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Abstract

To understand the impact of science and engineering innovations on economic growth requires
relating discoveries to products, and identifying the scientists and engineers who are responsible for the
knowledge transfer. Studies reliant on geographic proximity alone can show only that economic activity
varies positively with the amount of research being done at a university. [David (1992), Nelson and Romer
(1996), Jaffe (1989,93)]. These “geographically localized knowledge spillovers” have proved unable to
explain what it is about research universities that is crucial for their local economic impact (training, the
research findings?) and, therefore, are unconvincing both to policy makers and the public.

This paper analyses the spillover mechanism identifying its main components by analyzing the
effect of university-based star scientists through explicit and implicit ties, and the effect of other neighbor
firms, on the performance of semiconductor enterprises measured with patents. Explicit ties are modeled by
the full and part-time job mobility of scientists located in universities; and implicit ties, by the presence of
positive externalities or spillover effects to the firms of untied scientists at Universities in the same
economic area. Specifically, this study examines the Silicon Valley and Route 128 cases in detail
identifying the differences and similarities between these two major semiconductor regions in their spillover
mechanisms.

Previous research on high-technology industries has demonstrated the importance of geographically
localized “knowledge spillovers” by building specific links between university scientists and firms and
estimating the local effects of different types of links. This research goes an step forward, by not only
measuring the effect of University research through the direct ties to firms (Zucker, Darby, Armstrong;
1998); but also measuring the importance of the inside industry R&D spillovers in the growth of the region.

JEL: 012, 034,033, O32, L20,L22, L20, L63
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1. Introduction

When analyzing the development of high-technological sectors there is a common pattern

observed: the regional concentration of Industrial sectors. Explanations go from the presence of

big cities [Vernon, Henderson, Ari Kuncoro and Matt Turner (1995)], to the presence of top

quality Universities, and therefore the presence of knowledge spillovers (Nancy Dorfman, 1983;

Daniel Shimshoni, 1966; P.Teplitz, 1965, Jaffe, 1986 and AER 1989). Even though, there had

been no effort in trying to model the spillover mechanism.

To understand the impact of science and engineering innovations on economic growth

requires relating discoveries to products, and identifying the scientists and engineers who are

responsible for the knowledge transfer. Studies reliant on geographic proximity alone can show

only that economic activity varies positively with the amount of research being done at a

university [David (1992), Nelson and Romer (1996), Jaffe (1989,93), Zucker, Darby, Brewer

(1998)]. These “geographically localized knowledge spillovers” have proved unable to explain

how and what it is about research in universities that is crucial for their local economic impact

(training, the research findings?) and, therefore, are unconvincing both to policy makers and the

public.

Previous research on high-technology industries has demonstrated the importance of

geographically local “knowledge spillovers”. Knowledge spillovers are central to the Romer

(1986), Lucas (1988), Aghion and Howitt (1992), and Grossman and Helpman (1992) growth

models.  Compatible with these models of economic growth, spatial spillovers between university

research and the high technology sector have already been analyzed in the familiar Griliches-Jaffe

knowledge production function [Jaffe (1989)].

Other economic growth models have taken the specific form of external learning by doing,

as in Lucas (1988, 1993), Stokey (1988), and Young (1991, 1993). Especially relevant is Lucas'
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(1993) conclusion that learning by doing is a prime candidate to explain the incredible growth

observed, for example, in South Korea over the last three decades.

Compatible with these economic models of growth, recent evidence on the process of

learning, specifically through the working relationships of scientists from universities to firms, has

only recently been examined for biotechnology [Zucker and Darby 1996; Zucker, Darby and

Armstrong (1997); see also Zucker, Darby and Brewer (1997)].  The first two of these papers

provide evidence that "spillovers" appear to explain the transfer process only when the variables

that measure working relations between university and firm scientists are absent, thus providing

empirical evidence that a market relationship between university scientists and firms explains the

observed technology transfer.

In this research we plan to extend the strong results obtained in Zucker, Darby, and

Brewer (1998) and Zucker, Darby and Armstrong (1998) to the semiconductor sector and go a

step forward. It will not only measure the effect of university research through the direct ties to

firms; but also measures the importance in the growth of the region of the indirect effect by the

inside industry R&D spillovers. It will identify local knowledge spillovers, and actually decompose

them in three different sources of spillovers. First, specific links of stars to the research done and

products developed and manufactured in commercial enterprises; second, indirect effects in the

industry just because of the closeness to the universities and not acquainted by the specific links.

Finally, we will also identify the presence of inside industry spillovers by identifying the effects of

neighbor firms over the performance of a specific company.

The major focus will be therefore on unwrapping and detailing the components of the

spillover mechanism to firms in the semiconductor industry, comparing these relationships in

Silicon Valley and Route 128.1 While case studies already document the important role of

                                                       
1 Other advantages of working with semiconductors and this two specific regions are: their innovation is mostly
with common origins in university-based research (MIT and Stanford); there are two main periods of start-ups:
early 1970’s and early 1980’s; two different innovation and diffusion strategies that clearly demonstrates that
regions industrial strength depends on more than just the proximity of its firms.
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universities in both areas2, these two areas developed different trajectories according to systematic

case studies conducted by Saxenian (1996). She argues that Silicon Valley's lack of a prior

industrial history and its distance from established economic and political institutions facilitated

experimentation with novel and productive relationships, leading to more open and reciprocal ties

between Stanford and local industry than existed in the Route 128 region.

