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Abstract

This paper proposes a class of test procedures for a structural change with an

unknown change point. In particular, we consider a general �nancial time series

model with conditional heteroskedasticity. The test statistics are constructed

via the empirical distribution approach and are aiming for detecting a change

that may occur beyond the second moment. We derive the asymptotic null

distributions of the test statistics and tabulate the critical values. Studies

of the local power show that our test statistics have non-trivial local power.

Finite sample performances of the proposed tests are studied via Monte Carlo

methods. The test procedures are applied to test change point in the S&P 500

daily index.
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1. Introduction

This paper considers tests for parameter instability of a general �nancial time series

with conditional heteroskedasticity. It is important to develop such tests at least

for the following two reasons. First, conditional variance of a �nancial time series

measures market risk and plays very important roles in pricing derivative securities.

Given that structural changes caused by various economic shocks occur all the time,

it is therefore necessary to detect any structural shift in the conditional variance

in order to correctly forecast volatility and price derivative securities. For example,

models with conditional heteroskedasticity such as the autoregressive conditional het-

eroskedasticity (ARCH) models by Engle (1982), and the generalized autoregressive

conditional heteroskedasticity (GARCH) by Bollerslev (1986), are very popular and

heavily used in examining �nancial time series. Nevertheless, it is believed that pa-

rameter shift in the intercept term of the conditional variance equation is very likely

to be blamed for biasing the estimation of a GARCH model toward an integrated

GARCH (IGARCH) model (Diebold: 1986 and Lamoureux and Lastrapes: 1990b).

Second, even if there is no shift in other than the conditional mean, correctly specify-

ing the conditional variance will improve the performances of the tests on instability

of the conditional mean.

Earlier studies on the change point test, or the parameter constancy test, include

Chow (1960) and Quandt (1960). More recent works are Andrews (1993), Bai (1996),

Delgado and Hidalgo (1996), and the references therein. Many tests in this litera-

ture focus on testing changes in the conditional mean assuming homoskedastic errors.

For example, Andrews (1993) proposes alternative Sup-F types of testing procedures

for the change point in parameter values characterizing the mean equation. Del-

gado and Hidalgo (1996) consider a test for changes of the regression function in a

nonparametric setting. However, tests for instability of a �nancial time series with

2



conditional heteroskedasticity has not received much attention. A few exceptions are,

among others, Chu (1995), Perron (1998), and Knight, Li and Yang (1999).1 Among

these, tests for parameter instability in a simple GARCH framework have been con-

sidered by Chu (1995), who proposes Lagrange multiplier (LM) type of Sup-F tests

for the constancy of variance parameters against the alternative of one-time shift

in the GARCH models. These LM test statistics are constructed by estimating the

model via the Gaussian Quasi-Maximum Likelihood (QML) estimation and making

a comparison between the pre-shift and post-shift average score functions implied

by the Gaussian likelihood. Chu's LM test statistics are mainly designed for detect-

ing parameter shift manifested in the conditional variance. Nevertheless, as Hansen

(1994) argues, higher order moments, such as the skewness and the kurtosis of the

error distribution, a�ect the eÆciency of estimation, the predictive performance of

the model, and the validity of derivative security pricing, and should not be ignored.

Hence, we �nd it important to develop tests that are capable of detecting structural

changes manifested in any directions characterizing the underlying dynamics of the

time series. In addition, as shown by the Monte Carlo results in Chu (1995), his

LM statistics su�er from mis-speci�cation of the error distribution simply because

the score functions under Gaussian assumption have been used to construct the test

statistics.

The proposed test statistics in this paper are constructed in the spirit of Bai

(1991) and Bai (1996), where he examines the empirical distribution function of the

residual processes to construct tests of parameter constancy in a linear regression

model assuming i.i.d. or ARMA error terms. The idea is that whatever feature of the

time series dynamics that is not captured by the possibly mis-speci�ed model is going

1Perron (1998) applies the approach of Delgado and Hidalgo (1996) to detect jumps in the

conditional variance in a nonparametric setting. Knight, Li and Yang (1999) propose test to detect

joint jumps in the drift term and the di�usion term in a continuous-time term structure framework.
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to be reected in the empirical residual process. As a result, these tests are capable

of detecting changes in the parameters characterizing the mean and the conditional

variance as well as changes in higher moments of the underlying process, whereas

conventional tests such as the Sup-F test may not be suitable for this purpose.

In this paper, we consider a general class of �nancial time series models with con-

ditional heteroskedasticity. We provide these models and construct our test statistics

based on the empirical residual processes of these models in Section 2. Section 3

studies the asymptotic null distributions of the test statistics and show that the tests

have non-trivial local power. We also tabulate the critical values of the proposed test

statistics for di�erent sample sizes, which can be readily used by practitioners. Monte

Carlo studies are conducted in Section 4 to examine the �nite sample performances

of the proposed tests, which suggest that the test procedures work reasonably well.

The testing procedures are then applied to detect change point in the S&P 500 in-

dex, where strong evidence is found in favor of the existence of parameter instability.

Section 5 concludes the paper.

2. The Model and the Test Statistic

2.1. The Model

We consider a linear regression model with conditional heteroskedasticity. Under the

null hypothesis, it takes the following form,

yt = xt� + ut; ut = etvt(�jFt�1); (2.1)

where � and � are the vectors of parameters; xt includes exogenous or predetermined

variables; and v
2
t (�jFt�1) is the conditional variance which depends on the past in-

formation Ft�1; the innovations, fetgnt=1, are independent and identically distributed

with unknown density f and distribution function F .
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Many of the popular �nance models can be grouped into this framework with a

few examples described below.

