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1 Introduction

In recent years a flourishing literature on equilibrium search models has
emerged. The most important contributions include: Diamond (1982a), Pis-
sarides (1990), Mortensen and Pissarides (1995), and Burdett and Mortensen
(1998). Those papers contributed a lot to our understanding of the mecha-
nisms behind unemployment and job creation and their importance for the
functioning of the labor market. Nevertheless, when going through most of
this literature, one feels a bit uncomfortable because both workers and firms
are assumed to be homogeneous. The question that immediately comes to
mind is: Why would workers and firms have to spend so much time to find
each other when they are all alike? A simple institution like a centralized
market place seems a perfect device to handle this type of labor market.

Homogeneity assumptions are clearly not a realistic device for analyzing
search equilibria. However, they might serve the goal of tractability. The rel-
evant question is therefore whether important issues are left out by ignoring
heterogeneity. We shall argue that this is the case. In the Pissarides (1990)
framework, each contact between a job seeker and a vacancy results in a
match. Hence, the speed of the matching process is entirely a technical mat-
ter. Under heterogeneity, the mechanical contact process and the matching
process are disentangled. Both job seekers and firms have to decide whether
or not they want to give up the option value of continued search and engage
in an employment relation with a particular contact.

Endogenizing the matching decision affects at least one critical issue in
this literature, the measurement of returns to scale in the matching function.
The common wisdom is at the moment that there are no increasing returns.
The thick market arguments of Diamond (1982b) for the existence of increas-
ing returns in the matching process were however so appealing that many
authors who empirically rejected this finding felt that they had to apologize.
Our model suggests that the debate should be reopened. Consider for exam-
ple an increase in the scale of the market. Under increasing returns, this will
raise the contact rate. The first effect for a job seeker is that it becomes eas-
ier to find a matching partner which increases the option value of remaining
unemployed. Since the decision whether or not to accept a match is basically
a trade off between this option value and the value of the match, an increase
in the option value will make workers more choosy. The Walrasian world can
be viewed as the extreme case where the contact rate goes to infinity and
where the set of acceptable jobs is reduced to the set of optimal jobs.

Returns to scale are typically estimated by relating the stocks of job
seekers and vacancies to the number of realized matches. This procedure
ignores the fact that, under increasing returns, job seekers and firms become



more choosy as the scale of the market increases. Part of the effect on contacts
will be absorbed by the fact that a lower fraction of contacts are acceptable
and will lead to a match. Our analysis shows that when both vacancies and
unemployment increase by 1 %, this leads to 2% more contacts but only to
1.66% more matches, the rest is absorbed by smaller matching sets.

Initially, the assumption of increasing returns in the contact process was
motivated by the following problem that arises in models with both constant
returns to scale in contacts and heterogeneity. In an integrated labor market,
low skilled immigrants would find it harder to find a hamburger job when
a bunch of Harvard graduates enter the market. This unpleasant feature
is something one would like to avoid. The only alternative is an increasing
returns to scale contact technology. Also on practical grounds, constant
returns seems to be an unrealistic assumption. It is hard to believe that
job search is as effective in South Dakota as it is in downtown Manhattan.
Finally, it is worth mentioning that economists are in good company when
making the assumption that the contact probability for workers (vacancies)
only depends on the amount of vacancies (workers) on the other side of the
market. The theory of the velocity of chemical reactions in gasses is based
on the same premisses. Hence, increasing pressure speeds up the reaction
process. Likewise, the contact rate is higher in dense Manhattan than in
Wyoming.

Sattinger (1995) is to our knowledge the first who analyzed the effects of
search frictions on the assignment of workers to jobs in a model with transfer-
able utility. In his model, there are exactly as many workers as jobs and both
are finite. Sattinger shows that assignment will in general not be efficient
because an individual low skilled worker who matches with an intermediate
job does not take into account that this makes it harder for an intermediate
worker to find an intermediate job. Another step forward, is Shimer and
Smith (1999) who derive, without explicitly solving the model, the weakest
conditions for efficient assortative matching under search frictions to take
place.! Finally, Burdett and Coles (1999) discuss a variety of models which
are characterized by long-term partnership decisions made by heterogeneous
agents. Apart from these references, little work has been done in this area.
As in the Shimer and Smith paper, we will consider a continuum of worker
and job types and a log-supermodular production function. Our focus differs
however from theirs. Our main interest is to provide a characterization of
the equilibrium. Besides this different focus, we also allow for free entry of
vacancies and product market pricing.

IThey show that a log- supermodular production function is sufficient for a positive
assortative matching equilibrium to arise.



For modelling the production structure, we apply the continuous-type
comparative advantage framework first developed in Sattinger (1975) and
later refined in Teulings (1995, 1999a). In this structure, worker types are
characterized by a single index, referred to as the skill level. Likewise, jobs
are characterized by their complexity level. Both indices are continuous.
High skilled workers have a comparative advantage in complex jobs, low-
skilled workers in simple jobs. The continuous type comparative advantage
structure is an excellent framework for search models. First, the comparative
advantage structure provides a completely natural reason for search because
each worker type has its own ”"best” type, where her comparative advantages
are best utilized. The employer and the worker have a joint interest in a
good match, since the better the match, the larger the surplus that remains
to be distributed. In contrast, models with universally ”good” jobs would
not survive a free entry condition for vacancies because only ”good” jobs
would be created and ”bad” jobs would disappear. In addition, the contin-
uum of workers and jobs provides a much simpler framework for analyzing
how matching sets change with the scale of the market than a discrete type
framework, since it allows us to do comparative statics on marginal varia-
tions. One important concept that we will use to characterize the size of the
surplus due to search frictions and which makes the model more operational,
is the complexity dispersion parameter. This parameter measures how easy
workers can be substituted in different jobs.

The disadvantage of search models with transferable utility and hetero-
geneity is their complexity. The Bellman equations for job seekers and va-
cancies types typically require the evaluation of integrals over matching sets
where both the integrand and the boundaries of these integrals are endoge-
nous functions. This prospect has frightened off many researchers of spending
further effort in this direction.

An alternative interpretation of this hurdle helps understanding the av-
enue that we intend to travel. Compared to the complexity of search models,
a Walrasian model gives the annalist a great deal of convenience to offer.
First order conditions provide a solid structure to market equilibrium. All
higher order conditions can be ignored and the envelope theorem allows the
researcher to ignore many indirect effects. But the first step the annalist sets
outside this Utopia will immediately bring him into deep trouble. Instead
of a single first order effect, he has to evaluate integrals over matching sets,
which in general require a multitude of higher order effects to be taken into
account.

This interpretation alludes to a straightforward idea. Perhaps we can
gain insight in a world with dirty search equilibria if we would add only the
second order effects. It is this idea that will be investigated in the present
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paper. This approach allows us to derive a number of important elasticities
directly from a model with a fairly general structure, which in some cases
do not depend on any of the model’s parameters. For example, under risk
neutrality, the elasticity of equilibrium unemployment with respect to one
minus the replacement rate is equal to 0.6. This result follows directly from
the mathematical structure of second order effects in an equilibrium search
model. The availability of an approximate analytical solution also enables a
welfare analysis. We are able to derive an explicit expression for total output
loss due to search frictions. This loss is caused by three factors: mismatch,
forgone production by unemployed workers and the costs of keeping vacancies
open. The loss can itself be decomposed in: loss due to inadequate incentives
(which can potentially be neutralized by adequate policies) and loss due to
search frictions. Our solution also sheds light on the issue of optimal social
insurance. When a worker matches with a sub-optimal job, this is not only
bad luck for this worker but also for other workers who would have formed a
better match with this job. The second effect is in general not internalized
by the worker. In our model, unemployment benefits have a useful economic
role in the sense that they prevent workers from accepting jobs for which
they are ill suited.

A potential risk in our approach is that the approximations are so bad
that we really don’t learn anything from them. Therefore, we confront our
approximations with the numerical solution of the model. When search fric-
tions are small, our approximations almost exactly mimic the numerical so-
lutions. When search frictions become larger, a problem which we label the
”corner problem” arises. Under perfect substitution in the goods market, the
problem is largest. The problem arises because there are little incentives to
open vacancies in the corners (because there are too few workers there). This
results in a spike of vacancies just above the corner which will attract many
low skilled workers. Given the existence of this spike, it becomes less attrac-
tive to open vacancies just above this spike. In a sense, the spike crowds out
neighboring jobs. Therefore a second spike somewhere above the first one
will arise and we get a process of endogenous segmentation. Burdett and
Coles (1997) and Smith (1995) show that a similar process of endogenous
segmentation arises in a non-transferable utility context. This process will
of course not be picked up by our second order Taylor approximations. Our
analytical results are therefore most precise for the middle groups and for
labor markets with small search frictions.

The paper is organized as follows. Section 2 presents the assumptions
underlying the model and discusses some of its implications regarding the
efficiency of the bargaining process and compares the structure of the equi-
librium with the Walrasian case. Section 3 discusses some general results
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regarding the existence of an equilibrium and the shape of the matching sets.
Section 4 presents the main innovation of the paper, the use of second or-
der Taylor expansions for the evaluation of the integrals over the matching
sets. Next, Section 5 deals with the elasticities of the search surplus and
unemployment with respect to a number of key parameters. In this section,
we also consider the size and nature of the efficiency losses compared to the
Walrasian equilibrium. Section 6 discusses some special problems that arise
in the corners of the type space when search frictions are large. In Section 7,
we compare the results from our Taylor expansions to full-fledged numerical
solutions of the model. Finally, Section 8 discusses some relevant extensions
of our approach like risk aversion.

2 Structure of the economy

2.1 Basic assumptions

In our economy, workers and jobs are characterized by a single index, referred
to as skill level s and job-complexity level ¢ respectively. Both indices vary
continuously, so that there exist an infinitum of worker and job types:

s —,57]

€ [s7,s
c € le,et], >0
Let L be the size of the labor force and [(s) be the density function of s;
exogenous variables will be underlined throughout the paper. Furthermore,
let h(s) denote the number of unemployed workers of type s per unit of

labor supply. Hence, }lﬂ(f)l is the unemployment rate for workers of type s and

the aggregate unemployment rate satisfies u = f:_* h(s)ds. The supply of
vacancies is determined by a free entry rule, which drives the asset value of
a vacancy to zero in equilibrium. We will denote the number of vacancies of
type ¢ per unit of labor supply by g(c). The total number of vacancies per
unit of labor supply follows then from v = |, CC_+ g(c)de while the total number
of vacancies is Lv. Maintaining a vacancy is costly. We assume that those
costs are independent of the job type and equal to K per period. We can
think of those costs as advertisement costs. Let B denote unemployment
benefits or the value of leisure, although the former interpretation is not
fully consistent with the model, since we ignore the funding of these benefits.
Nevertheless, we shall loosely refer to the ratio of B to reservation wages as
the replacement rate.