Examining actual working relationships between university scientists and firms can test

this difference, and in so doing, shed light on the issue of the importance of these kinds of

relationships in technology transfer.  In other words, the differences between Silicon Valley and

Route 128 constitute a natural experiment, and thus permit a direct comparison of the effects of

the kinds and amounts of working relationships on technology transfer to new firms that grew up

in both regions.  The effects of these relationships on consequent success of the firms, and hence

on regional development, will also be examined, following the techniques developed in Zucker,

Darby and Armstrong (1997). Additionally, we will go a step forward, by also measuring the

importance of the inside industry R&D spillovers in the success of companies.

In the first section, a detailed explanation of the theoretical model behind this paper is

outlined. Then a detailed explanation of the estimation methodology and how the explicit and

implicit ties are identified and the econometric techniques used. Section four describes the data

collected and how this research exploits the requirement that patents cite relevant prior patents

and scientific literature to develop a network of linkages between the most prominent scientists

and firms for the semiconductor sector. Finally the empirical findings are detailed.

2. The Model

The timing of innovation plays a crucial role in the marketplace. There are two reasons

why [Shy, (1995)], in most cases, a firm that is first to discover a new technology or a new

product gains an advantage over competing firms: First, the firm is eligible to obtain a patent

                                                       
2 See Jaffe, (1989).
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protection that would result in earning monopoly profits for several years. Second, consumers

associate the innovator with a higher-quality producer and will therefore be willing to pay a higher

amount for the brand associated with the innovator.

Given the significance of becoming the first to discover, firms invest large sums in R&D,

knowing that not discovering or discovering too late may result in a net loss from the innovation

process. In this section we try to model the behavior on the R&D decision process of firms and

how the spillover mechanism works to be able to unwrap and detail the main elements inside the

spillover mechanism.

Modeling the Expenditures in R&D and the Spillover Mechanism

In this section, we do not address problems such as how firms manage to implicitly or

explicitly coordinate their research efforts and how the research information is shared by the

participating firms [see Combs (1993) and Gandal and Scotchmer (1993)]. Instead, we analyze

how firms determine their research efforts, under cooperation and no cooperation, and taking in

to consideration that they compete in the final good’s market after the research is completed. This

problem has been the subject of many papers [see Choi (1993); d’Aspremont and Jacqemin

(1988); Kamien, Mullerm and Zang (1992); Katz (1986), Katz and Ordover (1990)].

Assuming firms are engaged in a Cournot quantity game in a market for a homogenous

product, where the demand function is given by p=100-Q. We denote by f(xi ) the amount of

R&D undertaken by firm i, i=1,2, and by ci(x1,x2) the unit production cost of firm i, which is

assumed to be a function of the R&D investment levels of both firms, formally, let:

c x x f x f x j ii i j( , ) ( ) ( , , ,1 2 50 12 0≡ − − ≠ = ≥β β)  i (1)
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That is, the unit production cost of each firm declines with the R&D of both firms, where

the parameter β  measures the effect of firm j’s R&D level on the unit production cost of firm i.

Formally we say that R&D technologies exhibit (positive) spillover effects if β >0. That is,

if β >0, the R&D of each firm reduces the unit cost of both firms. For example, spillover effects

occur when some discoveries are made public during the innovation process (some secrets are not

kept),3 or when there is share of information as occur in Silicon Valley [see Saxenian (1996)].

Also, this positive externality can emerge from the labs investing in infrastructure or from

research institutes and universities that benefit all other firms as well [see Jaffe (1986) for

empirical evidence], to capture this effect we define the f(xi) function. The amount of R&D firm i

will invest is a function of direct investment in R&D (e) as well as it will decline with the presence

of positive spillovers from the universities around (u).  Therefore f(xi) can be expressed as:

x e ui = + φ φ,   > 0 (2)

where e refers to real cost saving R&D expenditures by the firms which could include investments

in research labs as in human capital, and u is the investment in R&D by universities in the same

region, where if φ > 0  there will be positive spillovers from the universities. At the same time this

university positive spillovers will affect the spillovers from firm j through its f(xj) function.

It is important to mention that given it is difficult to identify the magnitude of e it is

normally measured with error, attributing it as part of the spillovers a company receives.

Therefore the spillover mechanism can be open in two major sources, the effect from

universities and the effect from other firms, and can be expressed in the following equation:

                                                       
3 Assuming β >0 implies that R&D exhibits only positive spillover effects. However, note that in some

cases β  can be negative if the R&D of a firm involves vandalism activities against competing firms, such as radar

jamming or spreading false information and computer viruses.
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c x x e u f x j ii j( , ) [ ] ( , , , ,1 2 50 12 0 0≡ − + − ≠ = ≥ >φ β β φ)  i (3)

Finally, to close the model we need to assume that R&D is costly to firms. Formally,

denote TC xi i( ) the cost (for firm i) of operating an R&D lab at a research level of xi , and that

research labs operate under decreasing return to scale. Formally,

TC x
x

i i
i( )

( )
=

2

2
(4)

The decreasing return to scale assumption implies that the cost per unit of R&D increases

with the size of the lab. That is, higher R&D levels require proportionally higher cost of lab

operation. This assumption heavily affects the result. If labs were to operate under increasing

returns (say, by having to pay a high fixed cost for the construction of the lab), firms would

always benefit from operating only a single lab (that serves both firms) when they are allowed to

cooperate in R&D.

