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1. Introduction

Following the seminal contribution by Hylleberg et al. (1990), there has recently been a

considerable interest in the seasonal cointegration analysis. The motivation for this line of

research is twofold. First, a good deal of empirical evidence suggests that many

macroeconomic time series are well characterised by the presence of unit roots both at the

zero and seasonal frequencies (e.g. Hylleberg et al., 1993; Canova and Hansen, 1993).

Secondly, estimation of the seasonal version of the error-correction model [ECM] is

preliminary to other econometric analyses such as forecasting (Kunst, 1993), testing for the

rational expectations hypothesis (Ermini and Chang, 1996), and the common trend-common

cycle decomposition (Cubadda, 1999).

Remarkably, cointegration relations at frequencies other than zero and π are generally

dynamic. This complicates the statistical analysis since polynomial cointegration vectors are

entailed (see, e.g., Engle et al., 1993; Ahn and Reinsel, 1994). Limiting our discussion to

maximum likelihood [ML] procedures, Lee (1992) developed inference for the particular case

of synchronous cointegration at frequency π/2 whereas Johansen and Schaumburg

[henceforth, JS] (1998) completed the analysis for the general case of dynamic cointegration

at the complex root frequencies. Unfortunately, the JS method requires a rather involved

iterative procedure to compute estimates of parameters of interest. This paper shows that an

estimator and a test statistic which are asymptotically equivalent to those proposed by JS can

be obtained by reduced rank regression [RRR] between complex-valued data. The basic trick

is the introduction of a complex ECM, which greatly simpli fies testing and estimation of

polynomial cointegration vectors.

This paper is organised as follows: Section 2 introduces the complex ECM. Section 3

deals with statistical inference. In Section 4 the analysis is applied to Italian data of

consumption, investment and output. Section 5 presents conclusions.

2. The complex error correction model

Let tX  be n -vector time series such that
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ttt DXL ε+Φ=Π )( (2.1)

where )(LΠ  is a polynomial matrix such that nI=Π )0( , 0=Π j  for pj > , tε  are i.i.d.

),,0(N Ωn  and tD  is a deterministic kernel which may contain a constant, a linear trend, and

various trigonometric functions of time. We assume that the initial values are fixed and that

the roots of the determinant )(zΠ  are on or outside the unit circle.

Let Mzz ,...,1  be the solutions of the equation 0)( =Π z  such that ),exp( mmz ιω=  =ι

,1−  and ],0[ πω ∈m , .,...,2,1 Mm = 1 Hence, we can write

∗−=Π mmmz βα)(

where mα  and mβ  are complex-valued )( mrn × −matrices with rank equal to mr , and ∗
mβ

denotes the conjugate transpose of mβ .

Let us further assume that each matrix ⊥

•

⊥
∗ Π mmm z βα )(  has rank equal to ),( mrn −  where

for any complex full-rank )( rn × −matrix C  we denote by ⊥C  a complex full-rank matrix of

dimension )( rnn −×  such that 0=⊥
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If we expand the polynomial matrix )(LΠ  around 0  and all the unit roots of )(zΠ , we

get the following representation of series tX :
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where t

M

j
jt XLX 





∇= ∏

=
)(

1

)0( , )(LAm  is related to 

1

)(

−

≠






∇∏

M

mj
mjmm zzα  as )(Lmβ  to mβ  in

equation (2.2), and )(LΨ  is a polynomial matrix.

Let us now consider the expansion of )(LΠ  around 0  and .,...,1 Mzz  In this case, the

VAR model (2.1) can be rewritten as follows:
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 and

)(LΓ  is a polynomial matrix.

Equation (2.3) resembles the usual ECM where the stationary variables )0(
tX  react to

the equili brium errors )(
1)( m

tm XL −′β  through the (polynomial) adjustment matrices ).(LAm

Interpretation of equation (2.4) is less neat. However, we note from JS that complex processes

)0(
tY  and )(m

tmY∗β  do not possess the unit roots .,...,1 Mzz  Henceforth, equation (2.4) will be

called the complex ECM of series .tX
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3. Statistical inference

The statistical analysis of the complex ECM is based on partial canonical correlations

between )0(
tY  and .)(

1
m

tY −  In fact, when focusing on cointegration at a given frequency we can

safely ignore reduced rank restrictions at other frequencies since processes with different unit

roots are asymptotically uncorrelated. Moreover, the same argument implies that the tests

statistics and estimators given later are asymptotically equivalent to their maximum likelihood

counterparts, see Lee (1992) and JS.