Since each job type ¢ produces its own commodity, we have to introduce
a set of commodity prices P(c). The productivity of a worker, s, at a job, ¢,
is denoted by F (s, c¢). The gross per period value of a match between s and ¢
is therefore equal to P(c)F'(s, ). Search frictions enter the model by a simple
linear contact rate \;_,; for worker (job) type i to run into job (worker) type

J:

Ase = A*Lg(c) (1)
Aewss = ATLA(s)

where \* is a technology parameter which measures the efficiency of the
matching process. For notational convenience we define A = \* L . We
can interpret A then as the relevant scale of the labor market. Matches are
destroyed at an exogenous rate ¢. Finally, we assume for simplicity that both
workers and firms are risk neutral. From these definitions the value of search
for a worker and an employer respectively, can be expressed in terms of the
following Bellman equations:

A
R(s)= B+ 50 ot g(c) [W(s,c) — R(s)] dc (2)
A
=050 o h(s) [P(c)F(s,c) — W(s,c)] ds (3)

where R(s) is the reservation wage of worker type s, W(s, ¢) is the wage of
a worker of type s who is employed at a job type ¢, and p is the discount
rate. Matching takes place when both firm and worker are better of. Since
we allow for bargaining over the match surplus, any match with a value that
exceeds the sum of the outside options of firm and worker is acceptable. The
functions mc(s) and ms (c) define the subsets of ¢ and s respectively with
whom type s and c respectively are willing to form a match with. These
subsets are determined by the condition that the match surplus is positive.

P(c)F (s,¢) — R(s) >0 (4)

Wages are set by a simple Nash bargaining rule.? Hence:
W(s,c) = BP(c)F(s,c) + (1 = B)R(s) ()
2This is not the only Nash bargaining solution. Binmore (1986), Wolinsky (1987) and
Abbring (1998) show that when workers cannot search while bargaining, the outcome

will be independent of the option values of other job opportunities. Here, we implicitely
assume that the worker can continue search while bargaining.
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where 3 denotes the workers’ bargaining power. Substituting (5) in (2) and
(3) yields:

B

Rs)= B+ [ 0@ [POF(s.0) - BElde (6
(1 =p)A

K= i A o MOV P@F(s,¢) — R(s)] ds (7)

At this point, we have to be more specific about the shape of F(s,c). We
assume that F(s,c¢) is log supermodular with the following functional form:?

F(s,c) = e (8)

This specification of the productivity function assures that we get a positive
assortative matching equilibrium, see Shimer and Smith (1999).* Given our
assumption on the wage bargaining, we can write the matching sets for worker
type, s, and job type, c, respectively as:

me(s) = {c}|a(s0>0 9)

ms(c) - {8} | z(s,c)>0

where the log match surplus z(s,¢) = p(c) + sc¢ — r(s). In the sequel, lower
cases denote the logarithm of the corresponding upper cases. The definition
implies: ¢ € m.(s) & s € mg(c), that is: if ¢ is in the matching set of s, then
s is in the matching set of ¢. The condition z(s,c) > 0 is equivalent to the
condition P(c)F(s,c)— R(s) > 0, that has been applied before. Furthermore,
we assume that p(¢™)+s~¢~ > In B, implying that there is a positive surplus
from producing, even for the least productive worker.’?

Since we consider a stationary economy, the number of workers finding a
job must equal the number loosing their job. Hence:

§[U(s) — h(s)] = Ah(s) / g(c) de (10)

me(s)

3F (s, c) is supermodular if V ¢/ > ¢ and Vs’ > s the following relation holds: F(c,s) +
F(d,8) > F(c,8') + F(,s), and F(s,c) is log supermodular if f(s,¢) = log F(s,c) is
supermodular, see e.g. Topkis (1998).

4The results in the next sections do depend qualitatively on the log-supermodularity
assumption but not on this specific functional form.

5Hence, we rule out structural unemployment. Obviously, the model can deal with
structural unemployment by simply adding agents whose productivity will never exceed
the value of leisure, but this does not generate further insights. Note that this assumption
is only fully appropriate in the case that 77 = oo, since otherwise p(c¢™) is endogenous.



Physical output per job type can be derived from a transformation of vari-
ables:

A

Y(C) B 5 ms(c)

h(s)e*“ds (11)
The outputs of each job type will be traded on commodity markets. Assume
that the demand for commodities is given by a continuous type CES utility
function :

(1—mp=hﬁlﬁ

where p is the log price index of consumption (or alternatively, the price of the
composite consumption good), g(c) is the weight of type ¢ in consumption
and 7 is the elasticity of substitution. From (12) we can derive that the
demand for good c satisfies:

esp(0+ ) 0 @+ (= mpte)] & (12

y(c) —y — q(c) = nlp — p(c) + q(c)]

where y denotes log aggregate consumption. We will confine our attention
to two special cases, perfect substitution and zero substitution. In the first
case, prices are effectively exogenous: 7 = 0: p — p(c) + q(c) = 0. Let p be
the numeraire. Hence, p = 0, implies p(c) = g(c). In the second case, the
distribution of output per job type is exogenous: 7 = 0: y(c) = q(c).

n = oo:p(c)=qlc),Ve:q'(c) <0, ¢'(c7) =57, ¢(c")=s" (13)

q
n = 0:y(c) =qlc), Yc: q(c) >0,

The assumption ¢(.) being positive for the case that n = 0 implies that there
is positive demand for all job types c. The assumption ¢”(.) being negative
has the same effect, as will be discussed in section 2.4. In that section, we
will also motivate the lower and upper bound of ¢'(c) in the case of 7 = oo,
This completes the description of the structure of the economy.

2.2 Increasing returns?
It is useful to compare our matching technology with the CRS matching

technology which is frequently used in the literature (e.g. Pissarides 1990).
Let m be the flow of contacts between workers and firms. Then, we have by

(1):
m:/\£i+h(s)li+g(c)dcds:)\uv (14)
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The matching elasticities with respect to u and v are both equal to one,
hence their sum is two, which is twice as large as in the constant returns
specification of Pissarides (1990). Hence, in our model, the contact rate of a
job seeker, m/u = Av, is independent of the number of other job seekers on
the market, and mutatis mutandis the same for vacancies. However, most of
the empirical evidence suggests that returns to scale are close to constant.
How do we square our assumption with these empirical results? We offer
three arguments.

First, the empirical research refers to the number of realized matches,
while our technology refers to the number of contacts between workers and
firms, or even better, potential contacts. Not all contacts will yield a match
however. When s is outside the matching set of ¢ and vice versa, both firm
and worker will immediately separate and continue searching for an accept-
able match. In the representative agent models, all contacts automatically
result in a match. The agents in our model respond to the greater efficiency
of the contact process not only by reducing their search spells, but also by
becoming choosier (resulting in a better match quality). Hence, increasing
returns in the contact technology does not translate one-to-one in returns
to scale in the realized matching technology. It could be argued that this
issue can be resolved by using data on contacts, or referrals in the wording
of Berman (1997). This trick will not work either since when a Wall Street
stock broker sees a "help wanted” sign in a Hamburger restaurant, he is un-
likely to report this event as a referral. This type of self selection avoids a lot
of potential contacts to turn into referrals. This also explains why so few job
offers get rejected. Disappointing as it is, there is no direct way to establish
the returns to scale elasticity in the contact technology from any existing
data set. An important goal of our analysis is to establish the size of the
effect of an increased contact rate on the match quality and on the number
of accepted matches, so that our assumptions can be tested indirectly.

Second, one has to consider: what is scale? Obviously, saying that scale
matters is not the same as saying that the US labor market with 200 mil-
lion inhabitants is more efficient than that of the Netherlands with only 15
million inhabitants. A more useful way to analyze the effect of scale on the

6Studies that estimated an aggregate matching function include, Blanchard and Dia-
mond (1989) for the US, Jackman et al. (1989) for the UK and Belderbos, and Teulings
(1988) and Van Ours (1991) for the Netherlands. Those studies could not reject the as-
sumption of constant returns to scale. Not all the evidence rejects IRS. Yashiv (1996)
finds IRS in the Israelian matching function and Shimer (1999) gives demographical ev-
idence for the US that supports the thick market externality arguments.. Burdett et al.
(1994) argue that increasing returns to scale are obscured because mismeasurement (due
to aggregation and frequency problems in the data) of the true matching function.
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efficiency of the search process is to interpret it as the density of the labor
market. In that case, we can compare the functioning of labor markets in
for example Manhattan and Wyoming. Per job opening, the number of po-
tential candidates for filling a vacancy is much higher in Manhattan than in
the mountains of Wyoming. Elsewhere, see Gautier and Teulings (1999), we
develop an empirical measure of the scale of the labor market based on this
notion. We plan to test in the near future whether this type of variation is
consistent with the predictions of our model.

Finally, all existing estimates of the returns to scale parameter are based
on cyclical variation in the number of vacancies and unemployed. This vari-
ation is affected by all kinds of out-of-equilibrium processes, which usually
are not fully modelled. We suspect that this variation does therefore not
adequately reflect differences in the scale (or: density) of a labor market,
leading to a downwardly biased estimate of the scale elasticity.

2.3 Efficiency of the bargaining process

In a single worker-single job world, efficiency can be achieved when the Hosios
(1990) condition is satisfied: the workers’ share of the match surplus is equal
to his marginal contribution to the matching process (which is measured by
the elasticity of the matching function). In a world with increasing returns,
efficiency can never be achieved because there is insufficient output to reward
each factor by its marginal contribution. The issue of efficiency gets more
complicated when the heterogeneity of the workforce is taken into account
because in that case, the distribution of the surplus over the different worker
types also becomes an issue. However, matters are simplified by the fact that
the utility function (12) is homothetic, which implies that we can separate
between efficiency and distribution issues.