The objective therefore of our empirical application will be to try to model the importance

of the positive spillover effect from other firms (β ) and the spillover effect from universities ( φ ).

As well, we will try to identify the magnitude of e through the investment the companies do in

human capital. The next section will detail the methodology and the econometric model to be able

to attain this objective.

3. Methodology and the Econometric Model

The methodology followed can be divided in two main stages. The first, which is part of

joint work with Zucker and Darby, consist in identifying the top scientists (stars) and the
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identification of their relationship with firms and how important they are in explaining the birth of

new semiconductor firms. With this purpose, we will do the analysis for the whole U.S., and once

we identify the star scientists and validate their importance we will concentrate on the spillover

analysis for our two regions of interest: Silicon Valley and Route 128. In these two regions we

will measure the effects of the universities on the region by the decomposition of the local

spillovers in three major components: direct links effect, indirect effects of universities in the

region, and inside industry spillovers.

To identify the top scientists as well as the ties to firms, this research exploits the

requirement that patents cite relevant prior patents and scientific literature. This information is

used to identify the citations to scientist that had been inventors of a semiconductor patent. From

the citations counts the most cited scientists can be identified as the star scientists as detailed in

section 4, where the data is described.

Additionally, by looking at the information of their affiliations, their co-inventors

affiliations, and the institutions to which this patents are assigned, it allows to develop a network

of linkages between the most prominent scientists and firms for the semiconductor sector.

To measure the effects of the university to the semiconductor industry and to the region

the following successive stages of estimation are developed which allow to decompose and to

identify the magnitude of what normally had been referred as local spillovers. In the first stage the

work done by Zucker, Darby, & Armstrong (1997) is followed, to examine the effect of

university-based scientists on one measures of performance of the semiconductor industry:

number of patents granted to semiconductor manufacturing discoveries by a firm.

After identifying the direct effects of universities through specific links to firms we will try

to measure the local geographic effect of neighbor firms to the semiconductor industry

introducing several alternatives to Jaffe’s(1989) indicators. Specifically we will identify the effect

of neighbor firms in a spatial econometric approach [see: Anselin(1988,1990), and Anselin,

Varga, Acs (1996)] in trying to formalize the spatial extent of the geographic spillovers not
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captured by the direct ties, by means of the so-called spatial lag variables. These variables capture

the research activities in concentric rings within the 3 digit zipcode sub-regions. Specifically we

will explicitly consider the potential for spatial autocorrelation4 by both testing for the presence of

spatial effects and by implementing models that incorporate it as a way of measuring this indirect

spillover effect from other firms.

The Econometric Model

To measure the effects of the universities to the semiconductor industry and to the region

the following successive stages of estimation will be carried:

A. Birth equation:

In this stage, following Zucker, Darby and Brewer(1998), we will model the birth of new

semiconductor firms for the whole U.S. to validate the importance star scientists on this industry,

the estimation equation can be expressed as follows:

Y AStars Ventcap Univ Zi t i t i t i t i t i t, , , , , ,= + + + + +α β β β β ε0 1 2 3 4    (5)

where Yi,t is the number of firm births in region i in year t, AStarsi,t is the number of active star

scientists in region i and year t. A star scientists will be active if she/he was cited by any

semiconductor patent in the current year. Ventcapi,t is the total number of eligible venture capital

firms in region i in year t. Univ i,t consist of two variables that  measure the presence of university

R&D in the region: number of top quality universities in the region i and year t, and number of

scientists in all semiconductor relevant department in BEA area i supported by a research grant

(see section 4 for details). Finally, Z i,t  are variables to control for regional effects, as

macroeconomic variables for the region.

                                                       
4 Spatial autocorrelation says that what it is observed in one place is in part determined by what is occurring in the other spatial locations.
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B. Unwrapping the Spillover Mechanisms

Following our theoretical framework, in this section we will try to identify the direct

investment of companies in human capital (e), as well as the spillover effect from universities ( φ ),

and the spillover effect from firms (β ). With this objective we will carry an analysis for two of the

major areas for the semiconductor industry: Silicon Valley and Route 128. At the same time, we

will try to identify empirically the differences in the spillover process between these two regions.

This stage will consist mainly of two estimations, the first one will identify the direct and indirect

links of star scientists, and the second one will model the inside industry effect by identifying the

effect over the performance of a company of  star scientists in neighbor companies.

B.1. Identifying Direct Link Effects:

In this stage we measure the effect of university based scientists one measure of

performance [Zucker, Darby & Armstrong (1998)]: number of patents granted in manufacturing

of semiconductors for company i.. The equation to be estimated can be expressed as following:

Performance UntiedStars TiedStars Zi t i t i t i t j t, , , , ,= + + + +− −α β β β ε0 1 1 2 1 3             (6)

where i refers to the specific firm, and t refers to the specific year.  Untied Stars are patent

weighted stars that report a university or a research institute as the assignee of the patent and

have no formal relationship with the firm. On the other hand, TiedSars are patent weighted stars

in which the assignee is a firm. Finally, Z represents the age and age square of the firm, as a

control experience of the firm in the semiconductor industry.