(1) The Capital Asset Pricing Model (CAPM)

In the CAPM, yt is the return of an individual stock or a portfolio, xt mea-

sures the return of the market portfolio, and v
2
t (�jFt�1) can be assumed to follow

a GARCH(p; q) process to capture the time-varying and the clustering features of

individual stock volatility, which is

v
2
t = �0 +

pX
i=1

�1iu
2
t�i +

qX
j=1

�2jv
2
t�j: (2.2)

We shall assume that the process v2t is stationary, which requires that

pX
i=1

�1i +
qX

j=1

�2j < 1:

(2) The Arbitrage Pricing Theory (APT)

In a simple version of the APT with two factors, a market factor - market portfolio

return, and a volatility factor - the conditional standard deviation at time t constitute

the explanatory variable vector xt in the conditional mean equation. When the

conditional volatility is assumed to follow a GARCH process, it is a version of the

so-called GARCH in mean (GARCH-M) model (see Engle (1993), and Engle, Lilien,

and Robins (1987)).

(3) GARCH models with trading variables

Trading variables contain valuable information for describing stock volatility. A

simple model to incorporate the information in trading variables is to assume that

v
2
t = �0 +

pX
i=1

�1iu
2
t�i +

qX
j=1

�2jv
2
t�j + �3 � tvt�1; (2.3)

where tvt�1 is the �rst lag of a trading variable, which could be trading volume,

number of trades, or number of price changes. Model (2.3) is similar to the model of

Lamoureux and Lastrapes (1990a), where the lagged trading variable is replaced by

its current value.
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When estimating these time series models, it is fundamental to assume station-

arity of the underlying dynamics. However, sudden jumps and structural changes

have been widely recognized in the �nance literature. These could occur as a result

technical progress, changes in policies and regulations, market crash, oil crisis and

other economic shocks. Many nonlinear models have been proposed to capture such

changes in �nancial time series, for example the threshold autoregression model of

Tong (1983) and the Markov-switching models of Hamilton (1989). Nevertheless, co-

variance stationarity remains as a key assumption in these type of state-dependent

models. It is therefore desirable to construct tests for change point in the underlying

dynamics of the observed time series before we apply these proposed models.

2.2. The Test Statistics

To construct such a test, the alternative hypothesis can be speci�ed as the following.

yt = xt�t + e
�

tvt(�t); (2.4)

where �t and �t may not be constant over time and/or the disturbances e�t may

not be identically distributed. Chu (1995) represents the �rst attempt to test for

change points in this framework with GARCH-type conditional heteroskedasticity.

His LM statistics are essentially constructed by (1) estimating the model under the

null hypothesis by Gaussian Quasi Maximum Likelihood estimation; (2) breaking the

sample, at a given breaking point, into two subsamples and computing the weighted

quadratic di�erence of the average gradient functions under Gaussian likelihood; and

(3) taking supermium over all possible breaking point. However, the tests constructed

this way are not able to detect changes beyond the second moment. Furthermore, the

small sample performance of the resulting statistics is sensitive to the mis-speci�cation

of the error distribution function as evidenced by Chu's Monte Carlo results.

To tackle these problems, the empirical distribution function approach of Bai
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(1996) is a viable alternative. The intuition is that since such test statistics are built

upon the empirical residual processes, they are robust to mis-speci�cation of the

error distribution. Furthermore, any higher order moment changes not captured by

the conditional mean and the conditional variance equation would remain in the �tted

residuals, and hence would be captured by the test statistics. We now describe our test

statistics, which resembles the non-weighted test of Bai (1996). Let �̂ and �̂ be the

quasi-maximum likelihood estimators of � and � respectively and the standardized

�tted residuals

êt =
yt � xt�̂

vt(�̂)
:

For a �xed k, de�ne the empirical marginal distribution function (e.d.f.) based on

the �rst k observations as

F̂k(z) =
1

k

kX
t=1

I(êt � z);

and the e.d.f. based on the last n� k observations as

F̂
�

n�k(z) =
1

n� k

nX
t=k+1

I(êt � z);

where I(�) is an indicator function. Further de�ne the weighted di�erence of empirical
distribution functions from the two subsamples as

Tn

 
k

n
; z

!
=

k

n

 
1� k

n

!p
n(F̂k(z)� F̂

�

n�k(z)): (2.5)

Based on Tn(�; �), we can construct the following three alternative test statistics. First
of all, the Sup-type test statistic, Mn, is de�ned as

Mn = max
k

sup
z
jTn(k=n; z)j; (2.6)

where the maximum is taken over 1 � k � n and the supermium with respect to

z is taken over the entire real line. Secondly, we can construct two mean-type test

statistics, ABSAn and SQAn, where

ABSAn =
1

n2

X
k

X
j

�����Tn
 
k

n
; êj

!�����; and (2.7)
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SQAn =
1

n2

X
k

X
j

"
Tn

 
k

n
; êj

!#2
: (2.8)

Remark 1: The Mn test statistics is essentially the maximum value of weighted

Kolmogorov-Smirnov statistics for all possible sample splits. This test is considered

by Bai (1993) for testing changes in an ARMA process and Bai (1996) for testing

changes in a regression model with a trend regressor.

Remark 2: All of the tset statistics, Mn, ABSAn, and SQAn, in equation (2.6)

- (2.8) share the same property as Chu's LM test in the sense that it requires no

re-estimating the parameters for each subsample via numerical optimization, which is

computational intensive and may su�er from numerical diÆculties in a small subsam-

ple. On the other hand, these statistics are applicable for more general time series

models with heteroskedasticity rather than a simple GARCH model as in Chu (1995).

Remark 3: Since the test statistics are constructed by using the standardized

residuals from the Gaussian QML estimation rather than using the sample mean

gradients of Gaussian likelihood, they are no longer sensitive to non-Gaussian errors.

In addition, they are capable of detecting a change in the conditional mean, the

conditional variance, as well as other higher order moments.

Remark 4: As Bai (1996) shows, assuming no change in the error distribution

function, a test constructed by using an empirical distribution function approach

might be more powerful than a Sup-Wald test in small samples with non-gaussian

errors.