When we assume that costless redistribution policies are available, any ef-
ficient outcome must always maximize net aggregate output. Since there are
no choice variables involved in ongoing matches and since employers always
get their outside option due to the free entry condition, maximizing aggre-
gate output is equivalent to maximizing the sum of the asset values of job
seekers minus the costs for maintaining vacancies. This function S[g(c), h(s)]
therefore satisfies:

Slg(e),h(s)) = [



— /;+ g(c)K de

where R°(s) denotes the asset value of a job secker and where m2(s) denotes
the matching set that is based on this asset value. The task of a social planner
would be to choose R°(s) and g(c) such that S (-) is maximized. The first
order condition for g (c) reads Sy [g(c), h(s)] = 0; by duality, the first order
condition for R°(s) is identical to the condition Sy [g(c),h(s)] = R°(s),
where the suffices refer to the partial derivatives of the integrands for each ¢
and s respectively.”

The first order conditions for this problem can be rewritten in the form of
equations (6) and (7), except that we have to replace § and (1—/) by unity in
the equations for R(s) and K respectively because only then do workers and
firms receive the full rewards to their marginal contribution of the matching
process. There is a simple intuition for this result. In Pissarides’ constant
returns to scale world, a job seecker entering the labor market imposes a
positive externality on employers (since their contact rate goes up) and a
negative externality on workers (since their contact rate goes down). In our
increasing returns world, there is no negative externality, since the contact
rate for workers is independent of the number of other job seekers that are
wandering around. Hence, we should award workers the full surplus of the
match to reward them for the positive externality they impose on employers.
Mutatis mutandis the same argument applies for employers. In section 5.3,
we present a simple technique which yields an approximation of the efficiency
loss.

2.4 The Walrasian benchmark and complexity disper-
sion

As a benchmark for future reference, we reiterate some of the previous results
on the frictionless continuous type comparative advantage model, see e.g.
Teulings (1995, 1999), Teulings and Vieira (1998). In this simple Walrasian
world, the profit maximizing strategy for an employer with a vacancy of
type ¢ is simply to minimize (log) cost per efficiency unit, that is: sc —
r(s). When there are no mass points in the distribution of either labor
supply or product demand, this cost curve has a unique minimum for each
c. Hence, the assignment of workers to jobs can be described by a one-to-

"The analogue of the equation for R(s) follows from the first order condition for h(s).
For the condition for K, the following equality is applied:
J, h(s) fmv(s) g(c) deds = [ g(c) fm”(c) h(s) dsdc where m2(c) is defined similarly to

mg(s).
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one correspondence between s and c¢. The first order condition of the cost
minimization problem reads:

' [s(c)] =¢ (16)

where s(c) is the optimal assignment for job c. Differentiating this first order
condition to ¢ yields: r”[s(c)]s’(c) = 1. Since our supermodular production
function implies that s'(¢) > 0, it must also be that 7”(s) > 0. This is the
second order condition from the cost minimization problem: the (log) costs
of hiring a worker with an additional unit of skill are increasing while the log
returns are constant, namely equal to the value of ¢ for that firm.

The zero profit condition of firms reads: p(c)+ s(c)c — r[s(c)] = 0. Since
this condition applies identically for all ¢, its first difference must also apply.
Hence (the effect via s(c¢) drops out by the envelope theorem):

—p'(c) = s(c) (17)
Differentiating a second time yields: —p”(c) = s'(¢) = 1/r”(s). The lower
and upper support of g(c) for n = oo guarantee that the lowest skill types

will be employed at the simplest job types and mutatis mutandis the same
for the highest skill types. For the case that n = oo, p(c) = ¢(c) and hence

p”(C) — gn (C)
A crucial variable in this model is the second derivative of the wage func-
tion. Since 7”7 [s(c)] = 1/5'(¢), it is a measure of job heterogeneity. The

higher 77 (s), the more variation there exists in job complexity per unit of s.
This explains why 7”(s) is the main determinant of the elasticities of sub-
stitution and complementarity between skill types. The higher 77 (s) is, the
more heterogeneous jobs are and the less easy workers are substitutable (since
their relative productivities vary too much between job types, see Teulings
(1999). Nevertheless, 77 (s) is not an adequate parameter for summarizing
the production structure. For understanding the problem, it is important to
realize that the empirical implications of the model are invariant to a linear
transformation of s, since we have not yet defined the units of measurement
of commodities of various ¢ types. Any multiplicative transformation of s
can be absorbed by an opposite transformation of ¢ and any additive trans-
formation of ¢ can be absorbed by a compensating redefinition of commodity
prices p(c). However, r” (s) will be affected by a linear transformation of
s, which makes it unsuitable as a summary statistic that can be meaning-
fully compared across time and space. Teulings and Vieira (1998) therefore
proposed a complexity dispersion parameter which is invariant to a linear
transformation of s and which reads: r”(s)/r'(s)2. It turns out that this
parameter is also a determining factor for the size of the search frictions in
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the present model. There is a simple intuition for this result. The more
easy workers can be substituted from one job to another (substitution is per-
fect when the complexity dispersion parameter equals zero), the wider the
matching sets will be. Because the workers become less choosy, the expected
unemployment duration will fall. We shall return to this issue in section 7.

3 Some characteristics of the equilibrium

Equations (6), (7) and (10) immediately reveal that it is difficult to achieve
analytical results. They all involve the calculation of integrals of which both
the integrand and the integration boundaries are endogenous. It is precisely
this complexity which has prohibited progress in this type of models. There-
fore, we attack this problem by focusing on second order Taylor expansions
which will be discussed in detail in the next section. The following Definition
and Theorem establish a number of characteristics of the equilibrium that
will be crucial for our Taylor expansions to make sense.

Definition 1 A steady state search equilibrium is defined as a sextet

{r(s),g(c), h(s), p(c), mec(s), ms(c)}

The equilibrium is fully determined by the system consisting of the follow-
ing 6 functional equations: (6), and (7) for g(c) and r(s), (12) for p(c), the
two equations in (9) define the matching sets m.(s) and ms(c) and the un-
employment distribution h(s) follows from the steady state flow condition:
(10).

Since our production function is nonnegative, log supermodular, symmet-
ric, continuous and at least twice differentiable, we refer to Shimer and Smith
(1999) for an existence proof.®

Theorem 2 (1) Under the assumptions of 2.1, the following conditions hold
i search equilibrium:

1. r(s), p(c), and x(s,c) are twice differentiable;

2. 7'(s) >0, 7"(s) >0, p’(c) <0;

8The proof is based on a contraction mapping of the agent’s continuous value functions
into itself. Translated to our model: Given the CES utility function (12), condition (4)
maps the reservation wages into matching sets, condition (10) maps matching sets m.(s)
and ms(c) into unmatched densities and conditions (6), and (7) are the composite maps of
values mapping unmatched workers and vacancies into new values. A search equilibrium
is a fixed point of these mappings.
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3. ss(s,¢) <0 and xee(s, c) <0
4. the sets m¢(s) and ms(c) are connect;

5. let ¢ (s) be the lower bound of m.(s) and let c*(s) be the upper bound;
then ¢~ (s) >0 and ¢t (s) > 0.

The proof of part 5 requires some notation which will play a crucial role in
the subsequent analysis. We introduce functions which denote the values of
¢ and s that maximize the match surplus z(s,c) for a particular value of s
and c respectively:

c(s) = ¢/{x(s,¢) > x(s,c),Vc} (18)
>

s(c) = 3§/{z(5,¢)

By this definition and part 1 of Theorem 1, z.[s, ¢(s)] = 0 and z5 [s(c), c] = 0.
Hence: —p' [c(s)] = s, —p" [e(s)] d(s) = 1,7 [s(c)] = ¢, and r” [s(c)] < (s) = 1.
For future reference, we define the inverse function of s(c): s[d(s)] = s. By
this definition we have 7/(s) = d(s) and r”(s) = d'(s). The proof can be
found in Appendix 1.

Theorem 1 provides a number of important characteristics of the equi-
librium. Part 2 states that the characteristics of the Walrasian equilibrium
(16) and the second order condition r”(s) > 0 and the condition p”(c) < 0
carry over to the search equilibrium. The conditions on the second deriva-
tives imply that the surplus z(s,c) has at most a single interior maximum
in ¢ (and s) keeping s (and c¢) fixed (part 3 of theorem 1). Those maxima
are defined above as ¢ (s) and s (c) respectively. An inspection of (6) shows
that this maximum must necessarily be positive, if vacancies of that c-type
exist. Hence, there are at most two solutions for the equation z(s,c) = 0
(keeping either s or c¢ fixed). By this feature and by the differentiability of
x(s,¢), matching sets are connect. Their upper and lower bounds are up-
ward sloping, so that "on average” better skilled workers are matched to
more complex jobs. As mentioned before, Shimer and Smith (1999) give a
more general proof for positive assortative matching to arise. They show
that log-supermodularity of the production function is a sufficient general
condition

Theorem 1 also implies that there is no such thing as ”"good” or ”bad”
jobs which are independent of the skills of the worker. For each worker
type s there exists one perfect match ¢(s) that maximizes the joint surplus
by making optimal use of the comparative advantages of that worker type.
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Moreover, the notion of one particular type of job being best, independent
of s, is inconsistent with commodity market competition and the free entry
condition for vacancies. If a particular type of job would be more profitable
than others, a corner solution would result where only ”good” vacancies
would be opened. However, under product market competition the price of
the output of that job would be driven down till it is no longer best.

Under the assumptions made, the best worker for a job of type c is an
interior point of the matching set of c. The intuition for this is the following.
Some workers in the matching set of this job will have more skills than the
worker who generates the highest output. The threat point of those workers
in the wage bargain is so high that the firm receives only a small share of the
output. On the other hand, some workers in the job’s matching set are less
productive than the firm’s favorite worker. Although the firm has a strong
bargaining position when bargaining with such a low productivity worker,
the total surplus is too small. The firm’s favorite worker type lies in between
the above described cases.