B.2. Indirect effects: Inside Industry effect

Here the dependence from the neighbor firms will be measured. Expressing the model

above in matrix form and including the neighbor effect:
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Performance W tiedStars UntiedStars TiedStars Z= + ⋅ + + + +α ρ β β β ε1 2 3          (7)

For N firms observed, Wi is the ith row of an (N*N) matrix W that assigns to each firm its

neighbors. The W used here can be characterized: W={wij} such that wij=1 if i and j are

neighbors, wij=0 otherwise, and wii=0 for all i. The rows of W are then normalized such that each

observations’ neighbors have the same amount of influence, that is wij
j

=∑ 1 , for all i. In addition

it will be assumed that  each neighbor of a given firm carries equal weight, wij= wik for non-zero

elements (neighbors) k and j for firm i. If more information were available about the amount of

influence each firm yields, this could be incorporated into the W matrix [regarding the different

structures, see Anselin (1988)]. W.TiedStars can be considered as a weighted average of the effect

of tied stars at “neighborhood” locations.

4. Database Development

This research consists mainly of five databases. First, the patent database including issue

date, application date, patent holder, address, name inventors and their addresses, and all prior

patents and scientific literature cited in the patent relevant to the manufacturing of semiconductors

was obtained from CHI Research Inc. and complemented with information from the U.S. Patent

and Trademark office online data set (see data sources). The data set consists of 59,782 patents

on semiconductors granted between 1973 and 1997.  Figure 1.1, shows the evolution of the

patents granted by application year (reason of the small number in 1996 because we just have

patents granted up to 1997). From this graph is clear the substantial growth trend of patents

granted during this period (6.6% in average per year).

This database of patents has a dual purpose in this research. On one hand it allows us to

identify the most cited inventors in semiconductors (“star”) and, on the other hand, it will allow,

given the information on inventors and assignees, to build the database of links between

universities and firms. Based on the citations counts for the inventors, 414 leading researchers
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(“stars”) were identified, that list at least one time a U.S. address using a cutoff of 100 or more

citations in our semiconductor patent data set. In addition collaborators for the stars and other

(neither stars nor collaborators) where identified. Figure 1.2, shows the evolution of  “star”

scientists according to the date in which they where first cited.  Additionally, a star was defined as

active in an specific year if she/he received a citation from another patent in the semiconductor

area during that year.

Secondly, the firm data set, for which we had collected information on 1239 firms was

mainly obtained from the Harris Info Source Selectory Manufacturers Database, and was

complemented with information from different directories to be able to build a panel data set (see

data sources). The information collected can be classified in three categories. The first one

consists mainly of the basic information of the firm including: name, location, date of birth (or

entry to semiconductors for sub units of preexisting firms), type of ownership, and other generic

information of the company. The second, consists mainly of different measures of output in the

electronic divisions of the companies in our database. This section will include time series since

1970 or date of birth, if later than 1970, and other characteristics of the firms. Finally specific

names of officers and executives, as well as members of scientific advisory boards for firms

making initial public offerings or other public disclosure are collected, as a way to identify

possible ties with the star scientists.

Figure 1.2, shows the evolution of these semiconductor start-ups by date of entry. As

shown in Figure 1.2, there is a reduction in the number of entrants in 1975, consistent to the

decline in the demand documented in Brittain and Freeman5. In the later 70’s, star-up companies

began focusing on market-niche strategies and reduce high cost of capital in setting up

manufacturing facilities, by subcontracting the manufacturing stage to the product firms, usually

large incumbents. These efforts were reflected by a new inflow of start-ups into the industry,

reaching its peak in 1983 (see Figure 1.2).

                                                       
5 Brittain, Jack, W and John H. Freeman, 1980. “Organizational Proliferation and Density Dependence Selection”
in John R. Kimberly, Robert H. Miles, and Associates (eds.).The Organizational Life Cycle, San Francisco, CA:
Jossey-Bass.
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Thirdly, a university database is constructed based on the Higher Education General

Information Survey (HEGIS-1973, 1975-77, 1981-84, 1993-94). This database also includes

information on resources from the relevant departments for semiconductors from the NRC

surveys of 1982 and 1992 as well as their measure of rankings. The departments selected for

semiconductors were electrical engineering, physics, applied physics, material science, and

chemistry based on information of the departments from where the stars came (see data sources).

Additionally a venture-capital firm data set is collected by extracting from the Stanley

Pratt directory the name, type, location, year of founding, and interest in funding semiconductor

firms. This information was extracted for all venture capital firms which were legally permitted to

finance start-ups. This latter requirement eliminated a number of firms that were chartered under

government programs targeted at small and minority business.

Finally, an economic data set was used from by Zucker, Darby, Brewer 1998 (see data

sources) that includes total employment in the BEA area i and year t, average earnings per job in

BEA area i and year t, and E/PRATIO for year t.

Figures 1.3 and 1.4, shows the geographic distribution of our main variables in the U.S.

As expected star scientists are concentrated together with new firms in semiconductors. It is also

important to point out the strong presence of venture capital firms where startups are.

5. Empirical Findings

Tables 1.1 to 1.7 shows the results obtained from the econometric specification detailed in

section 3. As discussed in Jerry Hausman, Bronwyn H. Hall, and Grilliches (1984), the poisson

process is the most appropriate statistical model for count data with significant mass of zero.



14

5.1 The  Birth Model

Table 1.1 describes the variables used and Table 1.2 displays the major results for seven

different specifications. Consistently to what Zucker, Darby and Brewer(1998) found for the

biotechnology sector, we find that active stars are significant and positive in explaining the birth of

semiconductor firms and its effect is ten times bigger than the effect of the other scientist. This

major result is related to what can be see in figures 1.3 and 1.4, where it is clear that there is a

strong and positive correlation between the star scientists and the number of firms in each BEA.

