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1 Introduction

Empirical likelihood (EL) is a semiparametric method of estimation and inference that uses

a multinomial likelihood supported on the dependent sample observations to yield limiting

sampling properties similar to its parametric counterpart. In iid settings its properties have

been investigated by Owen (1988, 1990), Hall (1990), DiCiccio, Hall and Romano (1991),

Qin and Lawless (1994) and others. Owen (1991) and Kolaczyk (1994) have extended its

applicability to the larger class of generalized linear models for univariate data that follow

exponential family distributions (McCullagh and Nelder, 1989).

In the context of using EL to reason with a sample of data, consider the traditional

noisy inverse problem where we are unable to measure the unknown k-dimensional vector

� 2 B directly and instead observe a n-dimensional vector of noisy sample observations

y = (y1; y2; : : : ; yn)
0 that are consistent with the underlying data sampling process in the

linear statistical model

y = X� + e (1.1)

whereX is a (n�k) design matrix known to the experimenter. The unobservable components
are the (k � 1) vector of unknown parameters � = (�1; �2; : : : ; �k)

0 and the n-dimensional

noise vector e, which re
ects a drawing from a multivariate (possibly normal) distribution

with mean zero and precision matrix �e = �2In. The objective given the linear statistical

model (1.1) is to �nd estimator Æ(y) 2 D of the unknown parameter vector � 2 B that

yields small expected squared error loss (SEL)

�(Æ(y)j�) = E ykÆ(y)� �k2 (1.2)

relative to conventional estimators. Under model (1.1), when e is a normal random vector,
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the maximum likelihood (ML) estimator, Æ0(y) of �, where

Æo(y) = (X0X)�1X0y � Nk(�; �
2(X0X)�1) (1.3)

under measure (1.2) is a best-unbiased and minimax estimator with constant risk �(Æ(y)j�) =
�2tr(X0X)�1 = tr(�Æ).

For parametric models such as this, the likelihood concept is central to estimation and

inference. The great appeal of the likelihood-based methods in parametric estimation and

hypothesis testing is due to their wide range of applications and well developed asymptotic

theory that provides a foundation for their use when certain regularity conditions are ful-

�lled. If not enough information about the underlying data sampling process is available

to specify the form of the likelihood function, traditionally non-likelihood data based meth-

ods such as least squares, method of moments, and empirical likelihood have been used to

cope with a range of semiparametric inference problems. Other alternatives for avoiding the

likelihood are the quasi maximum likelihood (White, 1982; 1993) and estimating equations

(EE) approach (Godambe, 1960; Heyde and Morton, 1998). Qin and Lawless (1994) link EE

and EL and demonstrate how to make use of information in the form of unbiased estimating

equations. From a Bayesian estimation perspective, Zellner's (1994) Bayesian method of

moments (BMOM) permits post data densities for parameters while avoiding the likelihood.

In practice much of the sample data may come from a badly designed experiment or one

that is non-experimentally generated. Consequently, the design matrixX used in the context

of sampling model (1.1) may be ill-conditioned. Therefore, traditional estimating rules may

result in a situation where, (i) there may be arbitrary parameters, (ii) the solution may be

unde�ned and/or, (iii) the estimates can be highly unstable giving rise to high variance or

low precision for the recovered parameters. Given this result, one alternative is to rely on the

shrinkage properties of the method of regularization (MOR) and penalized likelihood (PL)

3



estimators (Hoerl and Kennard, 1970a; 1970b; O'Sullivan, 1986; Titterington, 1985). In

general, MOR estimators �t the data subject to a penalty function and can be formulated as

the solution of an optimization problem involving a measure of lack of �t (prediction) of the

data, a convex measure of roughness or plausibility relating to the precision of the estimator

and an unknown regularization or tuning parameter. Because regularization procedures

involve the use of both data and prior notions about the unknown parameters, if a likelihood

formulation is relevant, a Bayesian interpretation of the MOR-ridge estimator is possible.

Given the range of traditional and non-traditional estimators for trying to avoid the

likelihood and coping with ill posed inverse problems with noise, in this paper we extend the

empirical likelihood concept and demonstrate an estimator that exhibits the following char-

acteristics: (i) belongs to the family of extremum, M-type, estimators, (ii) has asymptotic

sample properties similar to those for parametric likelihoods, (iii) maintains superior risk

behavior relative to conventional estimators in �nite samples when the design matrix is ill-

conditioned, (iv) is robust to variations in the sampling process, and (v) is computationally

tractable.

This paper is organized as follows: to establish a notational base, we review in Section 2

the empirical likelihood (EL) and general estimating equations (EE) concepts. In Section 3, a

data based information theoretic (DBIT) estimator is demonstrated. Sections 4 and 5 provide

the corresponding asymptotic results and an illustration of the �nite sample properties of

the estimator. Concluding remarks are given in Section 6 and mathematical derivations for

the theorems and lemmas are given in an appendix.

2 EL and EE Conceptual Base

Our objective in this section is to link the estimating equations and empirical likelihood

concepts and to recognize the possibility of alternative criterion functions. If we let y denote
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the (n � 1) vector of sample observations from a distribution F that depends on the k-

dimensional vector � 2 B, then the empirical likelihood of this parameter is de�ned by

considering the distributions supported on the sample where each yi is assigned probability

�i. We assume information exists in the form of m � k unbiased estimating functions,

g(y;�) = 0. The pro�le empirical likelihood is consequently de�ned as

lE(�) = sup
�2B

� nY
i=1

�i j
nX
i=1

�igm(yi;�) = 0;
nX
i=1

�i = 1; �i � 0 8 i
�
: (2.1)

The solution to this constrained optimization problem yields an optimal estimate �̂i =

n�1[
Pm

j=1 �̂jgj(yi;�)+1]�1 which is generally not in closed form. When m = k, the resulting

estimator of � and F are those provided by Owen (1988; 1990). For the overidenti�ed case

when m > k, the formulation and solution of Qin and Lawless (1994) results. Corresponding

likelihood ratio statistics have limiting Chi-square distributions that results in an inference

base analogous to parametric likelihoods.

DiCiccio and Romano (1990) and Jing and Wood (1996) have noted that an alternative

EL formulation is to choose an estimating criterion that minimizes the Kullback-Leibler

(KL) distance between the post data probabilities and uniform prior weights qi = 1=n. This

criterion results in the following maximum entropy empirical likelihood (MEEL) problem,

(Shannon, 1948; Jaynes, 1957a; 1957b; Shore and Johnson, 1980; Skilling, 1989; and Csiszar,

1991): sup�2B S(�) = �Pn
i=1 �i log(�i) subject to

Pn
i=1 �igm(yi;�) = 0 and

Pn
i=1 �i = 1.

The solution for the ith optimal weight takes the form

~�i =
exp[�Pm

j=1
~�jgj(yi;�)]Pn

i=1 exp[�
Pm

j=1
~�jgj(yi;�)]

� exp[�Pm
j=1

~�jgj(yi;�)]


(~�)
(2.2)

where �̂j is the jth optimal Lagrange multiplier associated with the m moment constraints.

Again, for the MEEL formulation, the usual asymptotic inference properties for the likelihood

ratios follow. If m = k both the traditional MEL and MEEL formulations yield the same
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solution. This, of course, is not surprising since the estimates Æ(y) can be obtained as roots

of the corresponding estimating equations g(y;�) = 0.