The situation is depicted graphically in Figure 1-3. Figure 1 shows the
surplus (the area between the (log) value-added-locus and the reservation-
wage-locus for a given job type c. The surplus reaches a maximum when
the job is occupied by a type s(c¢) worker. In the Walrasian case, all type ¢
jobs will be matched with type s(c¢) workers because only there, both loci are
tangent (r'(s) = ¢ by the first order condition, and p(c) + s (¢)c = r[s(c)]
by the zero profit condition). Figure 2 shows the surplus for a given worker
type, s. When such a worker, s, meets a job type, ¢t(s) or ¢ (s), he is
indifferent between this match or remaining unemployed. When he meets a
job in < ¢, ¢~ > the match value exceeds the option value of waiting for
a better match plus his value of leisure B. Figure 3 shows the functions
s(c), c(s), ¢ (s) and ¢*(s) in the s,c-space, for the economy as a whole.
Obviously, the maxima s(c) and ¢(s) are in between the upper and the lower
bound. The shaded area represents the surplus for worker type s;. When ¢
is the maximum of ¢ (s) for a particular s, then it is not necessarily true that
s is the maximum s(c) for that particular c. In other words, the inverse of
s(c), denoted d(s), is not necessarily equal to c(s). Here, the following result
will prove to be helpful:

dzx s, c(s)]
ds
The proof of this result is simple. By the definition of ¢(s), z.[s, ¢(s)] = 0.
Hence, the result applies if x5 [s,c(s)] = 0. By the definition of s(c), this
is the case when s = sc(s)], or equivalently, when d(s) = ¢(s). Q.E.D.
Figure 4, gives the most simple example of the case where d(s) = ¢(s) In this

d(s) =c(s) & =0 (19)
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example, the boundaries of the matching sets are linear.

4 Using Taylor expansions for the integrals

The main obstacle to achieve progress in the analysis of equilibrium search
models, of which the model in this paper is an example, is the evaluation of
the integrals of the type that show up in the right hand side of equation (6).
Our innovation is that we use a second order Taylor expansion to approximate
the value of this integral. For this purpose, we benefit from the characteristics
of the surplus z(s,c), which has a negative second derivative in both its
arguments. Since the calculation of the integral requires the evaluation of
x(s, ) around its maximum, it is a straightforward idea to approximate this
function by a parabola. This approximation requires the maximum surplus
x[s,c(s)] to be relatively small. In the Walrasian case, this surplus equals
zero. Hence, our approximation applies as long as we do not move too far
from the competitive equilibrium. Using this idea for the integral in equation
(6), yields:

/nc(s) g(c) [e‘””(s’c) - 1} de = #g [e(s)] \/c’(s) s, e(s)]? (20)

/ms(c) h(s) [ez(sc _ } de ﬁih[s( )]\/ (c)m[s(c),c]3 (21)

The derivation of these relations can be found in Appendix 2. Figure 5
provides a simple intuition for this result. First, we apply an approximation
for the integrand: ¢*®® — 1 ~ z (s, ¢). Next, the maximum of the integrand
of the domain of integration can be approximated by a second order Taylor
expansion:  [s, c(s)] = —1x.[s,c(s)] A%, where A = ¢T(s) — ¢(s) = ¢(s) —
¢ (s). We apply ¢ [s,c(s)] = p” [e(s )] = —c’( )7L Hence the surface of the
rectangle in Figure 5 equals 2Ax [s, ¢(s)] = 2\/ 2¢(s)z [s, ¢(s)]°. Two thirds
of this surface is below the parabola, Wthh corresponds to the integral over
the matching set. The above argument implies that the average surplus of
a worker of type s above her log reservation wage r(s) can be approximated
by %x [s,c(s)], or by a complementary argument, the average loss relative to
the Walrasian optimum is: x [s, ¢(s)].
By substituting these expansions in (6), (7), and (10), the model can be

written as a system of three functional equations:

B 42 N3 ; 3
R - g le(s)] Ve (s) 2 [s,c(s)] (22)

3 p+(5
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K 4/2)X1-p) RN
R(s) 3 p—|-5

6[U(s) —h(s)] = 2V2Ah(s)gle(s)]\/e(s) 2 [s,¢(s))

“1 2 [s,d(s)]*

where we have substituted d(s) for ¢ for and s [d(s)] = s for s(c) in equation
(7). The third equation can be used to eliminate the function g [c(s)] from
the model. Solving the resulting equation for A(s) yields:

h(s) 6
_ (23)
3 B |pt6__ 1
I(s) 5+2P R@]ﬁﬂmw

A nice feature of this relation is that A, the parameter which is the most
difficult one to quantify in our model has cancelled out. To get some feeling
about the size of the surplus which is generated by the model, we can fill in
some "reasonable” parameter values for the observables in (23). Let 6 = 0.15,
p = 0.10, 8 = 0.40, B/R(s) = 0.5, and h(s)/l(s) = 0.05. Readers who do
not like our choices regarding these parameter values can of course easily
make their own calculations. Under the above assumed parameter values,
x [s, c(s)], the maximum surplus relative to the outside options, turns out to
be 16%.

Although equation (22) is a great simplification compared to the system
of equations (6), (7) and (10), the calculation of the equilibrium is still a huge
task. We need to apply therefore three further approximations, which greatly
simplify our system of equations. The first of these approximations has a clear
justification, the next two require more trust of the reader. There is justifi-
cation, but it applies only under a particular assumption. Our approach will
be to discuss the approximations and their implications extensively here and
to test their applicability by comparing them with the numerical equilibrium
for the full model. There is no harm in revealing at this point that for small
search frictions, our approximations do surprisingly well.

First, we apply the standard assumption that the unemployment rate

U [}

is close to zero: %= = u, and that this holds for each worker type, s:

Z(S;L(S]z(s) & h(s). Second, we assume that d(s) = c(s). A legitimation for
this assumption is that both ¢(s) and d(s) are in the set m.(s). In a friction-
less labor market, this set converges to a single point, so that the assumption
is no longer an approximation. This is the one-to-one correspondence result
for the Walrasian version of the model which we discussed in Section 2.4.
However, in the system of equations (22) both x [s, ¢(s)] and z [s, d(s)] show
up. Since in the Walrasian case both x [s, ¢(s)] and z [s,d(s)] converge to
zero, we have no clue about their relative magnitude. Equation (19) shows
that this assumption applies if and only if x s, c¢(s)] does not vary with s.
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The necessity of a third assumption depends on the value of . When 1 = oo,
prices are fully determined by g(c) and hence ¢/(s) = ¢”(¢)~'. In the case
that n = 0, we first have to determine commodity prices for the Walrasian
case. As a first approximation, we shall assume that frictions leave relative
prices (and hence, by the numeraire, absolute prices) unchanged, so that ¢(s)
can be derived from commodity prices in the absence of search frictions.”
Applying these simplifications, we can derive from (20)-(22) that:

2 ()" = QB (5 K* (5)71(5) ¢ (s) (24)

T = 5B 6 (25)

o] = 3o K () (0 (20

where 2*(s) = z[s,¢e(s)], Q = 720 B(s) = 1 — &, and K*(s) = .

Equations (24) and (25) describe the solution of the model completely when
n = oo. The size of the surplus z*(s) depends therefore on a composite
parameter (), one minus the replacement rate B*(s), the ratio of capital costs
to reservation wages K*(s), labor supply [(s), and variation in job complexity
d(s). To get some feeling for the interpretation of K*(s), consider a model
where K does not reflect the cost of advertising, but the capital cost for
maintaining either a vacancy or an occupied job. Then, gross value added
P(c)F(s,c) covers the sum of labor cost R(s) and capital cost K. In that
case we would set K*(s) to a value of about 0.5. A similar relation applies
to the unemployment rate per worker type s. The relevant elasticities do not
depend on choice parameters, but are fully determined by the logic of the
model, which is a remarkable feature.

5 The analysis of the equilibrium

5.1 The scale of the labor market

Equations (24) and (25) allow an analytical evaluation of the characteristics
of the equilibrium. A first issue is the magnitude of the returns to scale in
the matching process that is implied by the model. Our contact technology

9This assumption is in line with the assumption that c(s) = d(s). The latter implies
dx*(s)/ds =2 0; 2*(s) is a measure of the cost of search frictions as a share of total cost.
When this cost-share is approximately constant, relative prices will not be much affected
by search frictions.
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implies a returns to scale elasticity of 2: doubling both the number of job
seekers and vacancies quadruples the number of contacts. However, part of
the effect of this increase in contacts on the number of realized matches will
be undone by job seekers becoming more choosy about the jobs they are
willing to accept (and mutatis mutandis the same for firms). The size of
this effect can be obtained by considering the implications of a change in
the parameter measuring total labor supply, A = A*L. By equations (24)
and (25), where A enters through @), the elasticities of the surplus z* (s) and
hence the unemployment rate h(s) with respect to A are equal to 2/5 = 0.4.
A similar equation as for h(s) applies to the number of vacancies per unit
of labor supply, g [¢ (s)], which therefore has the same elasticity with respect
to A of 0.4. Hence, a 1 % increase in total labor supply will increase the
total number of vacancies and unemployed by (1-0.4)% = 0.6%. By the
flow equilibrium and the constancy of the separation rate 6, the number of
matches varies proportionally to A (almost, up to a factor 1 — u). A 0.6
% increase in both inputs in the matching process yields therefore a 1 %
increase in the number of matches. The returns to scale elasticity can then
be calculated to be equal to % = 1.66. Hence, one third of the increasing
returns in the contact technology are absorbed by a greater choosiness of job
seekers and firms. Accounting for some downward bias in most estimates
due to the mismeasurement of the scale concept and due to aggregation bias
over time (see Burdett et al. (1994)), this number might well be within the
confidence interval of most empirical studies of the matching function!”

5.2 The efficiency loss due to search frictions

A second issue regarding the equilibrium is the implied efficiency loss due
to search frictions. This loss as a fraction of total output consists of three
parts: the lost production due to unemployment, the cost of maintaining
vacancies and the cost of misallocation that arises because search frictions
induce workers to lower their reservation wage so that they end up accepting
jobs that are not fully optimal. The first factor can simply be calculated
from the unemployment rate %Sf)l times the cost of unemployment relative to

the reservation wage.!! These cost are equal to one minus the replacement

U]ncreases in L, independent of \* are rare in reality. The following example illustrates
this.When the EC countries opened their borders for workers from other countries, L
increased enormously. However, the probability for a worker in Lisbon to meet a vacancy
in Berlin is many times smaller than to meet a vacancy in Lisbon. In other words, A = \*L,
did not change very much.