Unexpectedly the collaborators (scientists that coauthor an invention with a star scientists)

have a negative and significant effect over the birth of firms. A possible explanation for this effect

could be that these are lab assistants whose name appears initially as collaborators of star

scientists in a not too cited patent, and which won’t make any important discoveries by

themselves.

When analyzing the effect of universities in the same BEA area, top quality universities in the

BEA is positive and significant in Models 5 and 6, but the number of grants to faculty in these

universities is significant and positive on all of our specifications. This is a clear indication of the

importance of R&D research in universities in the semiconductor industry.

As expected, the number of venture capital firms is also positive and significant, showing the

importance of venture capital in the birth of semiconductor companies.

Finally, the macroeconomic variables had the expected signs and significant, with the only

exception of the E/PRATIO. As mentioned by Zucker, Darby and Brewer (1998) the S&P500

earnings-price ratio is a natural measure of the all-equity cost of capital in the economy and hence

should enter negatively as a determinant of births, but as can be seen in Table 1.2, it enters

positively and significantly. A possible explanation for this sign could be that this variables is

capturing economic cycles rather than the all-equity cost of capital, and therefore a positive sign
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will mean that there is an increase in birth of semiconductor firms during expansions and a

reduction of births during recessions.

5. 2 The Spillover Model

As mentioned previously the major contribution of this paper is to try to unwrap the

spillover mechanism. With this purpose we concentrate our analysis on the Silicon Valley and

Route 128. Figures 1.5 and 1.6 shows the distribution of firms and active star scientists in these

two regions. As expected there is a strong concentration of firms and star scientists in these, the

two most important regions of the semiconductor industry. The density of the concentration is

higher in the Silicon Valley compared to Route 128, something which confirms the importance of

the Silicon Valley in the semiconductor industry.

The major focus will be on the association and movement of university scientists to firms

in the semiconductor industry, comparing these relationships in Silicon Valley versus Route 1286.

While case studies already document the important role of universities in both areas (see Jaffe

1989 for a review), these two areas developed different trajectories according to systematic case

studies conducted by Saxenian (1996) as shown in the following table. She argues that Silicon

Valley's lack of a prior industrial history and its distance from established economic and political

institutions facilitated experimentation with novel and productive relationships, leading to more

open and reciprocal ties between Stanford and local industry than existed in the Route 128 region.

Saxenian does not have strong empirical measures; examining actual working relationships

between university scientists and firms can test this difference, and in so doing, shed light on the

issue of the importance of these kinds of relationships in technology transfer.  In other words, the

differences between Silicon Valley and Route 128 constitute a natural experiment, and thus permit

                                                       
6 Other advantages of working with semiconductors and these two specific regions are: their innovation is mostrly with common origins in
university-based research (MIT and Stanford); there are two main periods of start-ups: early 1970’s and early 1980’s; two different
innovation and diffusion strategies that clearly demonstrates that  regions industrial strength depends on more than just the proximity of
its firms to each other.
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a direct comparison of the effects of the kinds and amounts of working relationships on

technology transfer to new firms that grew up in both regions.

Silicon Valley Route 128

Boundaries between firms are porous Dominated by highly self sufficient corporations

Venture capitalists were often entrepreneurs who had Venture capitalist who typically where financial

had made money by creating and then selling technology professionals.

firms (encourage risk taking and accepted failure)

Were embedded in, and inseparable from intricate Self sufficient corporations that preserve their

social and technical networks independence by vertical integration

Silicon valley engineers switched firms so often Preferred professionals who were in it for the long

that mobility became a norm. term.

The results we obtained are detailed in Tables 1.3, 1.4, 1.5, 1.6 and 1.7. Table 3 mainly

describes the variables we are using. From this table it can be seen that the mean number of

patents per year in the Silicon Valley is practically the double of the number of patents in Route

128, as well as the presence of local ties. On the other hand, the number of untied scientists is

extremely important in the case of Route 128.

The results of our econometric specification can be summarized in the following:

a. The presence of tied scientists is important in both of the regions, having a bigger coefficient

for the case of the Route 128. This could confirm Saxenian’s (1996) observation that

companies in Route 128 tend to have more formal ties than companies in the Silicon Valley,

given that they prefer to keep their information within the company boundaries.

b. Untied scientists are more important in Silicon Valley compared to Route 128, confirming our

previous point. The untied scientists are a measure of the production of scientists in



17

universities. Although the number of patents is bigger for universities in Route 128, as shown

in our results, the effect of universities around Silicon Valley over firms is much stronger. This

could be an indication of the close relationships universities had, mainly Stanford, with firms in

that region.

c. Cumulative ties are also significant and positive in both regions as expected, meaning that the

knowledge of the scientists accumulates. But as expected the coefficients are smaller than the

ties present in a specific year. An explanation to this could be the high turnover of scientists,

especially in Silicon Valley, which makes more relevant to analyze the current ties rather than

the accumulation of ties.

d. When desegregating the ties to Local (star in same BEA area as the firm) and external (star in

a different BEA area as the firm) following Zuker, Darby, Armstrong (1998) (see Table 1.5).