3. The Asymptotic Properties

To obtain the asymptotic properties of the proposed test statistics, we make the

following assumptions.

Assumption A.1: Under the null hypothesis, the disturbances et have zero mean

and are equipped with a marginal distribution function, F , and a density function f ,
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f > 0. Both f(z) and zf(z) are uniformly continuous on the real line. Further, there

exists a �nite number L such that jzf(z)j < L and jf(z)j < L for all z.

Assumption A.2: The disturbances et are independent of all contemporaneous

and past regressors.

Assumption A.3: Let

zt =

 
x
>

t

vt(�)
;

1

vt(�)

@vt(�)

@�
>

!
>

:

Under the null, zt satis�es

plim
1

n

[ns]X
t=1

ztz
>

t = sQ uniformly in s 2 [0; 1];

where Q is a k � k nonrandom positive de�nite matrix.

Assumption A.4: Under the null, zt satis�es

plim
1

n

[ns]X
t=1

zt = sz uniformly in s 2 [0; 1];

where z is a k � 1 constant vector.

Assumption A.5: Under the null, there exists a
p
n-consistent estimator of

(�>;�>)>.

Assumption A.1 is a regularity assumption for empirical processes as in Bai (1996),

Boldin (1989), Koul (1992), and Kreiss (1991). Assumptions A.2 allows for dynamic

variables. Assumptions A.3 and A.4 ensure that the test statistics are asymptotically

distribution free. Assumption A.5 is satis�ed by the Gaussian Quasi-Maximum Likeli-

hood Estimator given the regularity conditions as shown by Bollerslev and Wooldridge

(1992).

3.1. The Null Distribution

Based on the assumptions we have just made, we study the asymptotic null distri-

butions for the proposed test statistics. We will focus on the Sup-type statistic, Mn,
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observing that the asymptotics of the other statistics can be obtained in a similar

manner. We will follow essentially Bai (1996) to �rst prove the weak convergence for

Tn(s; z) and then apply the continuous mapping theorem. We can rewrite Tn(k=n; z)

as follows,

Tn

 
k

n
; z

!
= n

�1=2
kX

t=1

I(êt � z)� k

n
n
�1=2

nX
t=1

I(êt � z)

= n
�1=2

kX
t=1

[I(êt � z)� F (z)]� k

n
n
�1=2

nX
t=1

[I(êt � z)� F (z)] ;

where F is assumed to be the marginal distribution function of et.

Let B(s; u) be a Gaussian process on [0; 1]2 with zero mean and covariance function

EfB(r; u)B(s; v)g = (r ^ s� rs)(u ^ v � uv):

B(s; u) so de�ned is called a two-parameter Brownian bridge on [0; 1]2:

Theorem 1: Under assumptions A.1 through A.5, we have

Tn

 
[n�]
n
; �
!

d�! B(�; F (�));

where the notation \�!" is used to denote the weak convergence in the space of

D(T ) where T = [0; 1]2 under the Skorohod J1 topology.

Given the above weak convergence result, we can simply apply the continuous

mapping theorem to obtain the null distributions of the test statistics. For example,

if we assume G(�) denote the d.f. of the r.v. sup0�s�1 sup0�u�1 jB(s; u)j, we then have

the following corollary.

Corollary 1: Under the assumptions of Theorem 1,

lim
n!1

P (Mn � a) = D(a); a > 0:

It is observed from the above results that Mn statistic is asymptotically distribu-

tion free. Similar conclusions can be drawn for the the mean-type test statistics and
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Table 3.1: Selected Quantiles of the Mn Statistics

85.0% 90.0% 92.5% 95.0% 97.5% 99.0% 99.5%

n = 100 0.7000 0.7360 0.7600 0.7950 0.8500 0.9120 0.9600

n = 200 0.7113 0.7495 0.7750 0.8103 0.8644 0.9316 0.9786

n = 300 0.7178 0.7563 0.7823 0.8172 0.8730 0.9397 0.9846

n = 600 0.7253 0.7648 0.7898 0.8244 0.8799 0.9471 0.9941

n = 1000 0.7295 0.7687 0.7941 0.8283 0.8846 0.9511 0.9994

the result of Theorem 1 implies that ABSAn and SQAn converge in distribution to

R 1
0

R 1
0 jB(s; t)jdsdt and

R 1
0

R 1
0 B(s; t)

2
dsdt respectively. Critical values of the three test

statistics are tabulated in Table 3.1 - 3.3, which are computed via simulation with

200,000 replications. In each repetition, a sequence of i.i.d. uniformly distributed

random variables on [0; 1] is generated. The process Tn(k=n; z)(0 � z � 1) is con-

structed using this sequence. The value ofMn, ABSAn and SQAn are then obtained.

In Table 3.1, we observe that, when the sample size is equal to 200, the critical values

of Mn statistics are very close to that of Bai (1996), who computes these values via

simulation with the same sample size 200 and 100,000 replications. To get an overall

look at the distribution of the three statistics, we plot the cumulative distribution

functions (CDF ) of the three statistics in Figure 1-3.2 One interesting observation

from these plots is that we �nd the shapes of the CDF s are not very sensitive to dif-

ferent sample sizes. In particular, since the mean-type statistics ABSAn and SQAn

average out most of the outliers, we can barely tell the di�erence among the CDF s

with di�erent sample sizes. For the same reason, their supports are much tighter than

that of the Mn's CDF . As a result, for applications, we can use the quantiles in the

n = 1000 cases for any larger sample size greater than 1000.