If prior information q exists for the unknown �, one alternative is to minimize the

Kullback-Leibler (K-L) distance between post data weights and the priors. This criterion

is known as cross entropy (CE), (pp.29-31 Golan, Judge, and Miller, 1996; Gokhale and

Kullback, 1978). Under the CE metric, the CEEL estimating criterion of the ME criterion

(2.1) becomes

I(�;q) =
nX
i=1

�i log(�i=qi) =
nX
i=1

�i log(�i)�
nX
i=1

�i log(qi) (2.3)

The resulting optimal solution is derived from minimizing I(�;q) subject to the unbiased

estimating equations and adding up conditions,

~�i =
qi exp[�

Pm
j=1

~�jgj(yi;�)]Pn
i=1 qi exp[�

Pm
j=1

~�jgj(yi;�)]
� qi exp[�

Pm
j=1

~�jgj(yi;�)]


(~�)
(2.4)

When the prior information is uniform and qi = 1=n 8 i, the optimal CE solution (2.3)

is equivalent to the optimal ME solution (2.1). If one uses the traditional Owen MEL

criterion, one chooses the feasible weights ~�i that maximizes the probabilities assigned to

the observed set of observations. Alternatively, under the MEEL criterion the feasible weight

�i involves the maximum of the expected value of all possible log-likelihoods, consistent with

the structural constraints.

It is important to note that the MEL, MEEL and CEEL estimating criterions are

embedded in the general measure

I(p;q; �) =
1

�(� + 1)

nX
i=1

pi

h�pi
qi

��
� 1

i
(2.5)

As � goes from 0 to -1, the MEL and MEEL problems are nested in the maximum �-entropy
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framework and thus determine the estimation and inference principles. A third distance

measure, the log-Euclidean likelihood, is obtained for � = �2 and may be useful when the

unknown parameters lie outside the convex hull spanned by the sample points. For a more

complete discussion of the �-entropy functional, see Renyi (1961) and Cressie and Read

(1984).

The EL and EE concepts o�er a viable basis for semiparametric estimation and inference

when the design matrix is well conditioned. In the case of ill-conditioning, estimates from

EE, EL and LS can be highly unstable in small samples, resulting in high variance or low

precision for the recovered parameters. Typically, the method of regularization (MOR) has

been used (O'Sullivan, 1986) that yields an estimator

Æmor(�) = argmin
�2B

[ (y;�) + k�(�)] (2.6)

where  (y;�) is some measure of lack of �t (prediction) relative to the data and �(�) is a

convex measure of roughness or plausibility of the estimates. In general, an optimal value of k

must be chosen to form a stable estimate and hence the MOR optimization problem involves

a dual loss function of prediction and estimation precision (Zellner, 1994; Dey, Ghosh, and

Strawderman, 1999). Given the uncertain sampling properties of MOR-like estimators, in

the next section we propose an extension and interpretation of the EL and EE concepts that

leads to a data based estimator that has the usual asymptotic behavior and performs well

in �nite samples under the SEL measure.

3 Data Based Information Theoretic Estimator

In developing an information theoretic alternative to MOR, we generalize the EL and EE

concepts and focus on ill-conditioned inverse problems. In particular, we replace the tra-

ditional EL estimating function assumption of g(y;�) = X0(y � X�) = 0 and make use
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of information about the unknown distribution and parameters in the form of the following

condition-structural data constraint:

h(y;�; e) = X0(y�X� � e) = 0 (3.1)

or equivalently,

n�1[X0y�X0X� �X0e] = 0: (3.2)

The k-dimensional structural data constraint contains (k + n) unobservables, (�; e), and

thus is ill-posed. Consequently, traditional matrix procedures do not yield a unique solution

which satis�es the equation.

Traditional estimation methods may be described to belong to a general class of esti-

mators 	 =
�
 : Æ(y) =

Pn
i=1( i � yj)

	
that are some weighted sum of the yi values,

given appropriate choices of  i. For example, in case of least squares estimation, we have

 i = (X0X)�1x0i which reduces to  i = xi for the orthonormal linear model. In addition,

the instrumental variables estimator, IV (h = k), may be represented as  i = (Z0X)�1zi or

 i = [(X0Z)(Z0Z)�1(Z0X)]�1(X0Z)(Z0Z)�1zi for IV(h > k). To solve the problem, we seek

estimates Æ(y) and 
(y) that satis�es (3.1) or (3.2). In particular, centering the observables

y and X we let Æ(y) = (X0�P)y with P = [p01;p
0
2; : : : ;p

0
k]
0 and 
(y) = (In
y0)w and seek

p and w de�ned by

n�1[X0y �X0X(X0 �P)y�X0(In 
 y0)w] = 0 (3.3)

In estimating (3.2) with (3.3), we make use of the Hadamard product � and let the weights

pk and wi represent (k + n) univariate probability distributions, one for each element of Æ

and 
. Therefore, in the extended empirical likelihood formulation, we apply the traditional

8



EL weights � marginally and specify a univariate probability distribution pk for each of

the data based information theoretic (DBIT) estimates Æk(y). Correspondingly, for 
(y), a

univariate probability distribution wi is speci�ed for each 
i(y).

Traditional inversion procedures cannot be used to obtain a unique solution that satis�es

(3.1). In seeking a solution, we make use of the information theory K-L distance measure

between the estimated and reference distributions along with information in (3.3), we have

the dual criterion extremum problem

min
p;w

I(p;q;w;u) = p0 log(p=q) +w0 log(w=u) (3.4)

subject to

X0y

n
=

�
X0X

n

�
(X0 �P)y +

�
1

n

�
X0(In 
 y0)w (3.5)

ik = (Ik 
 i0n)p (3.6)

in = (In 
 i0n)w (3.7)

where q and u are the reference distributions composed of uniform probabilities in the case

of noninformative priors. In this extremum problem, the objective is to recover p and w and

hereby derive an estimate of � consistent with (3.3).

Under the K-L distance, minimization of the objective function subject to the model's

constraints under noninformative priors then draws each DBIT estimate of the error terms,


i(y), towards the central tendency of zero which is simply the expected value of each noise

component. Also, it should be observed that the normalization of the weights to have unit

sum is analogous to the least squares counterpart where weights are de�ned by the positive

de�nite nature of the idempotent matrix, (I �X(X0X)�1X0), that premultiplies the vector

of dependent observations in de�ning the LS estimate of each error term.
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In terms of the parameter space B, the feasible values are de�ned by (X0
P)y. In the

same manner as before, the objective has a tendency to draw all the convexity weights to

n�1. Thus, there is a tendency to draw the estimate of � towards n�1X0y which are the

sample covariances between X and y. Also, it is observed that the row sums of the matrix

weighting the y elements each equal zero for the DBIT method as with least squares.

3.1 Solution to the DBIT Problem

To solve this extremum problem, we form the Lagrangian function,

L =
�X

k=1

nX
m=1

pkm log(pkm=qkm) +
nX
i=1

nX
j=1

wij log(wij=uij) +

�X
l=1

�l

�
1

n

nX
i=1

xilyi � 1

n

nX
i=1

�X
k=1

nX
m=1

xilxik(xkmympkm)� 1

n

nX
i=1

nX
j=1

xilyjwij

�
+

�X
k=1

�k(1�
nX

m=1

pkm) +
nX
i=1


i(1�
nX

j=1

wij) (3.8)

with the following FOCs,

@L
@pkm

= 1 + log(p̂km=qkm)� 1

n

nX
i=1

�X
l=1

�̂lxilxik(xkmym)� �̂k = 0 8 k;m (3.9)

@L
@wij

= 1 + log(ŵij=uij)� 1

n

�X
l=1

�̂lxilyj � 
̂i = 0 8 i; j (3.10)

@L
@�l

=
1

n

nX
i=1

xilyi � 1

n

nX
i=1

�X
k=1

nX
m=1

xilxik(xkmymp̂km)�

1

n

nX
i=1

nX
j=1

xilyjwij = 0 8 l (3.11)

@L
@�k

= 1�
nX

m=1

p̂km = 0 8 k (3.12)

@L
@
i

= 1�
nX

j=1

ŵij = 0 8 i (3.13)
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Solving the above allows us to obtain the solutions,

p̂km =
qkm exp

n
1
n

Pn
i=1

P�
l=1 �̂lxilxik(xkmym)

o
Pn

m=1 qkm exp
n

1
n

Pn
i=1

P�
l=1 �̂lxilxik(xkmym)

o � qkm exp(:)


k(�̂)
8 k;m (3.14)

ŵij =
uij exp

n
1
n

P�
l=1 �̂lxilyj

o
Pn

j=1 uij exp
n

1
n

P�
l=1 �̂lxilyj

o � uij exp(:)

	i(�̂)
8 i; j (3.15)

The solution to this problem provides optimal weights p̂ and ŵ that are used to recover the

estimates Æ(y) and 
(y).