UHere (and below, when discussing the cost of a vacancy), the proper normal-
ization would be to use the actual wage W (s,c) instead of R(s). From section 4:
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rate, B*(s). The second factor can be calculated from an expression for the
number of vacancies that is maintained per unit s, g [c(s)] ¢(s), multiplied
by the cost of maintaining a vacancy relative to the reservation wage, K*(s).
An expression for g [c(s)] can be obtained from an equation similar to that
for h(s) in (22).!2 For the calculation of the final term, recall from section 4
that the average loss relative to the optimal Walrasian allocation is !/3z*(s).
Hence:

1 206, 26(1—f)

L a ~ ="
O5SWal = 3t (s) p+o p+o

The three terms in square brackets reflect the respective losses. All losses vary
therefore proportional to x*(s). Under the parameter values discussed before,
the loss is $2*(s)[0.48 + 0.72 + 1]. Remarkably, the relative importance of
unemployment and vacancies in the average loss compared to the Walras
equilibrium are independent of B*(s) and K* (s). The ratio between both
cost types is fully determined by the bargaining power parameter 5. This is
due to the fact that firms keep investing in vacancies till the costs of keeping
the vacancy open are equal to their expected share in the future surpluses
from an employment relation. Similarly, workers adjust their reservation
wages such that the share in the expected surplus from search is equal to
their reservation wage. The ratio of the cost of misallocation relative to the
cost of unemployment and vacancies is pQ—&: the higher the separation rate 6,
the more often employment relations will be separated and the more often
workers will experience an unemployment spell; the higher the discount rate
p, the more costly will be search and hence, the greater will be misallocation.

From the expression for @, it can be seen that the surplus z*(s) (and
therefore also the efficiency loss) are proportional to the inverse of 5(1 — 3);
hence, both are minimized for 8 = 0.5.!% This result implies that according
to most estimates of the distribution of bargaining power (e.g. Abowd and
Lemieux, 1991) workers bargaining power is too low! Interestingly, recent
estimates suggest workers’ bargaining power to be lower in continental Eu-
rope with more centralized wage bargaining regimes (Teulings, 1998; Nickell,
1998) which suggests that the European problem is not that workers have too
much bargaining power. We return to this issue in section 7. From equation

+1 (27)

En,(s) [% - 1} ~ 1z s, c(s)]. Hence, the proper cost are: B*(s)+ %z [s,c(s)]. Substi-

tution in equation (27) reveals that this is a second order effect in z [s, ¢(s)].

12Take the third equation, drop the factor [I(s) — h(s)] on the left hand side and use the
second equation to substitute for i (s) in the right hand side.

13That large surpluses yield high inefficiencies might be strange at first sight. However,
surplusses are defined relative to the reservation wage of the worker. Large surplus are
due to low reservation wages.
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(25), unemployment is proportional to 3%°(1 — 3)~%%; hence, it is minimized
by letting 5 — 0. However, this would from a welfare point of view not be
optimal because the workers would accept jobs at which they are not very
productive and employers would spend too many resources on maintaining
vacancies.

5.3 Efficiency loss due to inadequate incentives

There is another way to decompose the efficiency loss: the costs of search
frictions versus the costs of inadequate incentives due to the increasing re-
turns in matching, see the discussion in Section (2.3). Theoretically, a social
planner could undo this second component by letting workers and firms par-
ticipate as if they would get the full match surplus. The magnitude of this
second component can then be calculated from the first order conditions of
the maximization of (15). Deriving the equivalent of (24) for these equations
is equivalent to replacing the factor 3(1 — ) in the denominator of @) by
unity. Hence, the surplus 2*(s) would go down by a factor 5°*(1 — 3)%4
if a social planner could implement adequate incentives. In the same vein,
unemployment and vacancies go down by respective factors: ﬁfo‘ﬁ(l — 3)%4,
and $%%(1 — 3)=%6. The welfare loss of the decentralized search equilibrium
compared to the social planner’s search optimum reads'*:

1 30
Lossgp ~ = Pt

31555 (@)
This loss is minimized by setting (§ equal to one half, which mimics the
conclusion of the previous paragraph. At this minimum, the expression in
square brackets is equal to 4.3 %. Comparing equation (27) to equation (28)
reveals that for 3 = 0.5 and 6/p — 0, the inefficiency introduced by the lack
of incentives would be compensated for by quadrupling the size of the labor
market, i.e. the parameter A\. For other values of (3, the inefficiencies are
larger. Hence, these are significant. The social planners level of unemploy-
ment is 570'6(1 — )% times the level of unemployment in the decentralized
economy, which is 1.15 for § = 0.5 or 1.41 for § = 0.4. Social planner’s
unemployment is therefore higher than unemployment in the decentralized
market equilibrium. There is too low a reward for search activities which are
produced under increasing returns. Hence, job seekers accept jobs too easily.

0.4P + 90

- g1 P s

4 The first term within brackets is simply equal to Lossyq; while the last term within
the brackets is Lossyq; where 8 and (1—03) are set at 1 (which would reflect unemployment
and the stock of vacancies when incentives were adequate).
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5.4 The trade off between bargaining power and the
replacement rate

The elasticity of unemployment with respect to one minus the replacement
rate is —0.6 (—1 directly in the unemployment equation and 0.4 indirectly via
x* (s)). Meyer (1990) finds an elasticity of unemployment with respect to the
benefit level of up to about minus unity for the United States. His source of
variation is mainly structural variation in legislation between states. Hence,
we feel comfortable to interpret his estimate as reflecting the elasticity of
equilibrium unemployment. This estimate is consistent with our model when
the replacement rate is 0.60, in which case a 1 % decline in B would yield a
1.5 % increase in one minus the replacement rate and hence a 0.9 % decline
in unemployment. Note that the model implies that the detrimental effect
on unemployment goes up with every percent further increase in B. This
might explain the European problems that have arisen for a large part after
the construction of an extensive social security system.

The more interesting issue is what the efficient level of unemployment
benefits is. A social planner has little instruments to implement the allo-
cation that takes away all losses embodied in (28). Unemployment benefits
might be the only instrument available that can alleviate the consequences
of reservation wages being below their optimal value. For an analysis of this
issue, we have to drop the interpretation of B as being the value of leisure.
Hence, B has to be funded. Suppose we pay unemployment benefits from
an insurance premium that is proportional to earned wages. When we define
B*(s) relative to the net reservation wage, this will have no further impact
on the model (since the difference between the gross and the net value of r(s)
is a constant). However, our loss function, equation (27), has to take into
account that the cost of unemployment relative to the reservation wage is no
longer equal to B*(s) but to unity. In order to account for this difference, the
first term between square brackets has to be divided by B*(s). Substituting
equation (25) for z*(s) and minimizing the resulting expression with respect
to B*(s) yields:

Sl 3603
B = s rea=p

The optimal net replacement rate, B/R(s) = 1— B*(s) is therefore a negative
function of the bargaining power of workers. This fits the intuition: when
workers have a high bargaining power, it does not make sense to further
strengthen their position by providing them a luxurious outside option. Using
the parameter values that have been applied before, the optimal replacement

(29)
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rate is equal to 58 %. °

5.5 The effect on (reservation)wages

The effect of search frictions on reservation wages can reasonably well be
approximated by the effect on x*(s). Since p(c) is known (when 7 = 0) or
can be approximated by its value for the Walrasian equilibrium and since ¢(s)
can be solved from the equation —p' [¢(s)] = s and is therefore independent
of the level of search frictions, all the variation in z*(s) in response to search
frictions is due to variation in reservation wages:

dr(s)  dz*(s)
dx d\
where we use \ as a measure for labor market frictions. Note that x*(s)
is not the only channel along which r(s) (through /(s) = 1/r"(s)) enters in
equation (24); r(s) also enters via B* (s) and K* (s). However, in the limiting
case close to the Walrasian equilibrium, z*(s) < B*(s), K* (s). Hence, the
relative effect of a 1% decline in real wages on x*(s) is much larger than the
effect on B*(s) or K*(s). We shall therefore ignore the latter two effects and
identify the effect of search frictions on 7(s) with minus the effect on z*(s).
Apart from the effect on reservation wages, we can also analyze the effect
on accepted wages. In the Walrasian case, both coincide. With frictions,
actual log wages, denoted by w(s), exceed r(s) in almost all employment
relations. This difference can be interpreted as the rents from search. The
average rents can be calculated, again by a second order Taylor expansion
analogous to the way we calculated the efficiency loss. This surplus, which
is the complement of the efficiency loss, equals 2/33x*(s). Using the same
technique of Taylor expansions, we can calculate the standard deviation of
rents to be:

(30)

Std.dev. [w(s) — r(s)] = %5 7 (s)

For 3 = 0.40, this expression equals 0.12 z*(s). For reasonable values of
x*(s) this is a small number, in particular when compared with the stan-
dard deviation of industry differentials, which has often been earmarked as
rents. Krueger and Summers (1988) report a value of the standard deviation
of industry differentials of about 0.15. When these differentials are indeed

15Note however that in our model, B is the same for all worker types, hence a proper
interpretation of (29) is that it is the optimal replacement rate for the average worker. If
the social planner can observe s, he would choose B(s) according to (29).
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rents, these results suggests that they cannot be attributed fully to search
frictions. However, a complete analysis of the implications of search frictions
for industry differentials requires a somewhat more complicated model than
the one discussed here. We get back to this issue in Section 8 of this paper.