Local ties are significant and positive in both regions (Table 1.5) but external ties are negative

and significant for Route 128, while positive and significant for the Silicon Valley. This is

again a clear indicator that firms in the Silicon Valley where more willing to share information

with scientists outside of their BEA while firms in Route 128 prefer to have formal local ties

than external ties, and therefore the number of external ties is very small. Now when analyzing

the cumulative ties, the effect for Route 128 becomes positive given that the cumulative effect

of this reduced number of ties is also significant over the success of the firms.

e. Table 6, shows one of our most important results, which supports our initial hypothesis. As

expected when including the effect of neighbor firms it is positive and significant. When

examining separately this effect for Silicon Valley and Route 128, it is positive and significant

for Silicon Valley, while is negative and not significant for Route 128. This clearly shows that

firms in the Silicon Valley gain from the sharing of information from neighbor firms, while

firms in Route 128 are more secretive with their ideas and human capital and therefore other

firms do not obtain positive externalities from scientists working with a given company.

f.  Finally, Table 1.7, included the spatially lagged dependent variable as a measure of the level

of competition between companies. As expected for Route 128 this variable is positive and

significant indicating a high level of competition between neighbor companies, while is

negative and significant for the case of  Silicon Valley.
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6. Conclusions

This research validates for the semiconductor industry, specifically for Silicon Valley and

Route 128, previous research on high-technology industries that demonstrated the importance of

geographically local “knowledge spillovers” to the success of companies through specific links

between university scientists and firms [Zucker, Darby, Armstrong (1998)].

Additionally, it helps to identify an additional element from the “knowledge spillovers”

black box. We not only measure the effect of University research through the direct ties, but also

measure the importance in the success of the companies of scientists at universities in the same

region, and the inside industry R&D spillovers, through the influence of the scientists in neighbor

firms.

This methodology, also allows us to validate some of the major differences between

Silicon Valley and Route 128 that Saxenian(1996) pointed out. Thus permit a direct comparison

of the effects of the kinds and amounts of working relationships on technology transfer to new

firms that grew up in both regions.

In summary, the use of a linked cross-section/time-series panel data set lead to the

observation that the timing and location and success of the semiconductor firms is determined

primarily by intellectual capital measures, particularly the local number of highly productive

scientists and their relationships to the firms. The results obtained clearly show the importance of

adequate policies that allow the diffusion of this new technology from universities to firms.

Furthermore, it provides a better understanding of processes underlying economic growth, and

the role of the university and individual scientists and engineers in transforming the economy

through the introduction and development of new discoveries and related technologies.
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Figure 1.1
Patents Granted in the U.S. in Semiconductors Manufacturing
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Figure 1.2
Stars and Start-ups in Semiconductors
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Table 1.1

Basic Statistics for the Semiconductor Industry in all the U.S.

Variable Description Mean Variance

ACTSTARi,t Active Stars in BEA {i} and year {t} 1.001 6.444

ACTCOLLi,t Active Collaborators in BEA {i} and year {t} 2.512 17.575

ACTOTHERi,t Other Active Scientists in BEA {i} and year {t} 9.110 45.283

STARTUPi,t New Semiconductor Firms in BEA {i} and year {t} 0.137 0.850

YEAR Year 1980.000 6.056

EJOBi,t Average Wage & Salary Disbursements, other labor income, and 19229.570 2555.156

  proprietors income per job deflated by the implicit price deflator

  for personal consumption expenditures.

EMPi,t Total Employment in BEA {i} and year {t} 609615 1004733

E/PRATIOt Earnings/ Price Ratio for year {t} 35.456 10.178

NTQUi,82,93 Number of Universities in a BEA with one or more most highly 0.125 0.468

  rated programs (rated above 4) reported by NRC surveys of

  1982 and 1993.

FACGRANTi,82,93 Total Number of Scientists in all semiconductor relevant 42.574 77.945

 departments in BEA area  i reported by the National Research

Council Survey 1982 and 1993

VCUMi,t Total Number of eligible venture capital firms in BEA area i in year 2.283 9.727

year t

Number of Observations = 3843
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Table 1.2

Poisson Regressions of Annual Births of New Semiconductor Enterprises, 1970-1990

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

CONSTANT -2.243 * -2.459 * -34.232 -69.176 * -81.684 * -185.423 * -140.747 *

(0.049) (0.054) (17.496) (19.639) (19.983) (25.740) (27.814)

ACTSTARi,t 0.115 * 0.116 * 0.116 * 0.058 * 0.019 0.044 * 0.134 *

(0.008) (0.010) (0.010) (0.008) (0.010) (0.012) (0.018)

ACTCOLLi,t -0.027 * -0.051 * -0.051 * -0.024 * -0.025 * -0.027 * -0.041 *

(0.003) (0.004) (0.004) (0.003) (0.003) (0.004) (0.007)

ACTOTHERi,t 0.010 * 0.010 * 0.005 * 0.006 * 0.004 * 0.009 *

(0.000) (0.000) (0.001) (0.001) (0.001) (0.002)

ACTSTARi,t
2 -0.001 *

(0.0002)

ACTCOLLi,t
2 1.00E-04 *

(1.00E-05)

ACTOTHERi,t
2 -1.00E-05 *

(2.00E-06)

TIME TREND 0.016 0.033 * 0.040 * 0.089 * 0.067 *

(0.009) (0.010) (0.010) (0.013) (0.014)

NTQUi,82,93 0.217 0.417 * 0.393 * 0.204

(0.115) (0.121) (0.115) (0.128)

FACGRANTi,82,93 0.006 * 0.003 * 0.006 * 0.006 *

(0.001) (0.001) (0.001) (0.001)