3.2 Characteristics of the Solution

The optimization problem formulated in equations (3.4) through (3.7) has a solution for p

and w if the intersection of the constraint sets is non-empty. Formally, we can de�ne the

sets A = fw > 0 : in = (In 
 i0n)wg, B = fp > 0 : ik = (In 
 i0n)pg and C = A [ B where C
must consequently be non-empty and compact. In addition, we can restrict the elements of

C to be strictly positive as to assure the optimal solution is global and unique. Considering

the moment constraint (3.5), the fully restricted constraint set is de�ned to be,

C� = f(p;w) 2 int(C) : X0y = X0X(X0 �P)y +X0(In 
 y0)wg (3.16)

where the notation int(C) denotes the interior of set C such that all elements contained in

the interior are strictly positive.

As noted before, if q and u are non-informative and therefore composed of discrete uni-

form distributions, then the objective of the Kullback-Leibler distance reduces to Shannon's

entropy metric. Uniqueness of the optimal solution can be ensured from the positive de�nite

property of the Hessian matrix of the objective function, (p.92, Golan, Judge, and Miller,
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1996)

r(p;w)(p0;w0)I(p;w) =

2
4 P�1

� 0

0 W�1
�

3
5 (3.17)

where P�1
� is a (kn�kn) diagonal matrix with elements p�1km andW�1

� is a (nn�nn) diagonal
matrix with elements equal to w�1ij . If the restriction is imposed that (p;w) 2 C� where

C� 6= ; then the Hessian matrix is insured to be positive de�nite, aHa0 > 0 for arbitrary

a, implying a strictly convex objective function which is a suÆcient condition for a global

optimum. Finally we note that any constrained optimization problem may be formulated

in its unconstrained dual form. Reasons for specifying the problem as such often point

to eÆciency gains of computing, however as will become evident from later sections, this

approach also represents a considerable advantage when investigating the DBIT estimator

limiting properties as an extremum estimator. In terms of the maximal value function for

the extremum problem, we have the following lemma.

Lemma 3.1. The maximal value function of the normed moment constrained DBIT opti-

mization problem is,

Mn(�) =
nX
i=1

�X
l=1

�
xilyi
n

�
�l �

�X
k=1

log(
k(�))�
nX
i=1

log(	i(�))

where,


k(�) =
nX

m=1

qkm exp

�
1

n

nX
i=1

�X
l=1

�lxilxik(xkmym)

�

	i(�) =
nX

j=1

uij exp

�
1

n

�X
l=1

�lxilyj

�
:

Proof. The maximal value function Mn(�) is obtained by substitution into the Lagrangian
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as follows:

Lc(�) =
�X

k=1

nX
m=1

pkm

�
1

n

nX
i=1

�X
l=1

�lxilxik(xkmym)� log(
k(�̂))

�
+

nX
i=1

nX
j=1

wij

�
1

n

�X
l=1

�lxilyj � log(	i(�))

�
+

�X
l=1

�l

�
1

n

nX
i=1

xilyi � 1

n

nX
i=1

�X
k=1

nX
m=1

xilxik(xkmympkm)� 1

n

nX
i=1

nX
j=1

xilyjwij

�

=
nX
i=1

�X
l=1

�
xilyi
n

�
�l �

�X
k=1

log(
k(�))�
�X
i=1

log(	i(�))

=

�
y0X

n

�
��

�X
k=1

log(
k(�))�
nX
i=1

log(	i(�)) �Mn(�) (3.18)

The maximal value function Mn(�) may be interpreted as a constrained expected log-

likelihood function. Having de�ned the maximum value function for the reformulated prob-

lem, we turn to the limiting properties of the resulting extremum estimator.

4 Large Sample Properties and Statistical Tests

In the next two sections we demonstrate the asymptotic and �nite sample properties as a

basis for evaluating the e�ectiveness of our estimation rule. The fact that the estimator

cannot be expressed in closed form and the highly nonlinear functions of the data that

characterize the optimal solution introduce interesting complications. In this section we

develop the limiting properties of consistency, asymptotic normality and the formulations

required to derive asymptotic tests such as the Wald, likelihood ratio, and the Lagrange

multiplier test. Finite sample results are developed in Section 5. In order to derive the above

mentioned results we use the framework of extremum estimation (Huber, 1981; Newey and

McFadden 1994). Speci�cally, for the consistency property we demonstrate that the maximal
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value function taking � 2 � as its argument converges to a non-stochastic limit in probability

uniformly which is maximized at the true parameter �0. The result that the DBIT estimator

Æ 2 D of the unknown parameter vector �0 2 B is consistent follows.

4.1 Consistency

To demonstrate consistency property of our estimator we utilize the following regularity

conditions:

Assumption 1.

1. The disturbance terms e1; : : : ; en are iid with zero expectation, E (ei) = 0 8 i, and

covariances �e = �2In.

2. The parameter space B is a compact subset of the Euclidean k-space, Rk , and the true

parameter �0 is in the interior of B.

3. The non-stochastic (n� k) design matrix X has the property

lim
n!1

�
X0X

n

�
= Q

where Q is a �nite symmetric positive de�nite matrix.

4. There exists a parameter �0 2 � such that the following condition holds; plim [X0 �
P(�0)]y = �0.

5. The parameter space � is also a compact subset of Rk , and the true parameter �0 is

in the interior of �.

Keeping in mind all observables are centered, the �rst three assumptions are familiar

basic regularity conditions that justify some of the fundamental asymptotic results on mo-

ment estimators and likelihood functions. The fourth regularity condition states that in
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the limit there exist speci�c weights p which when evaluated at the correct parameter �0,

the probability that the estimate di�ers from the true vector of unknowns, �0, becomes

arbitrarily small. This set of assumptions is not the most general one that leads to the

desired consistency results, however they are useful for our purpose. We may for example,

relax the condition that B is a compact set, the iid property of the disturbance terms, or

the �nite value assumption on Q, but with corresponding consequences. (Amemiya, 1993;

Mittelhammer, Judge, and Miller, 1999).

Lemma 4.1. Given the conditions of Assumption 1 are satis�ed, (y
0X

n
)� converges to �00Q�

in probability uniformly.

Proof. See the Appendix.

Lemma 4.2. As n approaches 1, the maximal value function Mn(�) converges in proba-

bility uniformly in � 2 � to the nonstochastic function M(�) which attains a unique global

maximum at �0.

Proof. See the Appendix.

Theorem 1. The estimator �̂n de�ned by Mn(�̂n) = max�2�Mn(�) converges to the true

parameter �0 in probability.

Proof. Let G � R
k be an open neighborhood which contains �0 and �G be its complement.