The suggested inferential procedure goes as follows. Regress )0(
tY  and )(

1
m

tY −  on other

regressors in equation (2.4) to form residuals )0(
tR  and )(m

tR  respectively. Then, perform

canonical correlation analysis between )0(
tR  and )(m

tR  by computing the product moment

matrices

∑
=
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and solving the eigenvalue problem
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0,00,, =− −

mmmm SSSSλ

for eigenvalues nλλ ˆ...1̂ >>  and eigenvectors )ˆ,...,ˆ(ˆ
1 nV νν=  normalised such that

.ˆˆ
, nmm IVSV =∗ 2 Hence, the RRR estimator is )ˆ,...,ˆ(ˆ

1 mrm ννβ =  and a test statistic for the

hypothesis ∗−=Π mmmz βα)(  is

∑
+=

−−=
n
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i

m

TTR
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)ˆ1ln(2 λ

                                               
2 See Brillinger (1981) for details on regression and canonical correlation analysis between complex variables.
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Finally, the estimate of the polynomial vector )(ˆ Lmβ  is found by inserting mβ̂  in

equation (2.2).

The limit distribution of the test statistic TR  for the complex root case is given in the

following theorem.

Theorem 2.1. In the model (2.4) and for the case ),0( πω ∈m  we have
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where ⇒  denotes weak convergence in distribution, {}⋅tr  denotes the trace of the matrix in

argument, ),()()( uBuBuB irc ι+=  )(uBr  and )(uBi  are independent standard Brownian

motions of dimension )( mrn − , and )()( uBuF cc =  if tD  does not include the trigonometric

functions )],sin(),[cos( tt mm ωω  ∫−=
1

0

d)()()( ssBuBuF ccc  otherwise.

Proof. The proof is only sketched since it involves simple applications of earlier results in this

area of research. For the moment, let us assume that tX  is a complex-valued process,

tm XL)(∆  is a real-valued stationary process, tm X∗β  is stationary, and there are no

deterministic terms in the model, i.e. .0=Φ  We can easily deduce from Corollary 7 in JS that

∗∗−






⇒ ∫ mccmmm CuWWCST

1

0

,
1 d

2

1

⊥
∗

⊥ ∫⇒ mccmmm WWCS αα
1

0

0, )(d
2

1

0,0,,,0,00,0 ,, βββ βββ Σ→Σ→Σ→ ∗∗
mmmmmm SSS



6
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Based on the above results, we can proceed analogously to Johansen (1988) for the real

root case in order to prove that )ˆ,...,ˆ( 1 nrm
T λλ +  converge in distribution to the ordered

solutions of the equation

0)(d)(d
2

1
d

1

0

1

0

1

0

*** =−∫ ∫ ∫ cccccc BBBBuBBρ (3.2)

Notice that when the trigonometric functions )]sin(),[cos( tt mm ωω  are included in the

model, the complex-valued Brownian motion )(uBc  in equation (3.2) must be replaced with

its demeaned counterpart, i.e. .d)()(
1

0
∫− ssBuB cc  Moreover, the limit distribution (3.2) is

unaffected by the inclusion of deterministic terms having no spectral mass at frequency ,mω

see Lee and Siklos (1995) and JS. Finally, by writing ),1(oˆ2
1

p

n

ri
i

m

TTR ∑
+=

+= λ  we complete the

proof of the theorem for the particular case under consideration.

Regarding the general case of a real-valued process tX  with various unit roots, we

know that the asymptotic distribution (3.1) is invariant to the presence of unit roots other than

mz  (including 1−
mz ) since processes being I(1) at different frequencies are asymptotically

independent, see again Lee (1992) and JS. Notice that the distribution (3.1) is an equivalent

formulation of the limit distribution of the LR statistic for the model with no deterministic

term given in JS. However, these distributions do not coincide for the model with seasonal

dummies due to the different treatment of the periodic term, compare Lee and Siklos (1995)

with Franses and Kunst (1999). ■
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Quantiles of the limit distribution (3.1) with ∫−=
1

0

d)()()( ssBuBuF ccc  are reported in

Table 1. This distribution is simulated by approximating the process cB  with a 400-step

random walk where the increments are replications of a )( mrn − -complex i.i.d. variable tη

such that

{ } { } ( ) ),3,2,1(,0N~Im,Re )(2)(2 =−
′




 ′′
−− mrnrntt rnI

mm
ηη

and the statistic is computed 000100  times.