2These plots are generated from non-parametric density estimate of the simulated data, with

Gaussian kernel on 200 equally spaced points and bandwidth 4 � 1:06 � min(�̂; IQR) � n
�1=5 as

suggested in Siverman (1986, pp.45-47).
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Table 3.2: Selected Quantiles of the ABSAn Statistics

85.0% 90.0% 92.5% 95.0% 97.5% 99.0% 99.5%

n = 100 0.1536 0.1654 0.1736 0.1847 0.2033 0.2269 0.2438

n = 200 0.1532 0.1647 0.1729 0.1842 0.2030 0.2269 0.2439

n = 300 0.1532 0.1649 0.1732 0.1846 0.2033 0.2266 0.2447

n = 600 0.1528 0.1645 0.1728 0.1841 0.2037 0.2274 0.2449

n = 1000 0.1529 0.1644 0.1726 0.1840 0.2029 0.2268 0.2446

Table 3.3: Selected Quantiles of the SQAn Statistics

85.0% 90.0% 92.5% 95.0% 97.5% 99.0% 99.5%

n = 100 0.0409 0.0473 0.0519 0.0585 0.0702 0.0864 0.0989

n = 200 0.0408 0.0470 0.0516 0.0583 0.0702 0.0863 0.0993

n = 300 0.0408 0.0472 0.0519 0.0586 0.0704 0.0868 0.0994

n = 600 0.0406 0.0470 0.0517 0.0585 0.0707 0.0870 0.0998

n = 1000 0.0407 0.0470 0.0517 0.0583 0.0702 0.0866 0.0999

3.2. Local Power Analysis

When examining the local power, we consider model (2.1) with the class of local

alternatives:

H1 : (�>t ;�
>

t )
> = (�>;�>)> +�1g(t=n)n

�1=2
; (3.1)

where �1 = (�>

11;�
>

12)
>. When testing shift only in the mean parameters, researchers

often assume that the function g is de�ned on [0; 1] and is Riemann-Stieltjes inte-

grable, and de�ne the vector function

�g(s) =

Z s

0
g(x)dx� s

Z 1

0
g(x)dx: (3.2)

Unfortunately, under this class of local alternatives, the behavior of gaussian-QML

estimator is not well justi�ed. Therefore, we consider a simple shift function g such

that g(x) = 0 for x � � and g(x) = 1 for x > � , where � 2 (0; 1), then �g(s) =

�(� ^ s)(1� � _ s).
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Theorem 2: Under the assumptions A.1 through A.5 and the local alternatives

(3:1), we have

Mn
d�! sup

0�s�1

sup
0�u�1

���B(s; u) + �1f(F
�1(u))F�1(u)�g(s)

���:

Theorem 2 implies that the test statistic Mn has a non-trivial local power against

the local alternative (3.1). We now examine the behavior of the Mn statistics under

a type of changes in the error distribution functions. Similar to the test developed

in Bai (1996), Mn is capable of detecting shifts other than in the form of changing

mean and changing variances. We will therefore consider the following equation,

yt = xt� + entvt(�); (3.3)

where ent has a distribution function Fnt; t = 1; � � � ; n associated with a density

function fnt. The null hypothesis speci�es a special case of model (3.3), where Fnt = F

for all t � n.

Both �xed and local alternatives could be studied. The �xed alternative is speci-

�ed as

H2 : Fnt = F; for t � [n� ] and Fnt = G; for t > [n� ];

where F 6= G. The local alternative is

H3 : Fnt = F; for t � [n� ] and Fnt = (1��2n
�1=2)F +�2n

�1=2
H; for t > [n� ];

where �2 > 0 and �2n
�1=2

< 1, and F 6= H.

To present the asymptotic distributions of Mn under H2 and H3, we introduce a

Kiefer process denoted as KF . A Kiefer process de�ned on [0; 1] � R is a Gaussian

process with mean zero and covariance function EfKF (r; y)KF (s; z)g = (r^ s)[F (y^
z)� F (y)F (z)]. It also satis�es KF (0; �) = 0. Following Bai (1996), we then de�ne

�K(s; z) = KF (s ^ � ; z)� sKF (� ; z) +KG(s� s ^ � ; z)� sKG(1� � ; z);
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where KG is another Kiefer process independent of KF with KG(0; �) = 0. Using

these notations, we will summarize the results on local power of Mn under H2 and

H3 in the following theorem.

Theorem 3: Assume that Assumption (A.2)-(A.5) are satis�ed and (A.1) holds

for distribution functions F , G, and H. Then:

(i) Under the �xed alternative H2,

Mn = sup
s;z
j �K(s; z) +

p
n(s ^ � )(1� s _ �)(F �G)j+Op(1);

where Op is uniform in s and z.

(ii) Under the local alternative H3,

Mn
d�! sup

s;z
jB(s; F (z)) + �2(s ^ �)(1� s _ � )(F �H)j:

The Kiefer processes KF and KG are uniformly bounded in probability and con-

sequently �K is also uniformly bounded in probability. This together with
p
n(s ^

�)(1 � s _ � )jF � Gj ! 1 (for some s and z if F 6= G) implies that the test Mn is

consistent under H1. Part (ii) implies that Mn has nontrivial power in testing local

shifts in the distributions of the time series.

4. Simulation Results and an Empirical Example

To evaluate the practical usefulness, we conduct Monte Carlo studies to examine the

�nite-sample size and power performance of the proposed tests. For each size and

each power simulation, the replication number is 5,000. We then apply these test

procedures to detect the change point in S&P 500 stock returns.
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4.1. Monte Carlo Studies

When studying the size performance of the test statistics, we consider the following

data generating processes (DGP).3

Gaussian GARCH(1,1) - NGARCH:

yt = 0:05 + ut; ut = vtet

v
2
t = 0:5 + 0:3u2t�1 + 0:3v2t�1:

Gaussian Near-Integrated GARCH(1,1) - NIGARCH:

yt = 0:05 + ut;

v
2
t = 0:5 + 0:1y2t�1 + 0:8v2t�1:

GARCH(1,1) with t density - TGARCH:

et � t distribution with 10 degrees of freedom, normalized to have unit variance,

and

v
2
t = 0:5 + 0:3u2t�1 + 0:3v2t�1.