By assumption 1.5, the parameter space � is closed and bounded and it follows that the

intersection �G \ � is compact as well, implying that max�2 �G\�M(�) exists. Let's de�ne

Æ =M(�0)� max
�2 �G\�

M(�) 8 � (4.1)

and consider En to be the event such that jMn(�)�M(�)j < Æ=2 8 �. This means that En
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implies,

M(�̂n) > Mn(�̂n)� Æ=2 (4.2)

Mn(�0) > M(�0)� Æ=2 (4.3)

Since �̂n is the optimal value which satis�es Mn(�̂n) = max�2�Mn(�), it follows that

Mn(�̂n) �Mn(�0), hence we can express (4.2) as,

M(�̂n) > Mn(�0)� Æ=2 (4.4)

Adding both sides of (4.3) and (4.4) we obtain the inequality

M(�̂n) > M(�0)� Æ (4.5)

which reduces to

M(�̂n) > max
�2 �G\�

M(�) (4.6)

From equation (4.6) we conclude that �̂n 2 G which implies P [�̂n 2 G] � P [En]. Lemma 4.2

shows that Mn(�) converges to M(�) in probability uniformly, therefore limn!1 P [En] = 1

and accordingly limn!1 P [�̂n 2 G] = 1. The result that �̂n
p�! �0 follows.

Corollary 1. The DBIT estimator Æ = [X0 � P(�̂n)]y converges in probability to the true

parameter �0.

Proof. See the Appendix.

We have shown that using the maximal value function in an extremum estimator ap-

proach, the normed moment formulation of the estimator is consistent. It is straightforward
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to see from the above theorems that an alternative formulation which uses the condition

that g(y;�) = 0 is consistent as well, but not without considerable impact on �nite sample

properties. The advantage of the extended formulation is that it derives optimal biased

estimates that have superior �nite sample performance and are consistent. Our estimator is

shown to be robust under problems of an ill-conditioned design, because it does not employ

traditional inversion or decomposition procedures of an ill-conditioned matrix, but rather

uses the information contained in the data by specifying weights on empirical target points

which are recovered through minimization of the K-L distance measure.

Having derived the consistency property of our estimator, we now focus on the limiting

distribution. In the next section we show that under certain conditions, the consistent root of

the gradient of the maximal value functionMn(�) is asymptotically normal and consequently

the DBIT estimator Æ asymptotically follows a normal distribution as well.

4.2 Asymptotic Normality

The following set of regularity conditions are used to show that the DBIT estimators for �0

and �0 have asymptotically normal distributions.

Assumption 2.

1. The expectation E (X0e) equals zero.

2. The conditions for the Lindeberg-Feller CLT are satis�ed;

Let zi = xiei for i = 1; : : : ; n be a sequence of (k� 1) independent random vectors with

E (zi) = 0 and Cov(zi) = �2xix
0
i and distribution function Fi such that,

(a) limn!1(
1
n

Pn
i=1 �

2xix
0
i) = �2Q

(b) limn!1
1
n

Pn
i=1

R
�
kzk2dFi(z ) = 0
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where � = fkzk > �
p
ng for each � > 0, then

n�1=2
nX
i=1

zi = n�1=2X0e
d�! N(0; �2Q)

Assumption 2.1 states that in a repeated sampling context, on average X0e equals to

zero. However in contrast to traditional unbiased methods, within a single �nite sample,

X0
(y) is not restricted to equal zero. Assumption 2.2 also represents a common regularity

condition used to derive limiting results of method of moments and likelihood estimators. It

is clear that the usual Lindeberg-Levy CLT does not apply in this case since x0ke represents

the sum of n independent but not iid random variables. A stronger condition (Liapounov)

sometimes applied to obtain the asymptotic distribution of n�1=2X0e is the existence of a

third moment of ei (Judge, 1985; Greenberg and Webster, 1983), yet the weaker Lindeberg-

Feller conditions are both necessary and suÆcient. Amemiya (1985) shows the derivation of

the asymptotic distribution using characteristic functions for the single parameter case. For

more general results, see Theil (1971), Schmidt (1976).

Theorem 2. Let the regularity conditions in Assumptions 1 and 2 hold. The DBIT estima-

tor �̂n de�ned by Mn(�̂n) = max�2�Mn(�) has a limiting normal distribution

p
n(�̂n � �0) d�! N(0;��0

)

where the asymptotic covariance matrix ��0

is appropriately de�ned.

Proof. By Taylor expansion of the maximal value function around �0 we have

@Mn(�)

@�

���� ^�n

=
@Mn(�)

@�

����
�0

+
@2Mn(�)

@�@�0

����
�

�

(�̂n � �0) (4.7)

where �� lies between �̂n and �0. Since (4.7) equals to 0 by de�nition of �̂n, we rewrite the
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above equation as

p
n(�̂n � �0) = �

"
@2Mn(�)

@�@�0

����
�

�

#�1p
n
@Mn(�)

@�

����
�0

(4.8)

The asymptotic distribution of �̂n is derived in several steps. As will be shown, the �rst term

inside the brackets to the right of the equality sign converges to a positive de�nite matrix

and is nonsingular. Addressing the second term, we obtain from Lemma 4.1 the gradient of

the maximal value function.

p
n
@Mn(�)

@�

����
�0

=
p
n

�
X0y

n
� X0X

n
[X0 �P(�0)]y � 1

n
X0(In 
 y0)w(�0)

�

=
1p
n
X0

�
y �X[X0 �P(�0)]y

�
� 1p

n
X0(In 
 y0)w(�0) (4.9)

In order to show that the second term of (4.9) converges in probability to 0, we use Cheby-

chev's inequality with the additivity constraint on w(�0) and �nite �rst and second moments

of the centered y to �nd a number M1 such that for each k

P
�
n�1=2

�� nX
i=1

nX
j=1

xikyjwij(�0)
�� �M2

� � E [
Pn

i=1

Pn
j=1 xikyjwij(�0)]

2

nM2
2

� M1

nM2
2

(4.10)

for any M2 > 0. This result may also be obtained from recognizing that the weight wij(�0)

converges in probability uniformly to uij. Referring to equation (3.17) we have,

lim
n!1

P
�
sup
�02�

��� uij expf 1nyjx0i�0gPn
j=1 uij expf 1nyjx0i�0g

� uij expf0gP
1

j=1 uij expf0g
��� < �

�
= 1 (4.11)

for every � > 0, or simply

lim
n!1

P ( sup
�02�

jwij(�0)� uijj < �) = 1 (4.12)
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which implies plimfPn
j=1 yjwij(�0)g = 0 since the elements of y are deviations about the

mean. Applying Slutsky's Theorem, we can conclude that since convergence in probability

implies convergence in distribution, the limiting distribution of (4.9) is therefore the same

as that of

1p
n
X0

�
y �X

n
plim [X0 �P(�0)]y

o�
=

1p
n
X0(y�X�0) (4.13)

=
1p
n
X0e (4.14)

Given that the regularity conditions in Assumption 2 hold, the Lindeberg-Feller CLT can be

used to show

p
n
@Mn(�)

@�

����
�0

d�! N(0; �2Q) (4.15)

In order to �nd the probability limit of the Hessian matrix, we refer to Appendix A for the

speci�c functional form. By the de�nition of �� and the consistency of �̂n it follows that

plim
@2Mn(�)

@�@�0

����
�

�

= plim
n
�
�
X0X

n

�
�(�0)

�
X0X

n

�0
��(�0)

o
(4.16)

It is straightforward to see that plim �(�0) converges in probability to the zero matrix since

1
n
xisyj is clearly op(n) and hence all elements of �(�0) converge to zero in probability. By

assumption 1.3, we have limn!1
1
n
X0X = Q and let plim �(�0)

p�! ��0 which is positive

de�nite since pkm 2 (0; 1). Combining the appropriate parts, equation (4.16) becomes

plim
@2Mn(�)

@�@�0

����
�

�

= �Q��0

Q0 (4.17)
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accordingly, we can derive the distribution of (4.8) as

p
n(�̂n � �0) d�!N(0; (Q ��0

Q0)�1�2Q (Q ��0

Q0)�1) (4.18)

�N(0;��0

) (4.19)

which gives the result proposed in the theorem.