Tables 2-5 report finite sample critical values of the LR  statistic for cointegration at

frequency 2π  with quarterly data. In particular, the following data-generating process is

considered

),...,2,1(4 TtX tt ==∆ ε

for ,200,150,100,50=T  where tε  is i.i.d. ),0( nIN  for ,3,2,1=n  and initial values are set to

zero. The finite sample quantiles are obtained by 00030  replications using the complex RRR

model (2.4) where the deterministic kernel tD  may include a constant, seasonal dummies and

a time-trend.

Finally, notice that the asymptotic equivalence of the RRR estimator to the ML

estimator implies that mβ̂  is consistent and its limit distribution is mixed Gaussian, see

Johansen (1996). Hence, linear hypothesis on polynomial cointegration vectors can be

investigated with asymptotic 2χ  tests.

4. Empirical example: seasonal cointegration in a small macroeconomic system

In order to ill ustrate the practical value of the concepts and methods previously discussed, we

consider Italian quarterly time series on household consumption ( tc ), fixed investment ( ti )
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and gross domestic production ( ty ) in log per-capita form for the period 1973.2 through

1997.1 (data from 1970.1 are taken as starting values). These series are graphed in Figure 1.

The theoretical background is represented by the neoclassical model of seasonal

fluctuations proposed by Chatterjee and Ravikumar (1992). A relevant implication of this

model is that deviations of ,tc  ,ti  and ty  from a common deterministic trend can be

decomposed in two parts: a deterministic seasonal component that reflects periodic shifts in

preferences and technology, and a stochastic transitory component that captures the effects of

non-seasonal shocks to the economy. Following King et al. (1988), we know that the common

trend becomes stochastic when labour augmenting technology is assumed to follow a random

walk with drift rather than a deterministic function of time. Similarly, stochastic seasonality

can arise from persistent seasonal variations in productivity and tastes, see Wells (1997). In

this case, seasonal cointegration analysis may reveal the number of independent shocks that

drive the seasonal fluctuations in the economy.

As a first step of the empirical analysis, a VAR(13) model is selected according to the

longest significant lag rule and usual diagnostic tests give no sign of misspecification for this

model. Note that seasonal dummies and linear trends are included in the regressions thus

rendering preliminary pre-testing for univariate unit-roots unnecessary.

The results of the LR cointegration tests at the zero frequency, reported in Table 6,

suggest the existence of a single cointegration vector such that .)64.1,06.0,1( ′− 3 Hence, there

is no evidence of balanced growth for the Italian economy. From Table 6 we also see that

there is evidence of one cointegration relationship at frequency .π  The associated eigenvector

is .)15.0,13.0,1( ′−−

Regarding cointegration at the annual frequency, the results of the trace test for

polynomial cointegration and the Lee’s test for synchronous cointegration are both reported at

Table 7. We see that the test based on the complex ECM provides strong evidence in favour

of a non contemporaneous cointegration relationship which is not detected by the Lee’s test.

The RRR estimate of the polynomial cointegration vector is the following

.)58.027.0,05.012.0,1( ′+−+− LL

                                               

3 Notice that an LR test for restricting to zero the coefficient of ti  produces an )1(2χ  equal to 1.82, which is

insignificant at a 10% level.
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Further insights on the cointegration properties of variables can be understood by

checking the significance of the various error correction terms in the seasonal ECM. From

Table 8 we see that the first lag of the annual error correction terms is insignificant. Hence,

we can omit this redundant variable and test on the remaining error correction terms. The

results, reported in Table 8, confirm the relevance of the cointegration relationships at the

different frequencies.

Finally, we can compare the selected specification of the seasonal ECM with a model

where the annual cointegration vector is estimated by the Lee’s procedure. The test for the

former encompassing the latter gives raise to a )58,3(F  statistic equal to 1.38, which is

insignificant at the 20% level. The test statistic for the reverse encompassing comparison is

equal 9.88, which is overwhelmingly significant.