5.6 The complexity dispersion parameter

Whereas equation (24) is convenient from an analytical point of view, it is
less suitable for an empirical evaluation, since we have no idea about the units
of measurement of s. As discussed in section 2.4, the scale of measurement
of s can even be changed by a linear transformation without changing the
empirical implications of the model. It is therefore more useful to write the
model in terms of an effect in log wages where we have no dispute about its
unit of measurement. In addition, all issues regarding the substitutability of
workers in given jobs go into the complexity dispersion parameter. Applying
this transformation yields:

F0) = @B () R (1) F() 2 (0) (31)

where Z[r (s)] = z(s),z = z, B*, K*, where, f(r) is the density function of
the distribution of log reservation wages r (weighted by persons) and 7(r) is
the complexity dispersion parameter discussed in Section 2.4. In relation to
the Walrasian version of the model: 7 [r (s)] = f,é% = zl(s% This complexity
dispersion parameter is free of arbitrary choices of units of measurement and
can therefore be meaningfully compared across countries and across differ-
ent points in time. The second equality makes clear that the complexity
dispersion parameter is fully determined by the locus of ¢(s). Hence, it is
either exogenous, when 7 = oo, or determined by the Walrasian equilibrium
when, n = 0, at least in our approximations. Teulings (1999) shows that in
the Walrasian case, this parameter plays a crucial role in the structure of
substitution and complementarity between various worker types. It can be
interpreted as a compression elasticity, measuring the percentage decrease
in the return to human capital per percent increase in its stock. This para-
meter is therefore crucial in determining both the degree of substitutability
between types of labor and the compression of wage differentials in course
of the accumulation of human capital as well as in the magnitude of search
frictions in the economy. We shall apply this concept when analyzing the
distributional implications of search frictions.
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5.7 Distributional implications

When analyzing the distributional consequence of search frictions, we apply
our Taylor expansions beyond the area where their validity can be justified
easily. The reason for this problem is easy to understand. Due to equation
(30), there can only be distributional effects when Md*sﬁl # 0. This con-
tradicts the most crucial result that underlies our approximations, namely
equation (19). Nevertheless, equation (31) offers a useful device for analyzing
the forces that are at work.

By equation (30), we have to analyze the derivative of Z(r). Four factors
on the right hand side of (31) depend on . We shall consider their contribu-
tion to the variation in Z(r) separately. The factors B* (r)** K* (r)**will be
considered jointly. They reach a minimum for R = 2B, which is equivalent
to a replacement rate of 50 %. In most cases, this maximum will therefore be
interior to the domain of R. Next, we consider the third factor, the distribu-
tion of reservation wages. As long as the rents Z(r) are reasonably small, the
distribution of r can be approximated by the distribution of observed wages,
which is well described by a normal distribution with a standard deviation o

in the order of magnitude of 0.30 — 0.60 for OECD countries. Without loss
of generality, the expectation of r will be normalized to zero.'® Hence, the
variation in R has a larger impact on the third factor than on the first two
factors considered jointly. The impact of the density is directly related to
the increasing returns characteristic of the model: the smaller the number of
workers in a particular market segment, the higher will be the cost of search
frictions since contact rates are a linear function of the number of workers in
a segment. Hence, search frictions are much more important in the tails of
the skill distribution than around the median. Regarding the fourth factor,
the complexity dispersion parameter 7 (r), we have little clue regarding its
slope. Teulings and Vieirra (1998) report it to be upward sloping in Portugal.
However, we are reluctant to take this as an established fact. Since we are
not sure about the sign of the slope, this agnoticism applies a fortiori to the
magnitude of the slope.

We conclude that the most important effect of search frictions on the
wage distribution is through the slope of the initial density function f(r).
Concentrating on this effect, we have:

16E.g. consider the case of B = 0.5. Then the first two factors reach their maximum
for R = 1, which is the same value for which the third factor reaches its minimum (due to
the normalization of E[r] = 0). Now, consider the value of both factors at R = 2 relative

to their value at R = 1. The first two are at 0.89 of their maximum, the third factor is at
I 2
er3() = 1.95. This conclusion holds a fortiori for smaller values of ¢ or larger values

of r.
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r < 0=7(r)<0
r > 0=2(r)>0

Both the lowest and the highest wages will therefore be reduced most by
search frictions, while the median is the least affected due to the large number
of workers around the median. Hence, search frictions will not affect wage
dispersion that much, but they will lead to a wage distribution that is skewed
to the left compared to the wage distribution that would apply in a friction-
free Walrasian world. Definite effects of search frictions on wage dispersion
can only be expected if the complexity dispersion parameter is sloped. An
upward slope will yield compression of the wage distribution due to search
frictions, a downward slope will generate the opposite effect.

6 The corner problem

Burdett and Coles (1997) and Smith (1995) show in the context of a non-
transferable utility (but otherwise similar) model that there will be complete
segmentation. The intuition for this result is that both sides of the market are
only willing to match with all types which are higher than their reservation
types. Consequently, the highest types are in the position of being most
selective and will therefore only match with each other. When the highest
types are no longer available for the middle types, the middle types can do
no better than match with each other and finally, the lowest types are left
over and will also match with each other.

At first sight, this segmentation result is a peculiarity of the non-transferable
utility assumption, which will not transfer to models with Nash bargaining.
This view is mistaken. Though less extreme than the model of Burdett and
Coles, the model in this paper contains similar problems. The problem can
best be explained by a graph. Figure 6 depicts the type space L(s),J(c)
(L (s) is the distribution function associated with [, J is the distribution of
occupied jobs in the Walrasian equilibrium), that is we transformed s and ¢
such that every point in the graph has equal density in the Walrasian equilib-
rium. For simplicity, we assume that the Walrasian outcome is represented
by the diagonal. The matching sets m.(s) can be plotted in the figure by their
upper and lower bound, ¢*(s) and ¢~ (s) respectively, which results in a band
which goes from the south-west corner to the north-east corner, see panel A.
As a thought experiment, consider how this band would look like when every
worker has an equal probability of being matched. Since the upper and the
lower bound are drawn to be parallel, the matching probabilities are constant
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for all s, except for the corners. Now look at the problem from the point of
view of vacancies. In panel B, the most and the least complex vacancy will
have a zero matching probability. Hence such a vacancy will never be opened
in equilibrium. Only the vacancies in the interval (¢~~,¢* ") have a constant
matching probability. Outside this interval, in the south-west and north-east
corners of the type space, the matching probabilities decline quickly. Panel C
depicts the case where each vacancy has an equal matching probability, but
it is easy to see now that worker types at both ends of the support face the
same problem as vacancies did before. Panel D sketches the only outcome
that would give every job type and every worker type an equal matching
probability, that is, Burdett and Coles complete segmentation result. By
Theorem 1, this outcome can never be an equilibrium of the model in this
paper, since for this, ¢~ (s) and ¢*(s) must be differentiable. Nevertheless,
panel D is illustrative for the type of force that is at work in this economy.
We refer to this phenomenon as the corner problem.

We offer a somewhat intuitive argument on how this economy deals with
the corner problem. The argument is meant mainly to facilitate the under-
standing of the simulation results in the next section. The way in which
the economy deals with the problem depends on whether n = oo or n = 0.
An example of the former case is sketched in Panel E. In that case, there
is no necessity to open vacancies of all types. Let ¢—* be the least complex
vacancy that will be opened with search frictions A. Since the expected value
of s in the matching set of this vacancy will be larger than of the least skilled
worker, E[s|s € ms(c”)‘)} > s, and since this vacancy is best adapted to its
matching set if it, loosely speaking, maximizes the surplus of the expected
value of its matching set. Hence E|s|s € ms(c_)‘)} >E[s|s € ms(c7)]

A similar argument applies to the north-east corner of the type-space.
Search frictions will therefore truncate both the upper and the lower support
of the domain of the vacancies that are opened. The density of jobs is de-
picted in the right quadrant of Panel E. There is a bulk at ¢=* and ¢™?, to
compensate for the deleted vacancies at the extremes of the support. This
clustering in vacancies will lead to some clustering in the matching sets, which
looks like a smoothed version of the market segmentation result of Burdett
and Coles (1997). When search frictions are large, we have simulation results
which show a further clustering, with a concentration of vacancies for some
job types and no vacancies for neighboring job types. When n = 0, vacancies
of all types are opened, since each job type is by the nature of the CES utility
function a necessity in the composite consumption good. Hence, the corner
problem for vacancies at both ends of the domain needs to be resolved by
price adjustment. Commodity prices at both ends will be higher with search
frictions than they are in a friction-free Walrasian world.
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The corner problem and the implied non-linearities in ¢ (s) and ¢*(s),
depicted in Panel E, are obviously not picked up by the Taylor expansions
presented in the previous section. These expansions ignore completely the
boundary conditions imposed by the upper and lower support of s and ¢
and which are the cause of the corner problem. However, although the cor-
ner problem leaves its marks in the corners of the simulations, the Taylor
expansions turn out to do a good job in predicting x*(s) and A (s).

7 Simulations

7.1 Filling up the holes in the specification

Where the Taylor expansions presented in section 4 provide an excellent an-
alytical instrument for analyzing the characteristics of market equilibrium,
our trust in the conclusions of that analysis depends on the precision with
which this approximation mimics the true equilibrium. This section there-
fore presents a number of numerical simulations of the equilibrium of the
economy. A simulation of the model requires that two holes in the speci-
fication of the model till sofar, the specification of I(s) and g(c), are filled.
We propose a convenient specification that gives a simple relation between
the parameters of these functions on the one hand and the wage distribution
and the complexity dispersion parameter in the Walrasian benchmark on the
other hand.

1—a)l

= - — e — 1| —cf 0 32
(0 —2)~ [(00)™ —1] ~cfor a2 (32
1
= —lIn(yyc) — ¢ for a =0 (33)
Yo
where o < 1. Hence, for the Walrasian benchmark, p’ [¢(s)] = [v, c(s)]fﬁ -
1 = —s,o0rc(s) = %0(1 — 5)~1=9)_ The complexity dispersion parameter,

v(s) = C%% satisfies therefore:

s) =1 —-a)y(1—-s) ° (34)

where v(s) =7 [r(s)]. Hence, & = 0 corresponds to a constant complexity
dispersion parameter, & > 0 to an increasing and o < 0 to a decreasing
parameter. Integrating 7’(s) = ¢(s) and applying the zero profit constraint
p(c) + sc — r(s) = 0 yields the locus of log reservation wages, which we will
denote by rwea(s) in the frictionless world:
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1

rwa(s) = ———[(1=)" 1] fora £ 0 (35)
= —%ln(l—s) fora =0

It is convenient for the presentation of the simulation results to transform
both s and ¢: s* = —In(1 — s) and ¢* = Inc. Applying this transformation
yields a model which is almost linear:

Y(s*) = (1 a)yee™ (36)
c(s*) = (1—a)s*—In~, (37)
1 *
Tval(s’) = 0 [e*as — 1} for a #0
0
1
- —g* fora=0
Yo

where ¢*(s*) = ¢* and 7*(s*) = r. Hence, the relation between s* and ¢* is
linear and has a slope equal to unity in the case of a constant complexity
dispersion parameter, a = 0. The relation between r and s* is only linear
when the complexity dispersion parameter is constant. Its slope equals the
inverse of the complexity dispersion parameter.

