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Abstract: This paper introduces a new representation for seasonally cointegrated variables,
namely the complex error correction model, which alows statistical inferenceto be performed
by reduced rank regression. The suggested estimators and tests statistics are asymptotically
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and finite sample «itica values, and an empirical example is presented to illustrate the
concepts and methods.
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1. Introduction

Following the seminal contribution by Hylleberg et a. (1990, there has recently been a
considerable interest in the seasonal cointegration analysis. The motivation for this line of
reseach is twofold. First, a good ded of empirical evidence suggests that many
maaoemnomic time series are well charaderised by the presence of unit roots both a the
zeo and seasonal frequencies (e.g. Hylleberg et a., 1993 Canova and Hansen, 1993.
Seoondly, estimation of the seasonal version of the eror-correction model [ECM] is
preliminary to ather econometric analyses auch as forecasting (Kunst, 1993, testing for the
rational expedations hypothesis (Ermini and Chang, 1996, and the cmmon trend-common
cycle decomposition (Cubadda, 1999.

Remarkably, cointegration relations at frequencies other than zero and 1t are generally
dynamic. This complicates the statistical analysis snce polynomial cointegration vedors are
entailed (see e.g., Engle & a., 1993 Ahn and Reinsel, 1994). Limiting our discusson to
maximum likelihood [ML] procedures, Lee(199) developed inference for the particular case
of synchronous cointegration at frequency TU/2 wheress Johansen and Schaumburg
[henceforth, JS] (1998 completed the analysis for the general case of dynamic cointegration
at the complex root frequencies. Unfortunately, the JS method requires a rather involved
iterative procedure to compute estimates of parameters of interest. This paper shows that an
estimator and atest gatistic which are asymptoticaly equivalent to those proposed by JS can
be obtained by reduced rank regression [RRR] between complex-valued data. The basic trick
is the introduction of a mwmplex ECM, which grealy simplifies testing and estimation of
polynomial cointegration vedors.

This paper is organised as follows. Sedion 2 introduces the complex ECM. Sedion 3
deals with statistica inference In Sedion 4 the analysis is applied to Italian data of

consumption, investment and output. Sedion 5 presents conclusons.

2. Thecomplex error correction mode

Let X, be n-vedor time series such that



M(L)X, =®D, +¢, (2.1)

where (L) is a polynomial matrix such that M(0)=1,, M, =0 for j>p, & aei.id.
N, (0,Q), and D, is adeterministic kernel which may contain a mnstant, a linea trend, and

various trigonometric functions of time. We asume that the initial values are fixed and that

the roats of the determinant |[(2)| are on or outside the unit circle,
Let z,...,z,, be the solutions of the ejuation |M(2)|=0 such that z,, =exp(w,), | =

VJ-1 and w, O[0,m], m=12,...,M.* Hence, we can write

N(z,)=-a,p.

where a,, and 3, are complex-valued (nxr,,)-matrices with rank equal to r,,, and 3.

m?

denotes the conjugatetranspose of (3.

Let usfurther assimethat eac matrix a,,, I;I(zm)ﬁmD hasrank equal to (n—r,,), where

for any complex full-rank (nxr)-matrix C we denote by C, a ammplex full-rank matrix of

dimension nx(n-r) such that C"'C,=0, and ﬁ(zm) denotes the derivative of M(z) a
z=2z,.

Based on Cubadda (1995 and JS, we know that the proceses O (L)X™ and

B,.(L) X™ have no unit roats, where

. (L)—D (1—2;1L), if w,=00rw, =m
"7 Hi- 2c0s@, )L+ 12) if @, 007’

M
X = %" Dj(l-)%(w and
#m

! Note that, since M (L) hasreal coefficient matrices, dso z*,...,z,' must beroads of |I'I(z)|.