5. Conclusions

This paper considers the complex ECM for seasonally cointegrated time series. It offers a

reduced rank estimator of polynomial cointegration vectors and a trace test for determining

the cointegration rank at frequencies different from zero and .π  The asymptotic distribution

theory is discussed and the relevant critical values are computed. The methods are applied to

Italian macroeconomic data, and evidence is provided for an annual cointegration relationship

which is not detected by the usual Lee’s test for synchronous cointegration.
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Table 1

Asymptotic critical values of the TR  statistic

Model (2.4) where tmm Dtt ⊂)]sin(),[cos( ωω

)( mrn − 50% 75% 80% 85% 90% 95% 97.5% 99%

1 5.4 8.2 9.0 9.9 11.2 13.2 15.1 17.5

2 19.2 23.6 24.7 26.1 28.0 30.9 33.5 36.8

3 40.9 46.8 48.4 50.2 52.7 56.4 59.7 63.6

Table 2

Finite sample )50( =T  critical values of the TR  statistic

)( mrn − ),,( TrSDI 50% 75% 80% 85% 90% 95% 97.5% 99%

(0,0,0) 1.5 3.0 3.5 4.1 4.9 6.4 7.8 9.8

(1,0,0) 1.5 3.0 3.5 4.1 4.9 6.4 7.8 9.8

(1,0,1) 1.5 3.0 3.5 4.1 4.9 6.4 7.9 9.8

(1,1,0) 5.6 8.4 9.2 10.2 11.6 13.8 15.8 18.4

1

(1,1,1) 5.6 8.5 9.3 10.3 11.7 13.9 16.1 18.6

(0,0,0) 11.8 15.3 16.3 17.5 19.1 21.8 24.2 27.4

(1,0,0) 11.9 15.5 16.4 17.7 19.3 22.0 24.6 27.8

(1,0,1) 12.1 15.6 16.6 17.8 19.4 22.2 24.9 28.2

(1,1,0) 20.6 25.4 26.7 28.4 30.5 33.7 36.9 41.0

2

(1,1,1) 20.9 25.8 27.1 28.8 31.0 34.4 37.7 41.6

(0,0,0) 31.8 37.5 39.1 41.0 43.4 47.2 50.9 55.8

(1,0,0) 32.2 38.1 39.7 41.7 44.1 48.2 51.8 56.8

(1,0,1) 32.7 38.7 40.3 42.3 44.9 48.9 52.5 57.4

(1,1,0) 46.3 53.6 55.6 58.1 61.3 66.5 71.1 77.5

3

(1,1,1) 47.2 54.7 56.6 59.1 62.6 67.9 72.6 78.6
Note: I = constant, SD = seasonal dummies, Tr = deterministic linear trend.
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Table 3

Finite sample )100( =T  critical values of the TR  statistic

)( mrn − ),,( TrSDI 50% 75% 80% 85% 90% 95% 97.5% 99%

(0,0,0) 1.5 3.0 3.4 4.0 4.8 6.3 7.7 9.5

(1,0,0) 1.5 3.0 3.4 4.0 4.8 6.3 7.7 9.5

(1,0,1) 1.5 3.0 3.4 4.0 4.8 6.3 7.7 9.5

(1,1,0) 5.5 8.3 9.1 10.0 11.2 13.2 15.2 17.6

1

(1,1,1) 5.5 8.4 9.1 10.1 11.3 13.3 15.2 17.7

(0,0,0) 11.5 14.9 15.8 16.9 18.5 20.9 23.2 26.0

(1,0,0) 11.6 14.9 15.8 16.9 18.5 21.0 23.1 26.0

(1,0,1) 11.6 14.9 15.8 17.0 18.6 21.0 23.2 26.1

(1,1,0) 19.7 24.2 25.4 26.8 28.7 31.7 34.6 38.0

2

(1,1,1) 19.9 24.3 25.5 26.9 28.9 31.9 34.8 38.2

(0,0,0) 30.1 35.3 36.6 38.3 40.4 43.7 46.7 51.0

(1,0,0) 30.3 35.4 36.8 38.4 40.5 43.9 47.0 50.9

(1,0,1) 30.4 35.5 36.9 38.5 40.6 44.0 47.1 51.2

(1,1,0) 42.7 49.0 50.6 52.6 55.2 59.2 62.7 67.5

3

(1,1,1) 42.9 49.2 50.9 52.8 55.4 59.4 62.9 67.9
See note to Table 2 for detail s.
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Table 4