Now that we have derived the limiting distribution of �̂n, it is straightforward to extend

our results to the DBIT estimator of the unknown vector of coeÆcients. It is clear from

the functional form (3.14) that Æ = Æ(p(�)) is a continuous and monotonic function of �

and consequently we use the gradient of our estimator to approximate its limiting distribu-

tion. This technique is sometimes referred to as the "delta-method", and we summarize the

conclusions of its application in the next theorem.

Corollary 2. Let the appropriate assumptions hold. The DBIT estimator Æ has the follow-

ing limiting distribution

p
n(Æ(�̂n)� �0)

d�! N(0;�Æ)

where the asymptotic covariance matrix �Æ is equal to �
2Q�1.

Proof. See the Appendix.

In terms of limiting values, there is �rst order equivalence among the EL, EE and DBIT

estimators.

4.3 Asymptotic Tests

The issue of hypothesis testing is carried through based on the consistency and asymptotic

normality results derived above for the wald (wald, 1943), lagrange multiplier (rao, 1947),
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and the pseudo likelihood ratio (PLR) test. All test statistics share the same chi-squared

distribution with degrees of freedom under the null hypothesis equal to the number of re-

strictions. As is well known, the three tests are identical in limiting properties. However,

they di�er in �nite samples and are diÆcult to evaluate because of the functional forms.

Although all three tests are applicable, in the interest of space, we investigate the

properties of the restricted DBIT estimator Æ(�̂r) and the lagrange multiplier test. Estimates

of the con�dence interval for the unknown coeÆcients are then based on the duality property

of the test. Consider the following hypothesis,

R� = r (4.20)

or

R[X0 �P(�)]y � RÆ(�) = r (4.21)

where R is a j-dimensional vector of known constants, r is a (j � k) matrix of rank j � k

that restricts linear combinations of the unknown coeÆcients to equal to some scalar and

p(�) is both continuous and monotonic in �. we denote the restricted dbit estimator as

Æ(�̂r) where �̂r is the value which satis�es

Mn(�̂r) = sup
�2�

�
Mn(�) j RÆ(�) = r

	
(4.22)

and utilize the asymptotic results developed in sections 4.1 and 4.2. the main results are

summarized in the following theorem.

Theorem 3. Let the appropriate regularity conditions hold. Given the proposed restrictions

are correct, the restricted DBIT estimator �̂r de�ned by (4.22) has the following limiting
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distribution.

p
n(�̂r � �0) d�! N(0;�r)

with asymptotic covariance matrix equal to

�r = [A�1(I�B0(BA�1B)�1BA�1)]�2Q[A�1(I�B0(BA�1B0)�1BA�1)]0

where A = Q��0Q
0 and B = RQ��0. Then the corresponding Langrange Multiplier test is

of the form

LM = n�0r(BA
�1B0)[BA�1�2IA�1B0]�1(BA�1B0)�r

d�! �2j;0

where the unknown quantities Q and �2 can be replaced with 1
n
(X0X) and �̂2 without changing

the limiting distribution.

Proof. See the Appendix.

The reasoning behind the LM test described above is that given the restrictions are

valid, �̂r should approach the value that maximizes Mn(�). Consequently, the slope of

the maximal value function should nearly equal 0 at this value. In fact, from a constrained

optimization interpretation, the Lagrange multiplier measures the rate at which the maximal

value function is increased when the restriction RÆ(�) = r is relaxed. Therefore, the larger

is the discrepancy of �r from 0, the less plausible the null hypothesis becomes.

A slightly modi�ed version of the LM test is suggested by Rao (1948) which avoids

computation of the Lagrange multiplier in the test statistic. This approach recognizes that

under the null hypothesis, H0 : RÆ(�) = r, the FOC equation (A.25) of Appendix A implies
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that

@Mn(�)

@�

���� ^�r

=

�
R
@Æ(�)

@�

���� ^�r

�0
�r (4.23)

Replacing the �nite sample version of the quantity (Q��0�r) � B�r with the term on the

left hand side of equation (4.23) then gives us the alternative score form of the Lagrange

Multiplier test which is readily computed and has an identical asymptotic distribution.

From the results presented by Theorem 1 we can also conclude that the restricted DBIT

estimator of the unknown vector of coeÆcients follows a normal distribution as well. This

conclusion follows directly from application of the delta-method.

Corollary 3. Given the results of Theorem 3 hold, the restricted DBIT estimator Æ(�̂r) has

the limiting distribution,

p
n(Æ(�̂r)� Æ(�0)) d�! N(0;�Ær)

with the asymptotic covariance matrix equal to Q��0�r(Q��0)
0.

Proof. See the Appendix.

The pseudo-likelihood ratio test which is also applicable di�ers from the aforementioned

asymptotic tests in that it uses both restricted and unrestricted DBIT estimates of �. It is

based on the di�erence between the restricted and unrestricted values of the maximal value

function Mn(�) and can be shown to have identical limiting properties as the Wald and the

Lagrange Multiplier tests. As mentioned before, the �nite sample properties of the DBIT

estimator are diÆcult to analyze. Monte Carlo simulation does represent a practical method

to evaluate the �nite sample properties of the estimator and the powers of the discussed

tests, and this is the topic to which we turn.
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5 Finite Sample Results and Monte Carlo Evidence

We have noted that our estimator cannot be expressed in closed form and the optimal so-

lutions to the proposed estimator formulations are highly non-linear functions of the data.

As a consequence, �nite sample properties of our estimator are diÆcult to obtain analyti-

cally. In this section we investigate these �nite sample properties through the use of Monte

Carlo sampling experiments and compare the performance of our estimator to the LS, EL,

and a MOR-ridge estimator under the squared error loss measure for various levels of ill-

conditioning of the design matrix.

In terms of the sampling experiment, a design matrix X is created for levels of ill-

conditioning ranging from k(X0X) = 1 to 100 for a linear model with � = 4 parameters and

n = 10 observations. In order to create the (10 � 4) design matrix, coeÆcients are drawn

from an iid N(0; 1) pseudo-random number generator. This matrix is then appropriately

transformed according to the speci�c condition number, k(X0X) = �, by replacing each

characteristic root obtained through singular value decomposition of X = ULV0 by

a =

�r
2

1 + �
; 1; 1;

r
2�

1 + �

�0
(5.1)

such that kak2 = 4. The resulting design matrix Xn = ULaV
0 exhibits the property

that k(X0
nXn) = �, Belsley (1991). The vector of parameters is arbitrarily chosen to be

�0 = [2; 1;�3; 2]0 following the experimental design of Golan, Judge, and Miller (1996). The

noise component, ei, is generated from an iid N(0; 1) distribution from which the dependent

values are calculated by y = X�0 + e.

5.1 Sampling Experiments

In order to evaluate the sampling properties of the DBIT estimator, we make use of the

quadratic loss function (1.2). In particular, the performance of the DBIT estimator will be
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compared to the LS, EL, and MOR-ridge estimator, where ridge estimates are computed

using the optimal tuning parameter,k�, that minimizes an unbiased estimator of the risk

�(Æ(y; k)j�) = E ykXÆ(y; k) � X�k2. Various procedures exist for selecting the optimal

tuning parameter such as the simple, iterative, and generalized ridge regressor, but for

illustrative purposes we follow Beran (1998) and use the optimal k� which minimizes the

criterion

R̂ =
1

�

�X
i=1

[�̂2f 2i + (z2i � �̂2)(1� fi)
2] (5.2)

where zi is the ith element of z = U0y and U is obtained through singular value decompo-

sition of X. The element fi is derived from F = diag[l2i =(l
2
i + k)] where li is the ith singular

value of X.