L) = B, fw,=00rw, =m 29
o= Chg )il tanton) - Lo, ) f @,00m) @2
If we expand the polynomial matrix M(L) around 0 and al the unit roots of |I'I(z)| , we

get the following representation of series X, :

X©@ =D, + An(L)B (L)X + W)X +e, (2.3

m=

where X ZHﬁle(L)%“ A (L) isrelated to amEzm - 0,(z,)H as B,(L) to B, in

#m
equation (2.2), and W(L) isapolynomial matrix.
Let us now consider the expansion of M(L) around 0 and z,...,z,. In this case, the

VAR model (2.1) can berewritten asfollows:

M
Y@ =oD, + Zamﬁﬁvf_&” +M (L)Y +¢, (2.4)

where Y,© =%¥|Aj(L)§<t, A (L) =~z L) v =Ezm - Aj(zm)E %ﬁ%('—)%@ and

(L) isapolynomial matrix.

Equation (2.3) resembles the usual ECM where the stationary variables X/” reat to
the equilibrium errors B, (L)' X through the (polynomial) adjustment matrices A, (L).
Interpretation of equation (2.4) islessnea. However, we note from JS that complex processes
Y© and B.Y™ donot possssthe unit rodts z,...,z,. Henceforth, equation (2.4) will be
called the complex ECM of series X, .



3. Statistical inference

The statistical analysis of the complex ECM is based on partial canonicd correlations
between Y,© and Y. In fad, when focusing on cointegration at a given frequency we an
safely ignore reduced rank restrictions at other frequencies since processes with different unit
roots are ssymptoticaly uncorrelated. Moreover, the same agument implies that the tests

statistics and estimators given later are asymptotically equivalent to their maximum likelihood
counterparts, seeLee(1992 and JS.

The suggested inferential procedure goes as follows. Regress Y, and Y, on other
regresors in equation (2.4) to form residuals R and R™ respedively. Then, perform
canonicd correlation analysis between R® and R™ by computing the product moment

matrices
T . .
S, =T‘1Z RYRDY, fori, j=0,M
1=

and solving the eigenvalue problem

S0 = SnoSosSom| =0

A A

for eigenvalues A, >..>A  and eigenvedors \7=(\71,...,\7n) normalised such that

n

A

VDSm]mQ =1,.? Hence, the RRR estimator is 3 =,,...V, ) and a test statistic for the

m

hypothesis M(z,) =-a, B, is

TR=-2T Y In(-4)

=+l

2 SeeBrillinger (1981) for detailson regresson and canonical correlation analysis betweencomplex variables.
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Finaly, the estimate of the polynomial vector ﬁm(L) is found by inserting ﬁm in

equation (2.2).
The limit distribution of the test gatistic TR for the complex root case is given in the

following theorem.

Theorem 2.1. In the model (2.4) and for the cae w,, [J(0,77) we have

_11

TRO tr%(dsc)ﬁﬁaaﬂdug IFC(dBC)D% (3.1)
0o H

where O denotes wesk convergence in distribution, tr{J denotes the traceof the matrix in
argument, B_.(u) =B, (u)+/B(u), B,(u) and B/ (u) are independent standard Brownian

motions of dimension (n-r,), and F. (u) = B.(u) if D, does not include the trigonometric

functions [cos(w,t), sin(w,t)], F.(u)=B,(u) —}Bc(s)d s otherwise.

Proof. The proof isonly sketched sinceit involves simple gplicaions of ealier resultsin this

area of reseach. For the moment, let us assume that X, is a cmplex-valued process

A (L)X, is a rea-valued dationary process PBLX, is gationary, and there ae no

deterministic terms in the model, i.e. ® =0. We caneaslly dedwcefrom Corollary 7 in JS that

TS, 0 %cm%vwwfdu%i

1
o O 5 Co[WL(AW,) 1
0

So,o - Zo,o' BanSm,mBm - Zﬁ,ﬁl BanSm,o - Zﬁ,o



where C,, =—z;:ﬁm5§a§5 ﬁ(zm)ﬁmug al, W, () =W, (U) + /Wi (u), W,(u) and W (u) are

independent n-dimensional Brownian motions with variance matrix Q, - denotes amost

sure convergence, and

0vyo© | 0 oo Zopl
varg & Y Y Y jEmEL M) D= 0
raYt(—1)| cm e e O %:ﬁ,o 25500

Based on the @ove results, we can proceal analogously to Johansen (1988 for the real
root cese in order to prove that T()T,mﬂ,...,)?n) converge in distribution to the ordered

solutions of the equation
1 1 1 1
p BcB;du__ Bc(d Bc)* (d BC)B; =0 (32)
[BB T [RER ]

