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Abstract

This paper derives Lagrangian Multiplier tests to jointly test for functional form and spatial error corre-

lation. In particular, this paper tests for linear and loglinear models with no spatial error dependence against

a more general Box-Cox model with spatial error correlation. Conditional LM tests and modified Rao-Score

tests that guard against local misspecification are also derived. These tests are easy to implement and are

illustrated using Anselin’s (1988) crime data. The performance of these tests are also compared using Monte

Carlo experiments.



1 Introduction

The choice of functional form is important especially when nonlinearity is suspected, see Lendent

(1986) for a model of urbanization with nonlinear migration flows; Craig, Kohlhase and Papell

(1991) who were concerned with the nonlinear structure of hedonic housing price regressions; Elad,

Clifton and Epperson (1994) for a nonlinear hedonic model of the price of farmland in Georgia.

Similar concerns over non-linearity in the spatial econometrics literature are evident in Upton and

Fingleton (1985), Bailly et al. (1992), Griffith et al. (1998), and Fik and Mulligan (1998), to mention

a few. The Box and Cox (1964) procedure has been used to choose among alternative functional

forms, see Savin and White (1978), Seaks and Layson (1983), and Davidson and MacKinnon (1985),

to mention a few. But the spatial correlation further complicates the estimation and testing of

these models. Attempts at dealing with this problem vary from estimating the Box-Cox model

by maximum likelihood methods ignoring the spatial correlation, see Upton and Fingleton (1985),

to linearizing the Box-Cox transformation, see Bailly et al. (1992), and Griffith et al. (1998).

However, linearization is an approximation that is only valid around specific values of the parameters.

Misspecifying the functional form and/or ignoring the spatial dependence can result in misleading

inference and raise questions about the reliability and precision of the resulting estimates.

This paper derives Lagrange Multiplier (LM) tests to jointly test for functional form and spatial

dependence. To our knowledge, this is the first extension of the LM test on functional form to

spatial econometrics. Testing for spatial dependence assuming a specific functional form, usually a

linear regression, is studied extensively in Anselin (1988), Anselin et al. (1996), and more recently

in Anselin and Bera (1998). The latter study surveys several tests for spatial dependence including

Wald, LR and LM type tests. However, none of these tests jointly test for spatial dependence

and functional form. The LM tests derived in this paper are computationally simple, requiring

least squares regressions on linear or loglinear models. It allows the researcher to test for a linear

or loglinear model with no spatial error dependence against a more general Box-Cox model with

spatial error dependence. Special cases of these tests include tests for functional form given spatial

dependence and tests for spatial dependence given functional form. In addition, conditional LM

tests as well as Bera and Yoon (1993) modified Rao Score tests are derived. The latter guard
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against local misspecification.

Section 2 derives the joint, conditional and modified LM tests for the Box-Cox spatial error

dependence model, while Section 3 illustrates these tests using Anselin’s (1988) crime data. Section

4 compares the performance of these tests using Monte Carlo experiments, while Section 5 gives our

conclusion.

2 The Model and the LM Tests

Consider the following Box-Cox model

y
(r)
i =

K∑
k=1

βk x
(r)
ik +

S∑
s=1

γs zis + ui, i = 1, ..., n (1)

where

x(r) =


xr−1
r if r 6= 0

log(x) if r = 0
(2)

is the familiar Box-Cox transformation. Both yi and xik are subject to the Box-Cox transformation

and are required to take positive values only, while the Zi variables are not subject to the Box-Cox

transformation. The Zi’s may include dummy variables and the intercept. Note that for r = 1,

equation (1) becomes a linear model whereas for r = 0 it becomes a loglinear model. Following

Anselin (1988) or Anselin and Bera (1998, p.248), we allow for spatial correlation in the error term

u = λWu+ v (3)

where λ is the spatial autoregressive coefficient, W is the matrix of known spatial weights and

v ∼ N(0, σ2
vI) is independent of u. 1

1Davidson and MacKinnon (1985, p. 500) point out that the normality assumption may be untenable. In fact,
except for certain values of r (including 0 and 1), yt(r) cannot take on values less than −1/r, while with normal errors
there is always the possibility that the right-hand side of (1) may be less than −1/r. Davidson and MacKinnon (1985)
argue that it is reasonable to ignore the problem especially if E(yt) is very large relative to σ, and the possibility that
ut may be so large and negative as to make the right-hand side of (1) unacceptably small can be safely ignored. We
check the sensitivity of departures from the normality assumption in our Monte Carlo experiments.
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Substituting (3) into (1) rewritten in vector form yields

(I − λW ) y(r) = (I − λW ) X(r)β + (I − λW ) Zγ + v (4)

where y(r) is n× 1, X(r) is n×K, Z is n× S and β and γ are K × 1 and S × 1, respectively.