It is convenient to specify the distribution of s* instead of s: s*" N [0, (700)2] .
From equation (36), combined with the formula for the standard deviation
of the log normal distribution (since In (1 — yyar) = as* is distributed nor-
mally), we have:

1
Std.dev.[r] = ——/exp [2 (’yoaa)g] — exp [(70040)2] fora #0 (38)
Yo
- o fora=0

Applying a second order Taylor expansion to the expression under the square
root yields a more intelligible expression for the standard deviation:

Std.dev. [r] =2 o4/1+ g(%aay (39)

Hence, the model has ten parameters: four parameters in @ (p,é, 3, ), the
elasticity of substitution 7, the wage dispersion parameter o, the parameters
governing the complexity dispersion parameter (y,, ), and the parameters
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B and K. This framework will be applied in the simulations. We specify a
grid for s* and ¢* ranging from minus three till plus three times their stan-
dard deviation. We divide the domain of both variables in 100 intervals per
standard deviation, yielding a matrix of 601 x 601. For n = oo, the calcula-
tion requires two iteration loops. First, we take the transformed distribution
of vacancies, ¢g*(c*), as given and solve for r* (s*). In the second loop, we
adjust ¢g*(c*) in order to set expected returns on a vacancy equal to K/p.
We take as a starting value for g***#*(¢*) = 0.10 f* [%} This iteration
procedure converges quickly to an equilibrium.

When n = 0, we have a third loop. We start by taking p*(c*) as given
and proceed exactly in the same way as for n = oo. After having solved for
r*(s*) and g*(c*), we calculate the implied Y* (¢*) and change prices to adjust
for excess supply or demand. This iteration procedure converges extremely
slowly. A first hurdle is the corner problem discussed in the previous section.
The iteration procedure finds it difficult to adjust prices such that there is
adequate supply in the tails of the distribution. We deal with this problem
by first making a separate adjustment for the tails of p*(¢*), and then solving
for the whole domain.

When 1 = 0 multiple equilibria becomes an issue. In particular in the
corners, changing prices starting from a ”second loop” equilibrium tends to
change reservation wages and not the distribution of output. Hence, each
iteration in the third loop starts afresh from g**#(¢*).

7.2 Simulation results

The simulations serve two goals. First, they allow us to confront our Taylor
approximations of the equilibrium with the ”true” equilibrium. Second, we
are interested in the effects of changing A on equilibrium unemployment and
output for its own sake. The baseline parameter values of our simulations
are: 6 = 0.15, § = 0.40, p = 0.10, § = 4.0, 75 = 5.0, « = 0.0, B = 0.09,
K = 0.50, 0 = 0.60. 17 Table 1 shows aggregate outcomes for wage dispersion,
output loss, and aggregate unemployment and vacancies for different values
of A. In thick markets (when A is high), it is easy for firms and workers to
find each other, resulting in lower equilibrium unemployment and vacancy
rates. According to (6), this increases the reservation wage of the workers
which allows them to become choosier concerning the jobs they are willing to
accept. This and the higher employment rate leads to a lower output loss. For

1"Those values are in line with what is usually found for the US. The constant complexity
dispersion parameter, v,, was estimated to be close to 5, see Teulings (1999b) for an
estimate for the US, Teulings (1995) for the Netherlands, and Teulings and Vieira (1999)
for Portugal.
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A = 156, unemployment is 5.3%. This suggests that small search frictions
can still result in significant unemployment. Table 2 gives the simulation
results for different segments of the labor market, where n = oo and s*
ranges from -3 till +3 standard deviations of the skill distribution. The
unemployment rate per skill category is denoted by u(s) . For A = 10000,
our approximations are surprisingly accurate. The maximum deviation for
unemployment is 2.1% while for x(s) it is 4.3% in the upper corner. For
A = 2500, our approximations still do a good job, especially for the middle
groups. As the search frictions get higher, our approximations become less
accurate, in particular in the corners, see the discussion in Section 6. From
this we must conclude that our claims are most valid for large \’s. Figures
8 and 9 plot the matching sets for A = 10000 and A = 39, respectively. We
clearly see that under large search frictions, the matching sets become wider.
Figures 10 and 11 show the impact of the corner problem. The process of
vacancy clustering which we discussed in Section 6 is clearly manifest in
Figure 11. Since all goods are perfect substitutes, and firms do not want to
wait forever to find workers at the most simple jobs, they avoid the most
simple jobs in the corners and instead offer a cluster of jobs just above the
corner. This will crowd out vacancies in the upper neighborhood of this
cluster and a process of endogenous segregation results. For A = 10, 000,
this only happens in the corners while for A = 39 it happens in the middle
segments as well.'® The main reason for the fact that our approximations
are less accurate for low values of A is that our Taylor approximations do not
pick up this clustering of vacancies. However, in the more realistic case with
imperfect substitution, there will be less clustering because the necessity to
open jobs of all types becomes stronger. In simulations with n = 0 we see
that the spikes do not arise in vacancy supply but instead in output prices.

Next we can test the validity of some of the relations we derived in the
previous sections. First consider (27), which captures the total loss due
to search frictions. Under the assumed parameter values, this loss equals
0.73 x(s), which is in line with Table 1 and Table 2. Next, consider the
relation between A and unemployment. Under small search frictions, we
can consider B* ~ (.81, then according to (25) the effect through A\ on
unemployment only goes through () and has an elasticity of -0.4. Hence, every
time )\ is increased by 4, unemployment decreases with a factor 4°4 = 1.74.
Our output is surprisingly consistent with this pattern. The same holds for
vacancies. According to (25) and (26), the vu ratio in equilibrium equals:
(1 — B)B*/BK*which is about 1.21. Finally, we can test whether the effect
of A on r(s) is minus the effect of A on z*(s), as implied by (30), holds. This

180nly under an error bound of 0.00001, this pattern arose in our simulations.
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seems to be the case. Increasing A from 2500 to 10000, decreases x(s) by the
same amount as it increases 7(s).

8 Some possible extensions

Now that we have shown that the Taylor approximations do a pretty good
job in characterizing search equilibrium with heterogeneous agents, many
extensions come to mind. A first extension which is both interesting and
manageable with our Taylor expansion approach is the introduction of risk
aversion on the side of job seekers. Suppose that we replace the dollar-for-
dollar utility function applied till now by its constant-relative-risk-aversion
generalization: U = ﬁX =7 7 > 0, where X is the monetary pay off and
where 7 is the degree of relative risk aversion. The first order condition for
the maximization of the Nash product for the wage bargaining game reads
in that case:

B(1 —m) [P(c)F(s,c) — W(s)] = (1-7) lW(s) — R(s) (%) W]

Applying the first order Taylor expansion (MR(%CZ)F ~ 14 ﬂ'ms—’é%ﬂ makes
clear that equation (5) applies approximately in the case of risk aversion. By

this approximation, the equivalent of equation (6) for R(s) reads:

B1—7r + /6>‘

R 1-m —
(#) p+ 6 Jme(s)

g(e) [P (s) F (s,¢) = R(s)] " de

Then, the equations (24) and (25) become:

(s = QB (s, K () U(s) 7 (s)
h 5) o 2 6ﬁ * —1 _*
s gmB (s,m) " a*(s)

where B*(s,m) = = [1 - (%)14] > B*(s,0) = B*(s). Risk aversion
increases the surplus z* (s), all other parameters equal and reduces unem-
ployment. The economic intuition behind this result is that risk aversion
makes workers less patient when they are unemployed. They will sooner
accept jobs for which they are not well suited than in the risk neutral case.
This raises the need for an unemployment system that prevents workers from

accepting jobs too easy even more than in the risk neutral case. It might also
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offer a solution for the small size of the rent share in wages relative to the
size that has been suggested by empirical studies, like Abowd and Lemieux
(1993) and Krueger and Summers (1988), and Teulings and Hartog (1998,
chapter 4). Furthermore, risk aversion reduces the elasticity of unemploy-
ment and the surplus with respect to B* (s), which might explain why the
measured elasticities seem to be smaller than the ones implied by the risk
neutral version of the model.

A second important extension, which is not trivial, is to allow for on the
job search. Since only by accident, workers will match with their favorite
job, there are incentives to continue search till one finds the c(s) job. In the
extreme case when on the job search is costless, workers will accept any job
that pays a wage which is higher than B and continue searching for better
jobs, using their current wage as threat point in the bargaining. On the
other hand, when on the job search is very costly, or when tenure profiles
are steep, our model is a good approximation. A related extension is to
endogenize the separation rate 6. One expects that the scale of the labor
market is an important factor in the separation decision since the chances
of finding a job are typically higher in densely populated areas. Consider
for example a simple model with automatic on-the-job accumulation of skill,
that is, the standard Mincer model: the skill level s goes up as the worker
accumulates experience. Suppose that the worker accumulates experience,
such that her skill level goes up with her tenure. Due to the comparative
advantage structure, the complexity of the optimal job type will also move
up. Sooner or later, the present job will no longer satisfy the reservation
match constraint and the worker will separate to look for a better match.
Since an increase in the scale of the labor market, A, reduces the expected
surplus in the present job, it will be optimal to separate more early in a large
scale labor market. Empirical research supports the notion that separation
rates are higher in central cities, see Van der Ende and Teulings (1999).

A further extension is to let capital costs or, equivalently, capital intensity
vary over job types. Wages will be higher in jobs with high capital cost,
because the firm gets a fixed share of the value of gross output. Firms can
only recoup their high costs of investments from this fixed share if the total
value of gross output is larger. This introduces a new mechanism. The most
important difference is that in the comparative advantage model there is
no job which is universally best. A low-skilled worker produces the highest
gross value output at a simple job, while the Harvard graduate uses her
comparative advantages most effectively in a complex job. In the variable
capital intensity model, all workers are best off if they manage to obtain a
job in the capital intensive industry. Hence, such a model fits the evidence by
Krueger and Summers (1988) that some industries pay systematically higher
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wages than others. A similar model like the one analyzed in this paper, but
extended with heterogeneous capital intensity and risk aversion (to square a
low unemployment rate with high values for *(s)) might be able to provide
a consistent interpretation of these phenomena. Since everybody wants to
work in the capital intensive sectors, the firms in those sectors are in the
position to select from a large pool of workers and they will therefore mainly
hire the high s—types. This brings us back in the Burdett Coles (1997) world
with endogenous segmentation.