VCUMi,t 0.033 * 0.028 * 0.015 *

(0.004) (0.004) (0.005)

EJOBi,t 2.00E-04 * 2.00E-04 *

(1.64E-05) (1.86E-05)

EMPi,t -3.25E-07 * -2.47E-07 *

(3.95E-08) (4.00E-08)

E/PRATIOi,t 0.039 * 0.036 *

(0.006) (0.006)

Nobs 3843 3843 3843 3843 3843 3843 3843
Log-Likelihood -1662.45 -1341.16 -1339.50 -1087.51 -1055.55 -953.32 -920.16

Note: Standard Errors are in parenthesis below coefficients
         Significance Levels with p<0.05=~, p<0.01=*
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Table 1.3
Basic Statistics Spillover Analysis of Semiconductor Firms in Silicon Valley and Route 128

All Sample Silicon Valley Route 128

Variable Description Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

YEAR Year 1986.644 7.036 1987.672 6.487 1984.875 7.573

FIRMAGE Age of firm 15.364 15.071 12.178 13.200 20.846 16.452

FIRMAGE2 Age of firm square 463.140 1128.319 322.502 1065.042 705.077 1191.609

SILICONV Dummy=1 if in Silicon Valley, 0 if in Route 128 0.632 0.482 1.000 0.000 0.000 0.000

TOTPAT Total number of patents by Firm {I} in year {t} 0.900 5.923 1.014 6.950 0.704 3.507

TIESt-1 Patent weighted tied stars to firms at {t-1} 0.053 0.619 0.081 0.777 0.006 0.094

CUMMTIESt-1 Cummulative ties at {t-1} 0.405 4.098 0.599 5.140 0.078 0.643

LOCTIESt-1 Patent weighted same BEA tied stars to firms at {t-1} 0.031 0.378 0.048 0.486 0.004 0.072

CUMMLOCTIESt-1 Cummulative locties at {t-1} 0.265 2.426 0.391 3.038 0.054 0.427

EXTTIESt-1 Patent weighted different BEA tied stars to firms at {t-1} 0.021 0.299 0.032 0.376 0.002 0.039

CUMMEXTTIESt-1 Cummulative extties at {t-1} 0.139 1.762 0.208 2.215 0.024 0.224

UNITIESt-1 Patent weighted untied stars to firms at {t-1} 2.607 2.887 1.318 1.418 4.777 3.388

CUMMUNTIEt-1 Cummulative united stars at  {t-1} 23.976 32.047 7.440 6.012 51.814 38.210

UNTIELOCALt-1 Patent weighted same BEA untied stars to firms at {t-1} 2.308 3.001 0.841 1.328 4.777 3.388

CUMMUNTIELOCt-1 Cummulative untiedlocal stars at {t=1} 20.939 33.427 2.599 3.365 51.814 38.210

UNTIEEXTERNALt-1 Patent weighted different BEA untied stars to firms at {t-1} 0.299 0.458 0.476 0.500 0.000 0.000

CUMMUNTIEEXTt-1 Cummulative untieexternal stars at {t-1} 3.037 3.337 4.840 3.002 0.000 0.000

W*TOTPATt-1 Average effect of neighbour firms* totpat {t-1} 8.037 11.778 9.564 13.178 5.467 8.334

W*LOCTIESt-1 Average effect of neighbour firms*locties{t-1} 0.932 1.784 1.458 2.074 0.046 0.231

W*CUMMLOCTIESt-

1

Average effect of neighbour firms*cummlocties{t-1} 7.348 16.679 11.668 19.832 0.075 0.405

Nobs 5514.000 3487.000 2027.000
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Table 1.4
Estimates for Patents Granted

Poisson Regressions, Dependent Variable: Total Patents Granted

Yearly Ties Cummulative Ties
ALL Silicon Valley Route 128 ALL Silicon Valley Route 128

CONSTANT -1.177 * -1.611 * -1.725 * -1.124 * -1.309 * -3.718 *
(0.037) (0.046) (0.089) (0.036) (0.046) (0.135)

TIESt-1 0.306 * 0.307 * 1.244 *
(0.003) (0.003) (0.060)

UNITIESt-1 0.017 * 0.227 * 0.080 *
(0.005) (0.010) (0.008)

FIRMAGE 0.073 * 0.096 * 0.062 * 0.061 * 0.080 * 0.167 *
(0.003) (0.003) (0.005) (0.003) (0.003) (0.008)

FIRMAGE2 -0.001 * -0.001 * -0.001 * -0.001 * -0.001 * -0.003 *
(3.50E-05) (3.93E-05) (7.08E-05) (3.32E-05) (3.73E-05) (1.31E-04)

CUMMTIESt-1 0.056 * 0.052 * 1.161 *
(0.001) (0.001) (0.032)

CUMMUNTIEt-1 0.002 * 0.019 * 0.023 *
(0.001) (0.003) (0.001)

Nobs 5171.000 3244.000 1927.000 5171.000 3244.000 1927.000
Log-Likelihood -13850.024 -9135.379 -4094.141 -12711.595 -8365.495 -3359.055

Note: Standard Errors are in parenthesis below coefficients
         Significance Levels with p<0.05=~, p<0.01=*
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Table 1.5