The loglikelihood function is given by

logL = −n
2

log(2π)− n

2
log(σ2) + log |I − λW |+ (r − 1)

n∑
i=1

log(yi)

− 1
2σ2

[(I − λW ) y(r) − (I − λW ) X(r)β − (I − λW ) Zγ]′

[(I − λW ) y(r) − (I − λW ) X(r)β − (I − λW ) Zγ]. (5)

Note that log |I − λW | =
∑n
i=1 log(1 − λωi), where ωi’s are the eigenvalues of W, see Ord (1975)

and Anselin (1988).

The first-order derivatives are given by

∂ logL
∂σ2

= − n

2σ2
+

1
2σ4

v′v (6)

∂ logL
∂β

=
1
σ2

[(I − λW )X(r)]′v (7)

∂ logL
∂γ

=
1
σ2

[(I − λW )Z]′v (8)

∂ logL
∂λ

= −
n∑
i=1

ωi
1− λωi

+
1
σ2
v′W (y(r) − X(r)β − Zγ) (9)

∂ logL
∂r

=
n∑
i=1

log(yi)−
1
σ2
v′(I − λW )[C(y, r)− C(X, r)β] (10)

where C(y, r) = ∂y(r)

∂r = 1
r2 (ryr log y − yr + 1). The second-order derivatives of the loglikelihood

function are given in Appendix A.

Let θ = (σ, β′, γ′, λ, r)′, then the gradient is given by G = ∂ logL
∂θ , and the information matrix is

given by I = E(−∂2 logL
∂θ∂θ′

). The LM test statistic is given by

LM = G̃′ Ĩ−1 G̃ (11)
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where G̃ and Ĩ denote the restricted gradient and information matrix evaluated under the null

hypothesis, respectively. Following Efron and Hinkley (1978), we estimate the information matrix

by the negative Hessian −H(θ̃). This is recommended on the ground that is closer to the data than

the corresponding expected value. Davidson and MacKinnon (1993) demonstrated that it is better

to use Ĩ rather than H̃ using Monte Carlo experiments. However, the latter is difficult to compute

in this case.

2.1 Joint Tests

Under the null hypothesis Ha
0 : λ = 0 and r = 0, the model in (1) becomes a loglinear model with

no spatial error dependence

log yi =
K∑
k=1

βk log xik +
S∑
s=1

γs zis + ui, i = 1, ..., n (12)

with y(r) = log y, C(y, 0) = 1
2(log y)2 and limr→0

∂C(y,r)
∂r = 1

3(log y)3. The restricted OLS residuals

from (12) are given by v̂ = log y − (logX)β̂ − Zγ̂ with σ̂2 = v̂′v̂/n.

The gradient becomes

∂ logL
∂σ2

= − n

2σ2
+

1
2σ4

v′v (13)

∂ logL
∂β

=
1
σ2

[logX]′v (14)

∂ logL
∂γ

=
1
σ2
Z ′v (15)

∂ logL
∂λ

= −
n∑
i=1

ωi +
1
σ2
v′W (log y − (logX)β − Zγ) (16)

∂ logL
∂r

=
n∑
i=1

log(yi)−
1
σ2
v′[

1
2

(log y)2 − 1
2

(logX)2β] (17)

and the second order derivatives of the loglikelihood function are given in Appendix B.1.

Under the null hypothesis Hb
0 : λ = 0 and r = 1, the model in (1) becomes a linear model with

no spatial error dependence

yi − 1 =
K∑
k=1

βk(xik − 1) +
S∑
s=1

γs zis + ui, i = 1, ..., n (18)
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with y(r) = y − 1, C(y, 1) = y log y − y + 1 and limr→1
∂C(y,r)
∂r = y(log y)2 − 2y log y + 2y − 2. The

restricted OLS residuals from (18) are given by ṽ = (y − ιn)− (X − JnK)β̃ − Zγ̃ with σ̃2 = ṽ′ṽ/n,

where ιn and JnK are n× 1 and n×K matrix with all elements equal to 1, respectively.

The gradient becomes

∂ logL
∂σ2

= − n

2σ2
+

1
2σ4

v′v (19)

∂ logL
∂β

=
1
σ2

(X − 1)′v (20)

∂ logL
∂γ

=
1
σ2
Z ′v (21)

∂ logL
∂λ

= −
n∑
i=1

ωi +
1
σ2
v′W (y − ιn − (X − JnK)β − Zγ) (22)

∂ logL
∂r

=
n∑
i=1

log(yi)−
1
σ2
v′[y log y − y + ιn − (X logX −X + JnK)β] (23)

and the second-order derivatives of the loglikelihood function are given in Appendix B.2.