Next, we can go into the implications of this model for the spacial struc-
ture of the economy. We have seen that, other things equal, search frictions
have the strongest downward effect on wages in both tails of the skill distrib-
ution. Hence, the wage distribution is skewed to left relative to its Walrasian
counterpart. Since search frictions are more severe in the rural areas than in
the densely populated metropolitan labor markets of New York, Boston or
San Francisco, wages will be most depressed in the tails of the distribution in
rural areas, again, other things equal. This will stimulate mobility. Both low
and high skilled workers will leave the countryside and move towards the big
cities where earnings in the tails of the skill distribution are less depressed.
This implication deserves testing.

Finally, it would be interesting to consider alternative ways of wage deter-
mination, like monopsony wage setting, as in Burdett and Mortensen (1998).

9 Final Remarks

Our method of applying second order Taylor expansions to evaluate the inte-
grals over the matching sets proved to be a useful tool This approximation is
quite accurate for the middle groups. Hence our analytical results are most
valid outside the tales of the skill and job complexity distribution and in
labor markets with small search frictions.

Previous work in this field remained highly theoretical because equilibria
usually had to be calculated by numerical simulation only, which limited the
insight in the forces that governed the outcome of the market process. Our
method allowed us to get explicit expressions for unemployment, vacancies,
the match surplus and the losses of search frictions and inadequate incentives
and their relations to the scale of the labor market. Moreover, it enabled us
to derive the optimal replacement rate.

Finally, we have shown that heterogeneity matters. Besides giving a ratio-
nale for search frictions, it helps us understand how significant unemployment
rates and mismatch can exist even when workers and vacancies meet each
other frequently.
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A Appendices

A.1 The proof of Theorem 1

Part 1: The continuity of R(s):
By equation (6) we have:

. . A8 Jnis) —9(c)AR(s) de+

lim AR(s) =lim —— me(s)

lim R(s) 0 p+6 { Jre(sth)—me(s) g(c) [P(c)F (s + h,c) — R(s + h)] dc

(40)

where AR(s) = R(s + h) — R(s). Suppose that AR(s) > 0. Then

the first term on the right hand side is negative. The second term is zero,

because a necessary condition for ¢ to be in the set m.(s + h) — me(s) is

x(s + h,c) — x(s,c) > 0. Since }llirr(lj x(s + h,c) — x(s,¢) = —AR(s), this

condition is never satisfied. Hence, the only way for equation (40) to apply is

that ,ILHI(I] AR(s) = 0. Similar arguments prove the other statements in part

1 of theorem. Q.E.D.

Part 2: The sign of the derivatives of R(s) and P(c):
Differentiating equation (6) yields:

r'(s)R(s) = % ( )g(c) [cP(c)F(s,c) —1'(s)R(s)] dc + effect viam,(s)
’ (1)
The second term on the right hand side is zero by the envelope theorem
(by the definition of m(s), P(c)R(s,c) — R(s) = 0 at the boundaries of the
integration interval). Bringing the term with 7/(s) in the integrand to the
right hand side of the equation shows 7/(s) > 0. Q.E.D.

Dividing equation (41) by R(s) and differentiating the result yields:

P(c)F(s,c)

won D
r’(s) = —— R(s)

=5 s g — 17 (s)| de+ effect viam,.(s)
(42)
The effect via the boundaries of integration is necessarily positive in this
case: ignoring the effect via the boundaries yield the second derivative of the
value of job search when workers would not adjust their search strategy to
the increase in s. Adjusting the search strategy to the optimal strategy can

only increase the value of search. Rewriting (41) as:

N PR, [POPE ],
O mc@g()[{ o P <>{—R<S) 1}]d

© [ fe—1' ()}
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= M e (s))

P+ 0 Jme(s) wdc @) [1 7 ]

R(s) R(s)

where the second equality follows from substituting the final term by the
original equation (6). Write this integral as: Q [, %91 {c—7'(s)}dcor Q
Eg e —r'(s)]where: Q = [, (5 a(c) dc and where Eg is the expectation opera-
tor with respect to the density function %—Q. Likewise, the first term of the in-
tegral in (42) can be written as: Q [, (s %920 {c=71'(s)}dec =V, (c)+E,(c)*—
E,(e)r'(s) = Vy(c)+ Ey(c) [Eq(c) — r'(s)], where V(c) is the variance with re-
spect to the density function %52. Finally note that: Q {V,[c] +Eq[c —7(s)]} >
Q [Eqyc—1'(s)] > 0. Q.E.D.

The proof of p”(¢) < 0 follows immediately by differentiating twice equa-
tion (6) for K with respect to c¢. Q.E.D.
Part 3: z(s,c) = —17(s) <0, ze(s,¢) =p”(c) < 0. Q.E.D.
Part 4: the connectedness of m.(s) and mg(c):

me(s) is defined by x(s,c) > 0. By part 1 and part 3, z(s, ¢) has a unique
maximum (either interior or exterior). If m.(s) is non-empty, this maximum
has to be positive. Also by part 1 and 3, the equation z(s,c) = 0 for fixed
s has at most two roots, one above the location of the maximum (defined as
¢*(s)) and one below it (¢7(s)). All ¢’s in between are element of m.(s), all
others ¢’s are not. A similar argument applies to m(c). Q.E.D.

Part 5: c’,(s) > 0 and c+/(s) > 0:
Taking the total differential of functional equation z [s,c™ (s)] = 0 yields

c_l(s) = —%. Since ¢~ (s) < ¢(s) and by part 3, x.[s,c(s)] > 0. By
part 1 and 2 and the definition s(c), s’(¢) > 0. Hence: s < s[c(s)], or:
sTle™(s)] = s (the point ¢~ (s) is the lower bound of m.(s) but the upper

bound of ms(c)). Hence, by part 3, zs[s, ¢ (s)] < 0. Q.E.D.

A.2 The Taylor expansion of the integrals
Rewrite (6) as:

B

R(s)  p+0 Jmes)

g(c) [em(s’c) — 1} dc

and note that x.[s,c(s)] = 0 and that z. [s, c(s)] = p" [c(s)] = —1/(s).
Define A = ¢ —¢(s), A= =c(s) — ¢(s), and AT = ¢ (s) — ¢(s). Then:
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[nc(s) g(c) [em(s’c) - 1} dc (44)

_, : lﬁ%AJFO(A)] [E(l—%A2+0<A2>> _1] dA

where F = e” with x = z [s, ¢(s)] and where g and ¢'are evaluated at ¢(s)
and where ¢ denotes /(s). The arguments of these functions are suppressed

for convenience. The integrand can be written as: (E—1) [1 + %A +o0 (A)} -
sCE [AQ + %AP’ + O(A?’)}. Furthermore £ — 1 = = + o (z) and z[s, ¢(s)] =
2 A 40 (A#), where A% = c#(s) — c(s), (#) = () , (+). Hence:

B—1= DA 1o (a%)

Furthermore —%A# + o(A#?) = %A‘Q + o(A#**) and therefore:
1
—g (AT AT (AT - A7) = o(AF) = At — A™ = o(A¥)

Substituting these results in equation (44) yields:

g/AA+ l1 + %A +0(A)] [E (1 - %N +o (N)) - 1] dA (45)

= g[(E-1)(a+o(a) - 5oF (58°+0 (A3)>]ZA_
112,414 N2 s 3
- 5] o) e o)

Applying A# = |/2z¢ + o (A#) yields equation (20) in the text. Q.E.D.
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B Figures

r(s), p(c)+sc

r(9), r19>0,r(9>0
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Figure 1: Walras versus search frictions
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Figure 2: Approximation of the search surplus
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X(s,c)<0

’ /x/(s,c)>0

Figure 3: Matching sets, c(s), and s(c)

c'(s)

c'(s
c(s)

c(s)

Figure 4: Lineair matching sets
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c(s)-A c(s) c(s)+A

Figure 5: Taylor approximation of the surplus
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Figure 6: Illustration of the corner problem

44



Figure 7: Matching sets for contact rate = 10000

Figure 8: Matching sets fot contact rate = 39
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Ys/Yw

Figure 9: Output at different job types under perfect substitution for contact
rate = 10000

Ys/Yw

Figure 10: Output at different job types under perfect substitution for con-
tact rate = 39
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C Tables

Table 1: Aggregate outcomes for different values of A

A 10,000 | 2,500 | 625 | 156 | 39
stdev r 0.60 | 0.61 | 0.62 | 0.63 | 0.63
loss 0.03 | 0.05|0.09|0.15| 0.26

aggr. u(%) 0.9 1.5 28| 53| 9.9
aggr. g(%) 2.2 3.7| 6.1]10.2|14.6

Note: 1 = 00, loss is output loss (in logs) due to search frictions
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Table 2: Simulation results for different worker skill groups

| || s] 60 30 00 30 60]
X = 10000 w(%) | 28 10 06 06 08
r(s)| -1.31 -0.65 -0.03 057 115
x(s) 0.11 0.05 0.03 0.03 0.05
error z(s) % | -42 -15 -06 -04 -43
error u(s) % 21 -07 0.8 -06 -21
X = 2500 W) | 48 18 11 10 14
r(s)| -1.39 -0.69 -0.06 054 1.12
z(s)| 018 009 006 006 0.08
error x(s) % | -75 -35 -24 -23 -59
error u(s) % | -39 -12 -08 -1.1 -0.6
N =625 W) | 102 39 18 18 29
r(s) | -147 075 -0.10 048 107
x(s) 0.27 0.14 0.09 0.10 0.12
error z(s) % | -22.10 -13.9 -19.8 -84 -23.5
error u(s) % | 10.0 234 -40 1.0 15.0
N =156 W) | 253 76 27 30 31
r(s)| -1.75 -0.90 -0.16 041 0.96
x(s) 0.55 030 0.16 0.19 0.23
error z(s) % | -10.7 1.6 -13.6 0.37 -18.2
error u(s) % | 21.8 252 -19.3 -7.0 -33.0
X =39 W) | 703 104 56 34 638
r(s) | -2.2 097 025 025 0.72
2(s)| 094 036 023 034 025
error z(s) % | 10.2 -30.2 -31.5 -3.5 -52.6
error u(s) % | -13.3 -54 -9.1 -42.6 -23.7
Note: n =00
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