Notice that when the trigonometric functions [cos(,t),sin(w,t)] are included in the

model, the complex-valued Brownian motion B, (u) in equation (3.2) must be replacel with
1

its demeaned counterpart, i.e. B, (u) _.[BC (s)ds. Moreover, the limit distribution (3.2) is
0

unaffected by the inclusion of deterministic terms having no spedral massat frequency w,,,

seelLeeand Siklos (1995 and JS. Finally, by writing TR = 2T z)ﬂ +0, (D), we complete the

i=r,+1

proof of the theorem for the particular case under consideration.

Regarding the general case of a real-valued process X, with various unit roots, we
know that the asymptotic distribution (3.1) is invariant to the presence of unit roots other than
z, (including z") since processs being I(1) a different frequencies are asymptotically
independent, see aain Lee (1992 and JS. Notice that the distribution (3.1) is an equivalent
formulation of the limit distribution of the LR statistic for the model with no deterministic
term given in JS. However, these distributions do not coincide for the model with seasonal

dummies due to the different treatment of the periodic term, compare Lee and Siklos (1995
with Franses and Kunst (1999. m



1
Quantiles of the limit distribution (3.1) with F_(u) = B, (u) —IBc(s)d s are reported in
0

Table 1. This distribution is simulated by approximating the process B, with a 400-step

random walk where the increments are replicaions of a (n—r,,)-complex i.i.d. variable n,

such that

Relnd min} B~ No) 0120y) (0-1,=2.23)

and the statistic iscomputed 100000 times.
Tables 2-5 report finite sample aitical values of the LR statistic for cointegration at

frequency 11/2 with quarterly data. In particular, the following cbta-generating process is

considered
AX =g (t=12,..T)

for T =50,100150,200, where ¢, isi.i.d. N(O,1,) for n=1,2,3, and initial values are set to
zeo. The finite sample quantiles are obtained by 30000 replications using the mmplex RRR
model (2.4) where the deterministic kernel D, may include a onstant, seasonal dummies and

atime-trend.

Finally, notice that the asymptotic equivalence of the RRR estimator to the ML
estimator implies that ﬁm is consistent and its limit distribution is mixed Gaussian, see

Johansen (1996. Hence linea hypothesis on polynomial cointegration vedors can be

investigated with asymptotic x? tests.

4. Empirical example: seasonal cointegration in a small macroeconomic system

In order to ill ustrate the practica value of the amncepts and methods previously discussed, we

consider Italian quarterly time series on household consumption (¢, ), fixed investment (i, )



and gross domestic production (y,) in log per-cgpita form for the period 19732 through

19971 (datafrom 197Q1 are taken as starting values). These sriesare graphed in Figure 1.
The theoretical badkground is represented by the neoclassicd model of seasonal
fluctuations proposed by Chatterjee and Ravikumar (1992. A relevant implicaion of this

model is that deviations of ¢, i, and y, from a cwmmon deterministic trend can be

decomposed in two parts. a deterministic seasonal component that refleds periodic shifts in
preferences and technology, and a stochastic transitory component that cgptures the efieds of
non-seasonal shocksto the economy. FollowingKing etd. (1988, we know that the common
trend becomes dochastic when labour augmenting tednology is assumed to follow a random
walk with drift rather than a deterministic function of time. Similarly, stochastic seasonality
can arise from persistent seasonal variations in productivity and tastes, see Wells (1997). In
this case, seasonal cointegration analysis may reveal the number of independent shocks that
drive the seasonal fluctuations in the economy.

As afirgt step of the empirical analysis, a VAR(13) model is ®leded acwrding to the
longest significant lag rule and usual diagnostic tests give no sign of misspecification for this
model. Note that seasonal dummies and linear trends are included in the regressions thus
rendering preliminary pre-testing for univariate unit-roots unnegessary.

The results of the LR cointegration tests at the zeo frequency, reported in Table 6,
sugoest the existence of a single mintegration vedor such that (1, 0.06, —1.64)'. ® Hence, there
is no evidence of balanced growth for the Italian economy. From Table 6 we also see that
there is evidence of one cointegration relationship at frequene. The aciated eigenvedor
is (1,-0.13 -0.15)".