Near-Integrated GARCH(1,1) with t density - TIGARCH:

et � t distribution with 10 degrees of freedom, normalized to have unit variance,

and

v
2
t = 0:5 + 0:1y2t�1 + 0:8v2t�1.

GARCH(1,1) with �
2 density - CGARCH:

et � �
2 distribution with 10 degrees of freedom, normalized to have zero mean

and unit variance and

v
2
t = 0:5 + 0:3u2t�1 + 0:3v2t�1.

Near-Integrated GARCH(1,1) with �
2 density - CIGARCH:

et � �
2 distribution with 10 degrees of freedom, normalized to have zero mean

and unit variance, and

v
2
t = 0:5 + 0:1y2t�1 + 0:8v2t�1.

3The assumptions are veri�ed in Appendix B for these types of models.
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Table 4.1: Size Simulation

Mn ABSAn SQAn

0.05 0.10 0.05 0.10 0.05 0.10

n = 300

NGARCH 0.0528 0.1048 0.0540 0.1072 0.0528 0.1124

TGARCH 0.0480 0.0942 0.0448 0.0980 0.0466 0.0956

CGARCH 0.0496 0.0956 0.0482 0.0978 0.0482 0.0962

NIGARCH 0.0552 0.1108 0.0570 0.1108 0.0576 0.1066

TIGARCH 0.0448 0.0940 0.0468 0.1018 0.0460 0.0984

CIGARCH 0.0520 0.0924 0.0490 0.1038 0.0494 0.1024

n = 600

NGARCH 0.0478 0.0922 0.0476 0.0934 0.0482 0.0942

TGARCH 0.0444 0.0940 0.0438 0.0886 0.0408 0.0898

CGARCH 0.0464 0.0944 0.0430 0.0892 0.0412 0.0926

NIGARCH 0.0474 0.0954 0.0472 0.0986 0.0470 0.0960

TIGARCH 0.0502 0.0964 0.0480 0.0966 0.0474 0.0970

CIGARCH 0.0500 0.0968 0.0518 0.1010 0.0504 0.0998

n = 1000

NGARCH 0.0480 0.0894 0.0440 0.0902 0.0452 0.0898

TGARCH 0.0512 0.1016 0.0558 0.1008 0.0552 0.1008

CGARCH 0.0520 0.1000 0.0524 0.1034 0.0540 0.1030

NIGARCH 0.0496 0.0968 0.0528 0.1024 0.0516 0.0948

TIGARCH 0.0486 0.0966 0.0546 0.1036 0.0540 0.1014

CIGARCH 0.0482 0.1010 0.0562 0.1090 0.0556 0.1006
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The results for the three types of tests are reported in Table 4.1. Overall, all

the three test statistics perform very well and none of them dominates. To get a

better picture of how well our test statistics perform, we present the size discrepancy

plots of the test statistics in Figure 4-6. Following the suggestion in Davidson and

MacKinnon (1998), we also plot the 5% Kolmogorov-Smirnov critical values in these

�gures. It is clear from these �gures that most of the size discrepancies come from

random error during the simulation phase. These strengthen our con�dence in the

size performance of our test statistics. In particular, we �nd that even when we

mis-specify the error distribution as either a t(10) or a �2(10) distribution, the test

statistics remain reliable. This is in contrast to Chu's �nding, where the empirical size

of his LM statistics behaves poorly under mis-speci�cation of the error distribution.

To examine the power performance of the test statistics, we introduce the alterna-

tive of a one-time shift in the parameter vector. We set the parameter values before the

break as (0:0342; 0:0108; 0:3000; 0:3000). For those after the break, we study the fol-

lowing three scenarios (0:0532; 0:0129; 0:3000; 0:3000), (0:0722; 0:0150; 0:3000; 0:3000),

and (0:1102; 0:0192; 0:3000; 0:3000).4 These three scenarios correspond to jump size

equal to 0.5, 1.0 and 2.0. We also control the location of the break point (� = 0:3,

0:5, and 0:7), and the sample size (300, 600, and 1000). The results are reported in

Table 4.2-4.4, as well as the size-power plots in Figure 7-9.5 As expected, the power

increases with the jump size and the sample size, and the highest power realizes at

� = 0:5. The results also suggest that the mean-type statistics, ABSAn and SQAn,

have more power than the maximal-statistic, Mn . However, the maximal-type test

gives valuable information on the possible location of the break point, while the aver-

age type test does not. Therefore, it is recommanded that, if possible, maximal test

4These values are obtained from examining the S&P 500 data, which we use in the following

empirical application, to make the simulation results more informative.
5The size-power plots are size-corrected. In other words, we plot the power against the true size

rather than the norminal size.
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Table 4.2: Power Simulation: Jump Size = 0.5

Mn ABSAn SQAn

0.05 0.10 0.05 0.10 0.05 0.10

n = 300

� = 0:3 0.0960 0.1722 0.1088 0.1850 0.1082 0.1904

� = 0:5 0.1190 0.1974 0.1352 0.2186 0.1356 0.2220

� = 0:7 0.0978 0.1748 0.1200 0.1956 0.1174 0.1944

n = 600

� = 0:3 0.1578 0.2474 0.1878 0.2884 0.1878 0.2884

� = 0:5 0.2126 0.3224 0.2450 0.3520 0.2492 0.3562

� = 0:7 0.1494 0.2372 0.1734 0.2770 0.1724 0.2752

n = 1000

� = 0:3 0.2442 0.3588 0.2814 0.3990 0.2828 0.3984

� = 0:5 0.3392 0.4612 0.3648 0.5010 0.3772 0.5088

� = 0:7 0.2306 0.3476 0.2774 0.3900 0.2726 0.3886

and average test should both be performed in practice.