Finite sample )150( =T  critical values of the TR  statistic

)( mrn − ),,( TrSDI 50% 75% 80% 85% 90% 95% 97.5% 99%

(0,0,0) 1.5 3.0 3.4 4.0 4.8 6.2 7.6 9.2

(1,0,0) 1.5 3.0 3.4 4.0 4.8 6.2 7.6 9.3

(1,0,1) 1.5 2.9 3.4 4.0 4.8 6.2 7.6 9.3

(1,1,0) 5.4 8.3 9.1 10.0 11.2 13.2 15.2 17.6

1

(1,1,1) 5.5 8.3 9.1 10.1 11.3 13.3 15.2 17.7

(0,0,0) 11.5 14.8 15.7 16.9 18.4 20.9 23.1 25.9

(1,0,0) 11.5 14.8 15.7 16.9 18.4 20.9 23.1 26.0

(1,0,1) 11.5 14.8 15.7 16.9 18.4 20.9 23.1 26.0

(1,1,0) 19.6 24.0 25.2 26.6 28.5 31.4 34.3 37.8

2

(1,1,1) 19.6 24.1 25.3 26.7 28.6 31.5 34.3 37.8

(0,0,0) 29.8 35.0 36.3 37.9 40.0 43.2 46.2 50.0

(1,0,0) 29.9 35.0 36.4 38.0 40.0 43.3 46.2 50.1

(1,0,1) 29.9 35.1 36.4 38.0 40.1 43.4 46.3 50.1

(1,1,0) 42.2 48.1 49.7 51.6 54.2 58.3 61.6 66.1

3

(1,1,1) 42.3 48.2 49.9 51.8 54.3 58.4 61.8 66.1
See note to Table 2 for detail s.
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Table 5

Finite sample )200( =T  critical values of the TR  statistic

)( mrn − ),,( TrSDI 50% 75% 80% 85% 90% 95% 97.5% 99%

(0,0,0) 1.5 3.0 3.4 4.0 4.8 6.2 7.6 9.2

(1,0,0) 1.5 3.0 3.4 4.0 4.9 6.2 7.6 9.3

(1,0,1) 1.5 2.9 3.4 4.0 4.8 6.2 7.6 9.3

(1,1,0) 5.4 8.3 9.0 10.0 11.2 13.2 15.2 17.6

1

(1,1,1) 5.5 8.3 9.1 10.0 11.3 13.3 15.2 17.6

(0,0,0) 11.5 14.8 15.6 16.8 18.3 20.7 22.9 25.6

(1,0,0) 11.5 14.8 15.6 16.8 18.3 20.7 22.8 25.7

(1,0,1) 11.5 14.8 15.6 16.8 18.3 20.7 22.9 25.7

(1,1,0) 19.6 23.9 25.0 26.5 28.4 31.4 34.0 37.2

2

(1,1,1) 19.6 23.9 25.1 26.6 28.5 31.5 34.1 37.2

(0,0,0) 29.7 34.7 36.1 37.7 39.8 42.9 45.9 49.8

(1,0,0) 29.7 34.8 36.1 37.8 39.8 42.9 46.0 49.9

(1,0,1) 29.7 34.7 36.1 37.8 39.8 42.9 46.0 49.8

(1,1,0) 41.8 47.9 49.5 51.3 53.9 57.6 61.2 65.5

3

(1,1,1) 41.9 47.9 49.6 51.4 54.0 57.7 61.1 65.7
See note to Table 2 for detail s.

Table 6

Trace tests for cointegration at frequencies 0  and π
Frequency

0 π

Null
hypothesis

Test
statistic

5% critical
value

Null
hypothesis

Test
statistic

5% critical
value

01 =r 46.5 43.1 02 =r 42.4 34.6

11 ≤r 12.4 25.5 12 ≤r 13.1 19.4

21 ≤r 4.5 12.3 22 ≤r 2.9 8.7

Note: 1r  = cointegration rank at frequency zero, 2r = cointegration rank at frequency .π
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Table 7

Trace tests for cointegration at frequency 2π

Polynomial cointegration Synchronous cointegration

Null
hypothesis

Test
statistic

5% critical
value

Test
statistic

5% critical
value

03 =r 93.0 59.4 31.9 40.9

13 ≤r 28.3 31.9 9.3 24.5

23 ≤r 6.7 13.3 0.0 12.0

Note: 3r  = cointegration rank at frequency .2π

Table 8

Significance tests on the error correction terms

Unrestricted model Restricted model

Variable
)58,3(F  test

statistic
p-value

)58,3(F  test
statistic

p-value

11 −tecm 8.53 0.00 8.68 0.00

12 −tecm 8.78 0.00 8.87 0.00

13 −tecm 0.95 0.42 − −

23 −tecm 15.13 0.00 15.48 0.00

Note: tecm1  = zero-frequency error correction term, tecm2  = biannual frequency error correction

term, tecm3  = annual frequency error correction term.
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Figure 1

Consumption, investment and output in log per-capita form