Estimates for Patents Granted Opening Ties into Local and External Ties

Poisson Regressions, Dependent Variable: Total Patents Granted

Yearly Ties Cummulative Ties

ALL Silicon Valley Route 128 ALL Silicon Valley Route 128

CONSTANT -1.165 * -1.509 * -1.763 * -1.126 * -1.241 * -3.859 *

(0.036) (0.044) (0.090) (0.036) (0.043) (0.143)

LOCTIESt-1 0.301 * 0.299 * 2.423 *

(0.015) (0.012) (0.160)

EXTTIESt-1 0.313 * 0.318 * -1.353 *

(0.021) (0.018) (0.363)

UNTIELOCALt-1 0.011 ~ 0.230 * 0.082 *

(0.005) (0.009) (0.008)

FIRMAGE 0.074 * 0.097 * 0.062 * 0.063 * 0.085 * 0.180 *

(0.003) (0.003) (0.005) (0.003) (0.003) (0.009)

FIRMAGE2 -0.001 * -0.001 * -0.001 * -0.001 * -0.001 * -0.004 *

(3.51E-05) (3.95E-05) (7.04E-05) (3.36E-05) (3.87E-05) (2.00E-04)

CUMMLOCTIESt-1 0.037 * 0.019 * 1.009 *

(0.006) (0.006) (0.059)

CUMMEXTTIESt-1 0.083 * 0.099 * 1.742 *

(0.008) (0.008) (0.183)

CUMMUNTIELOCt-1 0.001 ~ 0.014 0.024 *

(0.000) (0.005) (0.001)

Nobs 5171 3244 1927 5171 3244 1927

Log-Likelihood -13853.193 -9105.218 -4070.172 -12713.197 -8366.524 -3353.637
Note: Standard Errors are in parenthesis below coefficients

         Significance Levels with p<0.05=~, p<0.01=*
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Table 1.6

Spillover Effect of Neighbour Firms on Patents Granted

Poisson Regressions, Dependent Variable: Total Patents Granted

Ties Local and External Ties
ALL Silicon Valley Route 128 ALL Silicon Valley Route 128

CONSTANT -1.321 * -1.542 * -1.717 * -1.322 * -1.543 * -1.756 *
(0.040) (0.046) (0.090) (0.040) (0.046) (0.090)

W*LOCTIESt-1 0.089 * 0.020 ~ -0.112 0.089 * 0.020 ~ -0.095
(0.007) (0.008) (0.139) (0.007) (0.008) (0.139)

TIESt-1 0.308 * 0.308 * 1.242 *
(0.003) (0.003) (0.060)

UNITIESt-1 0.023 * 0.230 * 0.079 * 0.023 * 0.229 * 0.082 *
(0.005) (0.009) (0.008) (0.005) (0.009) (0.008)

FIRMAGE 0.076 * 0.097 * 0.062 * 0.076 * 0.097 * 0.063 *
(0.003) (0.003) (0.005) (0.003) (0.003) (0.005)

FIRMAGE2 -0.001 * -0.001 * -0.001 * -0.001 * -0.001 * -0.001 *
(3.54E-05) (3.95E-05) (7.09E-05) (3.54E-05) (3.96E-05) (7.05E-05)

LOCTIESt-1 0.303 * 0.300 * 2.417 *
(0.014) (0.012) (0.160)

EXTTIESt-1 0.315 * 0.319 * -1.349 *
(0.021) (0.018) (0.363)

Nobs 5171 3244 1927 5171 3244 1927
Log Likelihood -13789.083 -9102.513 -4093.809 -13789.020 -9102.322 -4069.932

Note: Standard Errors are in parenthesis below coefficients
         Significance Levels with p<0.05=~, p<0.01=*
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Table 1.7

Competition with Neighbour Firms on Patents Granted

Poisson Regressions, Dependent Variable: Total Patents Granted

Ties Local and External Ties
ALL Silicon Valley Route 128 ALL Silicon Valley Route 128

CONSTANT -1.234 * -1.522 * -1.803 * -1.224 * -1.393 * -1.843 *
(0.038) (0.046) (0.090) (0.038) (0.044) (0.091)

W*TOTPATt-1 0.007 * -0.017 * 0.030 * 0.007 * -0.017 * 0.030 *
(0.001) (0.002) (0.002) (0.001) (0.002) (0.002)

TIESt-1 0.308 * 0.306 * 1.319 *
(0.003) (0.003) (0.060)

UNITIESt-1 0.015 * 0.277 * 0.074 *
(0.005) (0.011) (0.008)

FIRMAGE 0.073 * 0.095 * 0.054 * 0.074 * 0.096 * 0.054 *
(0.003) (0.003) (0.005) (0.003) (0.003) (0.005)

FIRMAGE2 -0.001 * -0.001 * -0.001 * -0.001 * -0.001 * -0.001 *
(3.52E-05) (3.76E-05) (7.09E-05) (3.53E-05) (3.80E-05) (7.03E-05)

LOCTIESt-1 0.302 * 0.306 * 2.503 *
(0.015) (0.012) (0.160)

EXTTIESt-1 0.315 * 0.305 * -1.298 *
(0.021) (0.018) (0.365)

UNTIELOCALt-1 0.010 ~ 0.272 * 0.076 *
(0.005) (0.010) (0.008)

Nobs 5171 3244 1927 5171 3244 1927
Log Likelihood -13832.000 -9062.036 -4022.916 -13835.140 -9036.541 -3999.181

Note: Standard Errors are in parenthesis below coefficients
         Significance Levels with p<0.05=~, p<0.01=*