4.2. S&P 500 Daily Returns

In what follows, we apply the proposed statistics to daily returns of the S&P 500 stock

index as an illustration. The sample extends from January 2, 1980 to December 29,

1995, totaling 4045 observations. The stock return dynamics is assumed to follow a

GARCH(1,1) model as follows,

yt = �1 + ut; ut = vtet; and v
2
t = �0 + �1u

2
t�1 + �2v

2
t�1: (4.1)

GAUSS and its MAXLIK library are used to estimate the parameters and the es-

timation results of model (4.1) are reported in Table 4.5. Based on the standardized

�tted residuals of the GARCH(1,1) model, we then perform our three change-point

tests and report the results in Table 4.6. All three tests consistently suggest a struc-

tural change at signi�cance level far below 0:05. Based on theMn statistic, the \break

point" is at observation 1458. To have a closer look at this change, we re-estimate the

model according to the two subsamples - before and after the \break point". These
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Table 4.3: Power Simulation: Jump Size = 1.0

Mn ABSAn SQAn

0.05 0.10 0.05 0.10 0.05 0.10

n = 300

� = 0:3 0.2522 0.3756 0.2946 0.4278 0.2962 0.4262

� = 0:5 0.3594 0.4954 0.3964 0.5314 0.4046 0.5332

� = 0:7 0.2362 0.3500 0.2994 0.4156 0.2982 0.4094

n = 600

� = 0:3 0.4848 0.6136 0.5364 0.6650 0.5440 0.6728

� = 0:5 0.6488 0.7586 0.6876 0.7942 0.7004 0.8012

� = 0:7 0.4516 0.5808 0.5188 0.6560 0.5226 0.6550

n = 1000

� = 0:3 0.7308 0.8334 0.7738 0.8590 0.7848 0.8682

� = 0:5 0.8642 0.9252 0.8882 0.9404 0.9012 0.9440

� = 0:7 0.6922 0.7974 0.7588 0.8488 0.7660 0.8516

Table 4.4: Power Simulation: Jump Size = 2.0

Mn ABSAn SQAn

0.05 0.10 0.05 0.10 0.05 0.10

n = 300

� = 0:3 0.2522 0.3756 0.2946 0.4278 0.2962 0.4262

� = 0:5 0.3594 0.4954 0.3964 0.5314 0.4046 0.5332

� = 0:7 0.2362 0.3500 0.2994 0.4156 0.2982 0.4094

n = 600

� = 0:3 0.4848 0.6136 0.5364 0.6650 0.5440 0.6728

� = 0:5 0.6488 0.7586 0.6876 0.7942 0.7004 0.8012

� = 0:7 0.4516 0.5808 0.5188 0.6560 0.5226 0.6550

n = 1000

� = 0:3 0.7308 0.8334 0.7738 0.8590 0.7848 0.8682

� = 0:5 0.8642 0.9252 0.8882 0.9404 0.9012 0.9440

� = 0:7 0.6922 0.7974 0.7588 0.8488 0.7660 0.8516
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Table 4.5: GARCH(1,1) Estimation Results of S&P 500 Daily Returns

Full Sample Sample 1:1458 Sample 1459:4045

Parameter Estimate p-Value Estimate p-Value Estimate p-Value

�1 0.0596 4.7E-07 0.0342 6.0E-02 0.0722 9.7E-07

�0 0.0126 3.3E-12 0.0108 9.2E-03 0.0150 4.6E-11

�1 0.0767 0.00000 0.0389 2.9E-07 0.0900 0.00000

�1 0.9128 0.00000 0.9476 0.00000 0.8989 0.00000

results are also reported in Table 4.5. A notable thing between these two subsam-

ples is that the sample skewness and the sample kurtosis before and after the \break

point" are (0:3141; 4:4461) and (�3:6881; 81:6225), respectively. It is quite clear that
this structural change combines the change in conditional mean, in the conditional

variance, and especially in the higher order moments. Another interesting observa-

tion is that the post-break period is equipped with both a higher average return and

a higher unconditional variance. To examine whether a GARCH-M model could cap-

ture this e�ect and avoid possible mis-speci�cation of the null model, we perform the

tests for the following model.

yt = �1 + �2vt + ut; ut = vtet; and v
2
t = �0 + �1u

2
t�1 + �2v

2
t�1: (4.2)

The complete estimation results are not reported here. However, the t-statistic of

�2 is equal to 1.2963, which indicates that the GARCH-in-mean e�ect is not sig-

ni�cant. Furthermore, we apply our three change-point tests on the �tted residuals

of this model. The results are reported Table 4.6, which suggest that a GARCH-M

model cannot capture the jump in the average return associated with di�erent market

volatilities. All the three test statistics strongly support parameter instability and

the Mn statistic interestingly indicates the same \location" for the change point.
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Table 4.6: Test statistics Based on GARCH, and GARCH-M Models

Mn ABSAn SQAn

GARCH 0:9598 0:2215 0:0763

(0:009) (0:012) (0:018)

GARCH-M 0:0121 0:2399 0:0942

(0:004) (0:006) (0:007)
yNumbers in the parentheses are p-values.

5. Conclusions

In this paper, we propose a class of tests for parameter constancy in a general class

of �nancial time series models with conditional heteroskedasticity. The proposed

tests are constructed via sequential empirical processes. We show that these tests

are capable of detecting changes not just in the conditional mean and the conditional

variance, but also in other characteristics of the underlying dynamics. Simulation

results suggest that the proposed tests work well. In the application, strong evidence

is found in favour of a structural change in the S&P 500 index returns.
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Appendix A

Proof of Theorem 1.

De�ne

Kn(s; z) = n
�1=2

[ns]X
t=1

[I(êt � z)� F (z)] ;

then we have

Tn

 
[ns]

n
; z

!
= Kn(s; z)� sKn(1; z):

Therefore, to study Tn, it suÆces to study Kn. In the ideal case that we observe the

true disturbance terms et, we de�ne

Hn(s; z) = n
�1=2

[ns]X
t=1

[I(et � z)� F (z)] :

Let = = [0; 1]�< be the parameter set with metric �(fr; eg; fs; zg) = js�rj+ jF (z)�
F (e)j. Let D(=) be the set of functions de�ned on = that are right continuous and

have left limits. We equip D(=) with the Skorohod metric (Pollard, 1984). The weak

convergence of Hn in the space D(=) is implied by the �nite dimensional convergence
together with stochastic equicontinuity.