In addition, we investigate the performance of an alternative formulation where we

replace the model consistency constraint (3.5) with

y = X(X0 �P)y + (In 
 y0)w (5.3)

which we refer to as the DBIT(D) estimator and consequently increase the number of con-

straints from k to n. The results of an illustrative sampling experiment that compares the

sampling performance of the DBIT estimator with its competitors are summarized in Ta-

ble 5.1. A graphical representation of the table is given in Figure 5.1. These results are

obtained using the GAMS optimization software for 5000 Monte Carlo trials and the above

various levels of ill-conditioning. Visual inspection of the results indicates that in accordance

with theory, the ML-LS estimator displays relatively poor sampling performance. The un-

bounded risk of the ML-LS estimator is virtually an increasing aÆne function of the degree

of ill-conditioning ranging from a value of 3.96 for k(X0X) = 1, close to its theoretical value

of 4, to a maximum of 52.46 for k(X0X) = 100. The evidence suggests that although LS es-
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Table 5.1: Empirical SEL: results based on 5000 Monte Carlo trials

k(X0X) LS,EL MOR-ridge DBIT(D) DBIT(M)

1 3.96279 4.18893 4.17322 3.96279
10 8.22531 5.28254 5.32828 4.87369
20 12.75875 6.77197 6.03561 5.38283
30 17.73376 9.13747 6.05134 5.87445
40 22.83802 10.28170 4.53039 4.07715
50 27.36695 12.59009 6.68919 5.91275
60 33.56641 13.11964 5.29602 4.83144
70 39.40164 15.99187 4.23836 3.86507
80 43.18114 16.66875 4.10232 3.77469
90 47.47539 19.44977 5.90707 5.76781
100 52.46118 20.88587 5.66741 5.02102

timates are on average unbiased, the increase in variance of these estimates due to problems

of an ill-conditioned design matrix causes the overall sampling performance to be poor.

Observing the performance of the ridge regressor from Figure 5.1, we see that adding

a small scalar k to each diagonal element of the matrix (X0X) causes a signi�cant im-

provement in performance for k(X0X) > 1. The reason is that it dampens the e�ect of

inverting eigenvalues close to zero by adding this small amount and hence reducing the value

of the diagonal elements of the inverted matrix. Consequently the risk is still unbounded

as R(Ær(y; k)j�0) 2 [1;1) but increases at a lower constant rate than the risk of the LS

estimator. Comparing variants of our estimator with the performance of other conventional

estimators, we observe that both the moment and data formulation perform quite well com-

pared to LS and ridge estimation.

While not a proof of the small sample superiority, these empirical risk outcomes suggest

that the DBIT(M) estimator strictly dominates the LS, ridge, and DBIT(D) estimators.

While both DBIT(M) and DBIT(D) perform well, we note the moment formulation produces

more biased but more eÆcient estimates than the data formulation. The empirical risk under
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Figure 5.1: Comparison of performance in terms of SEL of selected estimators with DBIT
regressors under various levels of ill-conditioning.

SEL for the moment variant ranges from a minimum of 3.96 for k(X0X) = 1 to a maximum

around 6 for k(X0X) 2 [1; 100]. The risk for DBIT(M) under condition number 1 is identical

to the LS risk and suggests that for the orthonormal linear model, our estimates are identical

to LS.

As an additional measure for estimator comparison, we use the squared error prediction

loss (SEPL) of the form

L(Æ(y)j�) = kXÆ(y)�X�k2 (5.4)

which is a weighted loss measure of (1.2). Comparing our sampling results we observe

from Figure 5.2 that the DBIT(M) estimator strictly dominates the LS, EL and DBIT(D)

estimator for the range of ill-conditioning. We note that the empirical SEPL for k(X0X) = 1
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Figure 5.2: Comparison of performance in terms of SEPL of selected estimators with DBIT
regressors under various levels of ill-conditioning.

are identical to those listed in Table 5.1 clearly because both measures are identical since

X0X = Ik. One surprising result however is that the empirical SEPL functions for the

DBIT(D) and LS cross, indicating that LS performs better for the orthonormal linear model.

5.2 Empirical Distribution of Æ2

Under the framework of linear model (1.1), we do not state assumptions about the underlying

data generating process but we can still refer to the results of Section 4 to derive limiting

properties of DBIT estimates. Figure 5.3 displays the empirical density DBIT(M) estimate Æ2

of �2 = 1 for the selected estimators when k(X0X) = 50 where the Gaussian kernel is selected

with a bandwidth b = 1:3. We observe that the LS estimator is unbiased as its density is
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Figure 5.3: Empirical distribution of Æ2 when k(X
0X) = 50

centered on the true coeÆcient �2 = 1 but at the expense of a large variance. Furthermore

the mean and variance are 1.02883 and 6.48985, compared in contrast to DBIT(M) values

of 1.46458 and 1.33245 respectively. The bias of our DBIT estimator is clearly observed

from the center of its distribution to the left of 1, while the smaller variance allows it to

outperform the LS and EL under SEL.

As the degree of ill-conditioning increases, the variance of the LS estimator increases

dramatically. The LS estimate is centered on the true value of 1, while the DBIT estimates

are clearly biased but yield a considerable reduction in variance. Speci�cally, DBIT(M)

has a mean value of 1.46458 compared to the LS estimate of 1.02833, yet in contrast the

variances are 1.33245 compared to 6.48985 for LS. For a condition number 90, these e�ects are

increased as the variance of the LS estimate explodes while the DBIT(M) estimate remains

fairly accurate.
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5.3 Empirical Distribution of the PLR Test Statistic

Figure 5.4 displays the empirical distribution of the pseudo-likelihood ratio (PLR) test statis-

tic for the simple hypothesis H0 :
Pk

j=1 �j = 2. The test statistic is computed for 1000 Monte

Carlo trials following the experimental design described in the introduction to this section

and shows the empirical distribution for selected sample sizes n = 10; 20; and 30. In compar-

ison to the chi-square(1) probability distribution, it is evident that the test statistic performs

reasonably well in small samples. There appears to be a bias towards accepting the null hy-

PLR

f(
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0
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0
.5

1
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Chi-square(1)

Figure 5.4: Empirical distribution of the pseudo-likelihood ratio (PLR) test statistic for
sample sizes n=10,20, and 30.

pothesis indicated by larger mass of the distributions concentrated around the origin which

becomes smaller as the sample size increases, a result in agreement with the limiting results.

The tails of the distributions also thicken to account for the increase in mass. In addi-

tion, it should be noted that the distortions observed in the left tails of the three empirical
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distributions are due to selection of the Gaussian kernel in the density estimates.

5.4 Non-normal Disturbances

In order to gauge the robustness of the DBIT estimator under non-normal disturbances, we

present sampling results for two alternative probability distributions. We investigate the

sampling performance for the before examined set of estimators under the �2(4) and t(3)

distributions. The experimental design remains identical where n = 10, k = 4 and the data

is generated according to the previous methods for 5000 Monte Carlo trials. It should be

noted that the errors are drawn from an iid N(0; 1) pseudo random number generator and

then transformed to the appropriate distribution since the GAMS optimization package does

not provide a pseudo random number generator for the chi-square and t-distribution. The

chi-square distributed errors are centered by subtracting the mean of 4 from each term so

that they may have negative values. Also, they are standardized to have unit variances by

dividing values with the standard deviation
p
8 so that the sampling results are comparable

to the experiments performed in the preceding sections. The t-distributed errors are also

standardized to have unit variances but in this case the standard deviation is the square root

of the degrees of freedom parameter or simply
p
3.