Regarding cointegration at the awnual frequency, the results of the trace test for
polynomial cointegration and the Leé stest for synchronous cointegration are both reported at
Table 7. We seethat the test based on the mmplex ECM provides grong evidence in favour
of a non contemporaneous cointegration relationship which is not detected by the Lee’s test.
The RRRestimate of the polynomial cointegration vedor isthe following

(1,-0.12+0.05L, —0.27+0.58L)".

® Notice that an LR test for restricting to zero the wefficient of i, produces an x*(1) equal to 1.82, which is
insignificant at a10% leve.



Further insights on the mintegration properties of variables can be understood by
checking the significance of the various error correction terms in the seassonal ECM. From
Table 8 we seethat the first lag of the anual error correction terms is insignificant. Hence,
we can omit this redundant variable and test on the remaining error corredion terms. The
results, reported in Table 8, confirm the relevance of the wintegration relationships at the
different frequencies.

Finally, we an compare the seleded specification of the seasonal ECM with a model
where the annual cointegration vector is estimated by the Lee's procedure. The test for the
former encompassang the latter gives raise to a F(358) datistic equal to 1.38, which is

insignificant a the 20% level. The test gatistic for the reverse encompassng comparison is

equal 9.88, which isoverwhelmingly significant.

5. Conclusions

This paper considers the complex ECM for seasonally cointegrated time series. It offers a
reduced rank estimator of polynomial cointegration vectors and a tracetest for determining
the integration rank at frequencies different from zero and 7. The aymptotic distribution
theory is discussed and the relevant critical values are mmputed. The methods are goplied to
Italian maaoemnomic data, and evidenceis provided for an annual cointegration relationship

which is not detected by the usua Le€'s test for synchronous cointegration.
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Table1
Asymptotic critica values of the TR statistic

Model (2.4) where [cos(w,t), sin(w,t)] O D,

(n-r,) | 50% 75% 80% 85% 90% 95% 97.5% 9%

1 54 82 90 99 112 132 151 175
2 192 236 247 261 280 309 335 368
3 409 468 484 502 527 564 597 636

Table 2
Finite sample (T =50) criticd values of the TR statistic

(n-r,) | (1,SD,Tr) | 50% 75% 80% 85% 90% 95% 97.5% 9%

(0,0,0) 15 30 35 41 49 64 7.8 9.8
(1,0,0) 15 30 35 41 49 64 7.8 9.8
1 (1,0,2) 15 30 35 41 49 64 7.9 9.8
(1,1,0) 56 84 92 102 116 138 158 184
(1,1,2) 56 85 93 103 117 139 161 186

(0,0,0) 118 153 163 175 191 218 242 274
(1,0,0) 119 155 164 177 193 220 246 278
2 (1,0,2) 121 156 166 178 194 222 249 282
(1,1,0) 206 254 267 284 305 337 369 410
(1,1,2) 209 258 271 288 310 344 377 416

(0,0,0) 318 375 391 410 434 472 509 558
(1,0,0) 322 381 397 417 441 482 518 568
3 (1,0,2) 327 387 403 423 449 489 525 574
(1,1,0) 463 536 556 581 613 665 711 775
(1,1,2) 472 547 566 591 626 679 726 786

Note: | = constant, SD = seasonal dummies, Tr = deterministic linear trend.
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Table3

Finite sample (T =100 criticd valuesof the TR dtatistic

(n-r.) | (1,SD,Tr) | 50% 75% 80% 85% 90% 95% 97.5% 9%
(0,0,0) 15 30 34 40 48 63 1.7 9.5

(1,0,0) 15 30 34 40 48 63 1.7 9.5

1 (1,0,2) 15 30 34 40 48 63 1.7 9.5
(1,1,0) 55 83 91 100 112 132 152 176

(1,1,2) 55 84 91 101 113 133 152 177

(0,0,0) 115 149 158 169 185 209 232 260

(1,0,0) 116 149 158 169 185 210 231 260

2 (1,0,2) 116 149 158 170 186 210 232 261
(1,1,0) 197 242 254 268 287 317 346 380