Theorem A.1: Under Assumption (A.1) and (A.2), the process Hn is stochasti-

cally equicontinuous on (=; �). That is for any � > 0, � > 0, there exists a Æ > 0 such

that for large n,

P

 
sup
[Æ]

jHn(r; e)�Hn(s; z)j > �

!
< �;

where [Æ] = f(� 1; � 2); � 1 = (r; e); � 2 = (s; z); �(� 1; � 2) < Æg with [Æ] � =� =.
The equicontinuity of Hn is proved by Bickel and Wichura (1971) and Bai (1996),

which states the stochastic equicontinuity holds for (randomly) sequential process.

Let ut = F (et); and u = F (z); therefore ut is uniformly distributed on [0; 1]. De�ne

Yn(s; u) = n
�1=2

[ns]X
t=1

[I(ut � u)� u] ;
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then Hn(s; z) = Yn(s; F (z)) and Yn and Hn are equivalent in terms of stochastic

equicontinuity. Thus the proof of the equicontinuity of Hn(s; z) is provided by focus-

ing on Yn.

Corollary A.1: Under the assumptions in Theorem A.1, the process Hn con-

verges weakly to a Gaussian process H with zero mean and covariance

EfH(r; e)H(s; z)g = (r ^ s)[F (z ^ e)� F (z)F (e)]:

Proof: The convergence to a normal distribution follows from the central limit theo-

rem for martingale di�erences. This, together with Theorem A.1, implies thatHn con-

verges weakly to some Gaussian process H. To verify the variance function, we con-

sider the covariance function of Yn = n
�1=2

Hn. For r < s and u = F (z) < v = F (e),

using double expectation and the martingale property, we obtain

EfYn(r; u)Yn(s; v)g = n
�1
E

2
4 [nr]X
t1=1

(I(ut1 � u)� u)

[ns]X
t2=1

(I(ut2 � v)� v)

3
5

= n
�1
E

2
4 [nr]X
t1=1

(I(ut1 � u)� u)

[nr]X
t2=1

(I(ut2 � v)� v)

3
5

+n�1E

2
4 [nr]X
t1=1

(I(ut1 � u)� u)

[ns]X
t2=[nr]+1

(I(ut2 � v)� v)

3
5

= rE [(I(ut1 � u)� u) (I(ut2 � v)� v)]

! r(u� uv); when n!1:

Corollary A.2: Under the assumption of Corollary A.1, the process Vn de�ned

as

Vn(s; z) = Hn(s; z)� sHn(1; z)

converges weakly to a Gaussian process V with mean zero and covariance

EfV (r; e)V (s; z)g = (r ^ s� rs)[F (e ^ z)� F (e)F (z)]:
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Proof: The stochastic equicontinuity of Vn follows from the stochastic equiconti-

nuity of Hn. Let

Vn(s; z) = Hn(s; z)� sHn(1; z); r < s

then

EfV (r; e)V (s; z)g = E

(
(H(r; e)� rH(1; e)) (H(s; z)� sH(1; z))

)

= r (F (z ^ e)� F (z)F (e))� sr (F (z ^ e)� F (z)F (e))

�rs (F (z ^ e)� F (z)F (e)) + rs (F (z ^ e)� F (z)F (e))

= (r � rs) (F (z ^ e)� F (z)F (e)) :

The above results are obtained when observing the true disturbance terms. We

next examine the asymptotic behavior of the sequential empirical process constructed

using estimation residuals. Under model (2.1), êt � z if and only if

et � z
vt(�̂)

vt(�)
+
xt(�̂ � �)

vt(�)
;

thus Kn under H0 is given by

Kn(s; z) = n
�1=2

[ns]X
t=1

(
I

 
et � z

vt(�̂)

vt(�)
+
xt(�̂ � �)

vt(�)

!
� F (z)

)
:

Under the local alternative of (3.1), êt � z if and only if

et � z
vt(�̂)

vt(�t)
+
xt(�̂ � �t)

vt(�t)
;

and Kn becomes, under H1,

Kn(s; z) = n
�1=2

[ns]X
t=1

(
I

 
et � z

vt(�̂)

vt(�t)
+
xt(�̂ � �t)

vt(�t)

!
� F (z)

)
:

Under both H0 and H1, Kn can be written as

Kn(s; z) = n
�1=2

[ns]X
t=1

n
I

�
et � z[1 + atn

�1=2] + btn
�1=2

�
� F (z)

o
+ op(1);
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where

at =
1

vt(�)

@vt(�)

@�
>

(�̂� �);

under H0, and

at =
1

vt(�)

@vt(�)

@�
>

�
n
1=2(�̂� �) + �12g

�
t

n

��
;

under H1;

bt =
xtn

1=2(�̂ � �)

vt(�)
;

under H0, and

bt =
xtn

1=2(�̂ � �) + �11g(t=n)

vt(�)

"
1� @vt(�)

@�
>

�12g

�
t

n

�#
;

under H1; op(1) is uniformly in s and z.

Let a = (a1; a2; � � � ; an)> and b = (b1; b2; � � � ; bn)>, de�ne

Kn(s; z; a; b) = n
�1=2

[ns]X
t=1

n
I

�
et � z[1 + atn

�1=2] + bnn
�1=2

�
� F (z)

o
:

Given the root-n consistency of � and �̂, we have the following theorem.

Theorem A.2: Under Assumption (A.1) and (A.2), we have

Kn(s; z; a; b) = Kn(s; z; 0; 0) + f(z)z

0
@ 1

n

[ns]X
t=1

at

1
A+ f(z)

0
@1

n

[ns]X
t=1

bt

1
A+ op(1);

where op(1) is uniformly in s and z.