Figures 5.5 and 5.6 graphically summarize the information presented in Tables 5.2 and

5.3. Estimator performance is measured in terms of the SEL criterion and the results are

not unlike those produced using standard normal errors. The SEL of the LS estimator under

�2(4) errors increases with degree of ill-conditioning at a fairly constant rate of increase and

is very similar to the results displayed in Table 5.1. The ridge regressor performs slightly

worse under �2(4) errors than before while the rate of increase is nearly identical. Inspecting

Figure 5.6 more closely, we can observe the rate of increase of the LS empirical SEL function

is not constant as with standard normal errors but varies at several points over the range

of ill-conditioning due to outlying values in thicker tails produced with t-distributed errors.
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Table 5.2: Comparative performance of DBIT and selected regressors under SEL with stan-
dardized and centered �2(4) disturbances

k(X0X) LS,EL Ridge DBIT(M)

1 3.89360 4.46875 3.89360
10 7.96059 7.28096 4.72086
20 12.77414 9.50738 5.17080
30 17.75777 10.77814 5.84282
40 23.03823 11.98120 4.11402
50 27.42179 12.75590 5.51387
60 33.05799 13.80714 5.01966
70 36.81202 14.82771 3.83637
80 43.49648 16.09723 3.77920
90 47.34990 17.01336 5.72556
100 52.26859 17.41067 5.01862

Table 5.3: Comparative performance of DBIT and selected regressors under SEL with stan-
dardized and centered t(3) disturbances

k(X0X) LS,EL Ridge DBIT(M)

1 4.20994 3.96302 4.20994
10 8.88392 6.58930 5.42143
20 13.09763 9.09495 5.24437
30 22.51305 14.13076 6.22545
40 22.07754 12.24956 4.13267
50 30.95490 13.29359 5.73645
60 36.09374 15.82557 4.92293
70 43.58555 17.02269 4.14288
80 47.60230 15.11180 4.08517
90 56.03513 16.63191 6.22665
100 55.23973 19.01172 5.18704
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Figure 5.5: Comparison of performance of selected estimators with DBIT regressor under
�2(4) distributed errors.
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Figure 5.6: Comparison of performance of selected estimators with DBIT regressor under
t(3) distributed errors.
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When outcome data are not well behaved and there are for example outliers, perhaps it

would be better to use as a moment constraint, say in the location and scale case, the medianPn
i�1 pisgn(yi��) = 0, where sgn(.) is the sign function. One reason DBIT estimation works

well is that under high condition numbers we don't have the outliers that LS has to deal with

because of a near singular (X0X). The ridge estimator does have a smooth empirical SEL

function. These results suggest that the DBIT method produces robust estimates under at

least the alternative error distributions examined in this section.

6 Concluding Remarks

In this paper we have been concerned in the case of the general linear sampling model

with the question of "How to reason with a sample of Data?" In this context, we have

demonstrated an extremum non-linear inversion procedure that permits us to avoid making

some of the model assumptions that we may not wish to make and to cope with the problem

of an ill-conditioned design matrix. Since in practice statistical probability models are often

ill-posed-ill conditioned, and information about the sample is often represented in terms of

fragmented moment relations, we have presented a basis for specifying the linear model where

Kullback-Leibler information theoretic procedures may be used to recover the unknowns.

As a result we demonstrate information theoretic estimation methods that (i) permit weak

distributional assumptions, (ii) are 
exible in terms of introducing sample and nonsample

information, (iii) are appropriate for both well and ill-conditioned problems, (iv) focuses

on both estimation precision and prediction objectives, (v) re
ects a multiple shrinkage

alternative that is data based, (vi) presents data based alternatives to formulations where

the supports for the non-observables are based on nonsample information, and (vii) appears

to be robust relative to underlying sampling processes that involve severe outliers.

When sample information is re
ected in a structural constraint in the form (3.3) and
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the design matrix for the sampling model is ill-conditioned, the DBIT estimators appear

to o�er a robust alternative to ML, EL and LS procedures that are based on unbiased

estimating functions. The DBIT estimators also o�er a data based alternative to penalized

likelihood, MOR-ridge, and principal components type estimators. In addition, the DBIT

estimator solves the problem of bounds, spacing, and number of support spaces for p and w

in generalized maximum entropy (GME) estimators (Golan, Judge, and Miller, 1996) for the

case of an ill-posed inverse problem with noise. The proposed formulation and the resulting

estimator achieves asymptotic results analogous to those used with parametric likelihoods

while also demonstrating �nite sample eÆciency gains. Applicability of the formulation to a

range of linear model sampling processes raises the possibility of a generalized moment based

approach to estimation and inference. On a �nal note, we can give the DBIT estimator

a multiple shrinkage interpretation (George, 1986) in that the support for each unknown

observable contains n target points for which we seek an optimal linear combination under

the K-L distance. Consequently we may �nd ways to scale the dispersion of these empirical

target points based on some objective criterion which could result in improved �nite sample

performance.
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Appendix A

Proof of Lemma 4.1

The linear statistical model (1.1) can be expressed as,

X0y

n
=

�
X0X

n

�
�o +

X0e

n
(A.1)

By assumption 1.2 we have,

�
X0X

n

�
�! Q (A.2)

and from assumption 1.1 it follows that for all k, E [x0ke] = 0 and E [(x0ke)
2] = �2(x0kxk).

Because Q is �nite valued, there exists a number M1 such that

P [n�1jx0kej �M2] � �2(x0kxk)

n2M2
2

� �2M1

nM2
2

(A.3)

for any M2 > 0 by Chebychev's inequality. Hence we obtain the well-known result that

X0e = op(n), (Judge et al, 1985). It follows,

X0y

n

p�! Q�0 (A.4)

and

�
y0X

n

�
�

p�! �00Q
0� (A.5)
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Proof of Lemma 4.2

The second term of the maximal value function Mn(�) in Lemma 4.1 is
P�

k=1 log(
k(�))

where


k(�) =
nX

m=1

qkm exp

� nX
i=1

�X
l=1

�l

�
xilxik
n

�
xmkym

�
(A.6)

Since 1
n
(X0X) ! Q, the sum

Pn
i=1

P�
l=1 �l

1
n
(xilxik) approaches the limit

P�
l=1Qlk�l as n

goes to 1. Taking the limit of the above expression we have,

lim
n!1


k(�) =
1X

m=1

qkm exp

�
xmkym

�X
l=1

Qlk�l

�
(A.7)

Likewise, the third term of Mn(�) is
Pn

i=1 log(	i(�)) where the normalization factor in its

explicit form is formulated as

	i(�) =
nX

j=1

uij exp

�
1

n

�X
l=1

�lxilyj

�
(A.8)

which by application of Slutsky's theorem in the limit becomes

plim 	i(�) =
1X
j=1

uij expf0g = 1 (A.9)

and

plim
1X
i=1

log(	i(�)) = 0 (A.10)
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Combining the results of Lemma 4.2 with equations (A.7) and (A.10) we can conclude

Mn(�)
p�! �00Q

0��
�X

k=1

log

� 1X
m=1

qkm exp

�
xmkym

�X
l=1

Qlk�l

��
�M(�) (A.11)

Next we shall show that M(�) attains a unique global maximum at �0. It can be demon-

strated that Mn(�) is strictly concave which remains true for the its limiting function and

implies that the maximum will be uniqe and global. We can observe thatM(�) is continuous

and twice di�erentiable with the gradient function,

@M(�)

@�
= �00Q

0 �
�X

k=1

�
1P1

m=1 qkm exp(:)

1X
m=1

qkm exp(:)xmkymQ
0
k

�

= �00Q
0 �

�X
k=1

1X
m=1

�
qkm exp(:)P1

m=1 qkm exp(:)

�
xmkymQ

0
k

� �00Q0 �
�X

k=1

1X
m=1

pkm(�)xmkymQ
0
k (A.12)

For notation purposes, we revert to Qk and xi to indicate the kth column vector of Q and

the ith row vector of the design matrix. Evaluating the Jacobian at the true parameter �0

it becomes evident that the limiting function is globally maximized.