(1,1,2) 199 243 255 269 289 319 348 382

(0,0,0) 301 353 36.6 383 404 437 467 510

(1,0,0) 303 354 368 384 405 439 470 509

3 (1,0,2) 304 355 369 385 406 440 471 512
(1,1,0) 427 490 506 526 552 592 627 675

(1,1,2) 429 492 509 528 554 594 629 679

Seencteto Table 2 for detail s.
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Table4

Finite sample (T =150 criticd valuesof the TR dtatistic

(n-r.) | (1,SD,Tr) | 50% 75% 80% 85% 90% 95% 97.5% 9%
(0,0,0) 15 30 34 40 48 6.2 7.6 9.2

(1,0,0) 15 30 34 40 48 6.2 7.6 9.3

1 (1,0,2) 15 29 34 40 48 6.2 7.6 9.3
(1,1,0) 54 83 91 100 112 132 152 176

(1,1,2) 55 83 91 101 113 133 152 177

(0,0,0) 115 148 157 169 184 209 231 259

(1,0,0) 115 148 157 169 184 209 231 260

2 (1,0,2) 115 148 157 169 184 209 231 260
(1,1,0) 196 240 252 266 285 314 343 378

(1,1,2) 196 241 253 267 286 315 343 378

(0,0,0) 298 350 363 379 400 432 462 500

(1,0,0) 299 350 364 380 400 433 462 501

3 (1,0,2) 299 351 364 380 401 434 463 501
(1,1,0) 422 481 497 516 542 583 616 661

(1,1,2) 423 482 499 518 543 584 618 661

Seencteto Table 2 for detail s.
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Table5

Finite sample (T =200) criticd valuesof the TR dtatistic

(n-r.) | (1,SD,Tr) | 50% 75% 80% 85% 90% 95% 97.5% 9%
(0,0,0) 15 30 34 40 48 6.2 7.6 9.2
(1,0,0) 15 30 34 40 49 6.2 7.6 93
1 (1,0, 15 29 34 40 48 6.2 7.6 9.3
(1,1,0) 54 83 90 100 112 132 152 176
(1,1,1) 55 83 91 100 113 133 152 176
(0,0,0) 115 148 156 168 183 207 229 256
(1,0,0) 115 148 156 168 183 207 228 257
2 (1,0,2) 115 148 156 168 183 207 229 257
(1,1,0) 196 239 250 265 284 314 340 372
(1,1,1) 196 239 251 266 285 315 341 372
(0,0,0) 297 347 361 377 398 429 459 498
(1,0,0) 297 348 361 378 398 429 460 499
3 (1,0,2) 297 347 361 378 398 429 460 498
(1,1,0) 418 479 495 513 539 576 612 655
(1,1,1) 419 479 496 514 540 577 611 657
Seenoteto Table 2 for detail s.
Table6
Tracetestsfor cointegration at frequencies 0 and 1
Frequency
0 T
Null Test 5% critical Null Test 5% critical
hypothesis statistic value hypothesis statistic value
r,=0 46.5 431 r,=0 424 34.6
rn<1 124 255 r,<1 131 194
<2 45 123 r,<2 29 8.7

Note: r, = cointegration rank at frequency zero, r, = cointegration rank at frequency 7.
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Table7
Tracetests for cointegration at frequency 1/2

Polynomial cointegration Synchronous cointegration

Null Test 5% critical Test 5% critical
hypothesis statistic value statistic value
r, =0 93.0 594 319 40.9
r,<1 28.3 319 9.3 24,5
r; <2 6.7 133 0.0 120

Note: r, = cointegration rank at frequency 77/2.

Table 8
Significancetests on the error correction terms
Unrestricted model Restricted model
Variable F (3'5.8 ) .test p-value F (3'5.8 ) .test p-value
statistic statistic
ecml, 8.53 0.00 8.68 0.00
ecmz, 8.78 0.00 8.87 0.00
ecm3,, 0.95 0.42 - -
ecm3,_, 1513 0.00 1548 0.00

Note: ecml, = zero-frequency error corredion term, ecm2, = biannual frequency error corredion
term, ecm3, = annual frequency error corredion term.
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Figure 1

Consumption, investment and output in log per-cagpitaform
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