The proof of this theorem follows Theorem A.2 in Bai (1996).

We are now ready to prove Theorem 1: Under the null hypothesis

Kn(s; z)� sKn(1; z)

= Hn(s; z)� sHn(1; z)

+f(z)z

0
@ 1

n

[ns]X
t=1

1

vt(�)

@vt(�)

@�
>

(�̂� �)

1
A� f(z)z

 
s

n

nX
t=1

1

vt(�)

@vt(�)

@�
>

(�̂� �)

!

+f(z)

0
@1

n

[ns]X
t=1

1

vt(�)
xt(�̂ � �)

1
A� f(z)

 
s

n

nX
t=1

1

vt(�)
xt(�̂ � �)

!
:
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Given Assumption A.4, Theorem 1 simply follows.

Proof of Theorem 2.

Under the local alternatives (3:1), � is still estimable with root-n consistency.

Note that at is dominated by

1

vt(�)

@vt(�)

@�
>

�
�̂� � +�1g

�
t

n

�
n
�1=2

�
;

with the remaining term being negligible in the limit. Moreover, when

at =
1

vt(�)

@vt(�)

@�
>

(�̂� �);

from the previous proof, the drift term of Kn(s; z)� sKn(1; z) is negligible. We can

thus assume

at =
1

vt(�)

@vt(�)

@�
>

�
�1g

�
t

n

�
n
�1=2

�
:

Following Theorem A.2, we have

Kn(s; z)� sKn(s; z) = Hn(s; z)� sHn(s; z)

+f(z)z
n 1
n

[ns]X
t=1

g(t=n)� s
1

n

nX
t=1

g(t=n)
o
+ op(1):

Given that

1

n

[ns]X
t=1

g(t=n) =

Z s

0
h(x)dx;

therefore,

f(z)z
n 1
n

[ns]X
t=1

g(t=n)� s
1

n

nX
t=1

g(t=n)
o

converges to f(z)z�1�g(s), where �g is given by (3:2). The proof is completed.

Proof of Theorem 3.

(i) Under the �xed alternative H2, we have

Tn(s; z) = n
�

1

2

[ns]X
t=1

I(et � z)� [ns]

n
n
�

1

2

nX
t=1

I(et � z):
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We consider the case s � � , then

Tn(s; z) = n
�

1

2

[ns]X
t=1

[I(et � z)� F (z)]� [ns]

n
n
�

1

2

[n� ]X
t=1

[I(et � z)� F (z)]

� [ns]

n
n
�

1

2

nX
t=[n� ]+1

[I(et � z)�G(z)] +
p
ns(1� � )[F (z)�G(z)]

= n
�

1

2

[ns]X
t=1

[I(et � z)� F (z)]� [ns]

n
n
�

1

2

[n� ]X
t=1

[I(et � z)� F (z)]

� [ns]

n
n
�

1

2

nX
t=[n� ]+1

[I(et � z)�G(z)] +
p
n(s ^ �)(1� s _ � )[F (z)�G(z)]:

It can be found that

Tn(s; z) �! �K(s; z) +
p
n(s ^ �)(1� s _ � )[F (z)�G(z)] +Op(1);

for any given s and z. Similar result is obtained when s > � . We then apply Theorem

A.1 to obtain the �rst result in Theorem 2.

(ii) Under the local alternative H3 and s � � , we have

Tn(s; z) = n
�

1

2

[ns]X
t=1

[I(et � z)� F (z)]� [ns]

n
n
�

1

2

[n� ]X
t=1

[I(et � z)� F (z)]

� [ns]

n
n
�

1

2

nX
t=[n� ]+1

[I(et � z)� Fnt(z)] + �2(s ^ �)(1� s _ � )[F (z)�H(z)]:

It can found that

Tn(s; z)
p�! B(s; F (z)) + �2(s ^ � )(1� s _ �)[F (z)�H(z)];

for any given s and z. We then apply Theorem A.1 to obtain the second result in

Theorem 3.
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Appendix B

We are going to show that

1

n

1

vt(�)

@vt(�)

@�
>
� s

n

nX
t=1

1

vt(�)

@vt(�)

@�
>

= op(1); uniformly:

We �nd that

1

vt(�)

@vt(�)

@�
>

=

 
1

2v2t (�)
;
u
2
t�1

2v2t (�)
;
v
2
t�1(�)

2v2t (�)

!
>

:

Let consider

1

n

[ns]X
t=1

1

v2t (�)
� s

n

nX
t=1

1

v2t (�)
;

it su�ers to show that

1

n

[ns]X
t=1

1

v2t (�)
� s plim

n!1

1

n

nX
t=1

1

v2t (�)
= op(1); uniformly:

Observing that

1

v2t (�)
� 1

a
> 0;

v
2
t (�) is strictly bounded from zero. For any given � > 0, there exists m such that

1

m
<
a

4
�:

De�ne si = i=m, for i = 1; 2; � � � ; m, then for any si, there exists Ni such that for any

n � Ni,

Prob

(����� 1

[nsi]

[nsi]X
t=1

1

v
2
t (�)

� plim
n!1

1

n

nX
t=1

1

v
2
t (�)

����� > �

2

)
< �:

Let N = maxfm;N1; � � � ; Nmg, for any s, we have sj � s < sj+1, we then have

�����1n
[ns]X
t=1

1

v2t (�)
� s plim

n!1

1

n

nX
t=1

1

v2t (�)

�����
�

�����1n
[nsj ]X
t=1

1

v2t (�)
� sj plim

n!1

1

n

nX
t=1

1

v2t (�)

�����+ 1

n

[ns]X
t=[nsj ]

1

v2t (�)
+ (s� sj) plim
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Similarly, we have the same results for y2t�1= v
2
t (�) and v

2
t�1(�)= v

2
t (�).
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