@M(�)

@�

???
�0

= �00Q
0 �

�X
k=1

1X
m=1

pkm(�0)xmkymQ
0
k

� �00Q0 �
�X

k=1

�0(k)Q
0
k

� �00Q0 � �00Q0 = 0 (A.13)

which gives us the desired result.
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Proof of Corollary 1

For � 2 � we de�ne fn(�) dependent on the sample size as

fn(�) =
nX

m=1


xmkympkm(�) (A.14)

then, as n!1, let

lim
n!1

fn(�) =
1X

m=1


xmkympkm(�) � f(�) (A.15)

Equation (3.14) shows that f is uniformly continuous for all �. By de�nition of continuity,

for every � > 0 we can �nd � such that

k�̂n � �0k < � =) kf(�̂n)� f(�0)k < � (A.16)

and it follows that

P [k�̂n � �0k < �] � P [kf(�̂n)� f(�0)k < �] (A.17)

By Theorem 1, we have consistency of �̂n and limn!1 P [k�̂n � �0k < �] = 1 which implies

that limn!1 P [jf(�̂n)� f(�0)j < �] = 1 or equivalently limn!1 P [jÆk � �0(k)j < �] = 1 for

all k.
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Proof of Corollary 2

Referring to Section A.1.2 of van Akkeren (1999), we can express the sth partial derivative

of the kth estimate as

@Æk(�)

@�s
=

nX
m=1

xkmym
@pkm
@�s

(A.18)

=
nX
i=1

�
xisxik
n

�� nX
m=1

(xkmym)
2pkm � (

nX
m=1

xkmympkm)
2

�
8 k; s (A.19)

In matrix notation, the matrix of partial derivatives of Æ(�) becomes

@Æ(�)

@�
=

�
X0X

n

�
�(�) (A.20)

where

plim
@Æ(�)

@�

���� ^�n

= Q ��0 � �: (A.21)

Then we combine all parts to show that the asymptotic distribution of Æ(�̂n) de�ned by

equations (3.4)-(3.7) is characterized by,

p
n(Æ(�̂n)� �0)

d�!N(0;���0

�0) (A.22)

�N(0; �2Q�1) (A.23)

which gives us the required result of the theorem.
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Proof of Theorem 3

The constrained optimization problem formulated in equation (4.22) is solved using the usual

method of Lagrange multipliers. Accordingly, the Lagrangian function

L =Mn(�) + �
0(r�RÆ(�)) (A.24)

yields the following optimality conditions

@L
@�

=
@Mn(�)

@�
�
�
R
@Æ(�)

@�

�0
� = 0 (A.25)

@L
@�

= r�RÆ(�) = 0: (A.26)

Assuming H0 : RÆ(�) = r is true, we next evaluate the FOCs at solutions (�̂r;�r) and

expand @Mn(�)
@�

around �0 to obtain

@Mn(�)

@�

���� ^�r

=
@Mn(�)

@�

����
�0

+
@2Mn(�)

@�@�0

����
�

�

(�̂r � �0): (A.27)

For equation (A.27) to hold with equality, the mean-value theorem states that the (k � 1)

vector �� is between �̂r and �0. Also we have

R[Æ(�̂r)� Æ(�0)] = 0 (A.28)

where because of continuity of Æ(�), the mean-value theorem allows us to express,

Æ(�̂r)� Æ(�0) = @Æ(�)

@�

���
�

�
(�̂r � �0): (A.29)
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Consequently, we rewrite the optimality conditions (A.25) and (A.26) as the following set of

equations.

@L
@�

=
@Mn(�)

@�

����
�0

+
@2Mn(�)

@�@�0

����
�

�

(�̂r � �0)�
�
R
@Æ(�)

@�

���� ^�r

�0
�r = 0 (A.30)

@L
@�

= R
@Æ(�)

@�

���
�

�
(�̂r � �0) = 0 (A.31)

Multiplying both equations (A.30) and (A.31) by
p
n, we can arrange the above system of

equations in the following partitioned matrix form

2
64 �@2Mn(�)

@�@�
0

���
�

�

�
R

@Æ(�)
@�

��� ^�r

�0
R

@Æ(�)
@�

���
�

�
0

3
75
2
4 p

n(�̂r � �0)
p
n�r

3
5 =

2
64
p
n@Mn(�)

@�

���
�0

0

3
75 : (A.32)

Under the null hypothesis H0 : RÆ(�) = r, the estimate �̂r converges in probability to

�0 since we have shown that �̂n
p�! �0 by Theorem 1, therefore @Æ(�)

@�

��� ^�r

p�! Q��0

by

equation (A.21) of the proof to Corollary 2. Furthermore, we have derived in the previous

section the following limiting results; i)plim � @2Mn(�)
@�@�

0

���
�

�
= Q��0

Q0, see result (4.17);

ii)
p
n@Mn(�)

@�

���
�0

d�! N(0; �2Q) from result (4.15). Then since convergence in probability

implies convergence in distribution, we can represent the limiting properties of (A.32) using

the following system of partitioned matrices.

2
4 A B0

B 0

3
5
2
4 p

n(�̂r � �0)
p
n�r

3
5 =

2
4 Z

0

3
5 (A.33)

For notation purposes we let A � Q��0

Q0 and B = RQ��0 let Z be a multivariate normal

random variable with mean 0 and covariances equal to �2Q. To solve for the variables of

interest we refer to the rules of partitioned matrix inversion (Rao and Toutenburg, 1995)
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which allows us to obtain our next result.

2
4 p

n(�̂r � �0)
p
n�r

3
5 =

2
4 A�1(I�B0(BA�1B0)�1BA�1); A�1B0(BA�1B0)�1

(BA�1B0)�1BA�1; �(BA�1B0)�1

3
5
2
4 Z

0

3
5 (A.34)

Two conclusions can be immediately drawn from the above manipulation. First we can

observe that,

p
n(�̂r � �0) LD

= A�1(I�B0(BA�1B0)�1BA�1]Z: (A.35)

which implies that

p
n(�̂r)� �0) d�! N(0;�r) (A.36)

where

�r = [A�1(I�B0(BA�1B)�1BA�1)]�2Q[A�1(I�B0(BA�1B0)�1BA�1)]0 (A.37)

In addition, we observe from equation (A.34) that

p
n�r

LD
= (BA�1B0)�1BA�1Z (A.38)

which represents linear combinations of iid random variables, hence

p
n�r

A� N(0; (BA�1B0)�1BA�1�2QA�1B0(BA�1B0)�1) (A.39)
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which can be expressed as

[(BA�1B0)�1BA�1�2QA�1B(BA�1B0)�1]�1=2
p
n�r

A� N(0; Ij) (A.40)

and �nally it follows,

n�0r[(BA
�1B0)�1BA�1�2QA�1B(BA�1B0)�1]�1�r

A� �2j;0 (A.41)

which gives the distribution of the LM test proposed by the theorem.

Proof of Corollary 3

From the proof to Corollary 2, equation (A.21) states

@Æ(�)

@�
=

�
X0X

n

�
�(�) (A.42)

such that given the restrictions are correct, we have

plim
@Æ(�)

@�

���� ^�r

= Q��0 : (A.43)

Then, straightforward application of the delta-method gives

p
n(Æ(�̂r)� Æ(�0)) d�! N(0; (Q��0)�r(Q��0)

0) (A.44)
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