρiσ1iσ2i σ2
2i

))
(12)

Can we still derive a correction?

Yes!

λi ≡
ϕ(x2iδ/σ2i)

σ2iΦ(x2iδ/σ2i)

γi ≡ ρiσ1iσ2i

then
E(yi | si = 1,x1i,x2i) = x1iβ + γiλi (13)
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Estimation with Heteroskedasticity

yi =x1iβ + u1i (1)

si =1(x2iγ + u2i > 0) (2)

Estimation depends on modeling σ2i and γi

λi =
ϕ(x2iδ/σ2i)

σ2iΦ(x2iδ/σ2i)

E(yi | si = 1,x1i,x2i) = x1iβ + γiλi (13)

Consider parametric models for the heteroskedasticity:

σ2
2i = Var(u2i | x1i,x2i) = {exp(z2iπ)}2 (14)

γi = Cov(u1i, u2i | x1i,x2i) = z12iρ (15)
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generalized two-step Heckman Estimator

What to include in z2i and z12i?

z2i are the covariates in the conditional variance of the binary sample
selection equation
▶ never includes a constant (binary response only identified to scale)
▶ variables with a heterogeneous effect on sample selection

Var(ũ2i | educi, nwifinci) =1 + σ2
d1educ

2
i + σ2

d2nwifinc2i

+ σ2
d1d2educi × nwifinci
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generalized two-step Heckman Estimator

What to include in z2i and z12i?

z12i are the covariates in the conditional covariance across the
outcome and sample selection equations
▶ it always includes a constant (first element)
▶ variables whose heterogeneous effects could be correlated across

equations

Cov(ũ1i, ũ2i | educi, nwifinci) = ρσ+σb1,d1educ
2
i+σb1,d2educi×nwifinci
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generalized two-step Heckman Estimator

generalized two-step Heckman Estimator

1. Estimate the binary choice in equation (2) with exponential
heteroskedasticity in equation (14) via a MLE approach using
hetprobit, calculate the scaled estimated inverse mills ratio:

λ̂i =
ϕ(x2iδ̂/ exp(z2iπ̂))

Φ(x2iδ̂/ exp(z2iπ̂)) exp(z2iπ̂)
.

2. Estimate the following augmented regression

yi = x1iβ + λ̂iz12iρ+ εi. (16)

Stata command:

gtsheckman depvar
[
indepvars

]
, select(depvars = varlists)[

het(varlist1) clp(varlist2) vce(vcetype)
]
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generalized two-step Heckman Estimator
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generalized two-step Heckman Estimator
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Testing for MCC

Consistency of LIML is fundamentally reliant on MCC

u2i | x1i,x2i ∼ N(0, 1)

E(u1i | u2i,x1i,x2i) = γu2i

(4)

Can we test for this?

the gtsheckman command does not rely on MCC

u2i | x1i,x2i ∼ N(0, {exp(z2iπ)}2)

E(u1i | u2i,x1i,x2i) =
z12iρ

{exp(z2iπ)}2
u2i

(17)

but MCC holds if
π = 0 and z12iρ = γ

in other words, test of all the heteroskedasticity terms and all
covariance terms (not including the constant)
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Testing for MCC
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Testing for MCC
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Testing for MCC
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Conclusion

1. What causes heteroskedasticity in Sample Selection models?
▶ heterogeneity!

2. What are the consequences of heteroskedasticity in Sample Selection
models?
▶ LIML vs FIML estimators
▶ heteroskedasticity in outcome vs selection equation

3. Can we test for heteroskedasticity?
▶ LIML over FIML – (demeaned) Breusch and Pagan (1979) test and

Hausman (1978) test
▶ Validity of LIML – MCC test

4. Is there an alternative estimator for sample selection models with
general forms of heteroskedasticity.
▶ gtsheckman
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