2.2 Conditional Tests

Joint tests are often criticized because they do not point out the “right” model we should adopt

when the null hypothesis is rejected. In this section we will consider conditional LM tests. These

tests account for the possible presence of spatial correlation when testing for functional form, or the

possible misspecification of the functional form when testing for spatial correlation.

2.2.1 LM Tests for Spatial Dependence Conditional on a General Box-Cox Model

Under the null hypothesis Hg
0 : λ = 0 |unknown r, the model in (1) becomes a general Box-Cox

model with no spatial error dependence in the error term. The gradient becomes

∂ logL
∂σ2

= − n

2σ2
+

1
2σ4

v′v = 0 (24)

∂ logL
∂β

=
1
σ2

[X(r)]′v = 0 (25)

∂ logL
∂γ

=
1
σ2
Z ′v = 0 (26)

∂ logL
∂λ

= −
n∑
i=1

ωi +
1
σ2
v′Wv (27)
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∂ logL
∂r

=
n∑
i=1

log(yi)−
1
σ2
v′[C(y, r)− C(X, r)β] (28)

The second order derivatives of the loglikelihood function are given in Appendix C.1.

2.2.2 LM Tests for Functional Form Conditional on Spatial Correlation

Next we consider tests for functional form, linear or loglinear against a general Box-Cox transfor-

mation, conditional on the presence of spatial dependence in the error term.

Loglinear with Spatial Correlation Under the null hypothesis Hh
0 : r = 0 |unknown λ, the

model in (1) becomes a loglinear model with spatial error dependence. Note that u = log y −

(logX)β − Zγ and v = (I − λW )u.

The gradient is

∂ logL
∂σ2

= − n

2σ2
+

1
2σ4

v′v = 0 (29)

∂ logL
∂β

=
1
σ2

[(I − λW ) logX]′v = 0 (30)

∂ logL
∂γ

=
1
σ2

[(I − λW )Z]′v = 0 (31)

∂ logL
∂λ

= −
n∑
i=1

ωi
1− λωi

+
1
σ2
v′Wu (32)

∂ logL
∂r

=
n∑
i=1

log(yi)−
1
σ2
v′(I − λW )[C(y, 0)− C(X, 0)β] (33)

The second order derivatives of the loglikelihood function are given in Appendix C.2.

Linear with Spatial Correlation Under the null hypothesis H i
0: r = 1 |unknown λ, the model in

(1) becomes a linear model with spatial error dependence. Note again that u = (y−1)−(X−1)β−Zγ

and v = (I − λW )u.

The gradient is

∂ logL
∂σ2

= − n

2σ2
+

1
2σ4

v′v = 0 (34)

∂ logL
∂β

=
1
σ2

[(I − λW )(X − 1)]′v = 0 (35)
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∂ logL
∂γ

=
1
σ2

[(I − λW )Z]′v = 0 (36)

∂ logL
∂λ

= −
n∑
i=1

ωi
1− λωi

+
1
σ2
v′Wu (37)

∂ logL
∂r

=
n∑
i=1

log(yi)−
1
σ2
v′(I − λW )[C(y, 1)− C(X, 1)β] (38)

The second order derivatives of the loglikelihood function are given in Appendix C.3.

2.3 Local Misspecification Robust Tests

Conditional LM tests do not ignore the possibility that r is not known when testing for λ = 0.

Whereas simple LM tests for λ = 0 assume implicitly that r = 0 or 1 and this may lead to

misleading inference. However, conditional LM tests are computationally more involved than the

corresponding simple LM tests. The latter are usually based on least squares residuals.

Bera and Yoon (1993) showed that, under local misspecification, the simple LM test asymptoti-

cally converges to a noncentral chi-square distribution. They suggest a modified Rao-Score (RS) test

which is robust to local misspecification. This modified RS test retains the computational simplicity

of the simple LM test in that it is based on the same restricted MLE (usually OLS). However, it

is more robust than the simple LM test because it guards against local misspecification. The idea

is to adjust the one-directional score test by accounting for its non-centrality parameter. Bera and

Yoon (1993) and Bera et al. (1998) showed using Monte Carlo experiments that these modified RS

tests have good finite sample properties and are capable of detecting the right direction of departure

from the null hypothesis. For our purposes, we consider four hypotheses:

Hc
0 : λ = 0 assuming r = 0 (no spatial correlation assuming loglinearity);

Hd
0 : λ = 0 assuming r = 1 (no spatial correlation assuming linearity);

He
0 : r = 0 assuming λ = 0 (loglinearity assuming no spatial correlation);

Hf
0 : r = 1 assuming λ = 0 (linearity assuming no spatial correlation).

Let η′ = (σ, β′, γ′) so that θ′ = (σ, β′, γ′, λ, r) = (η′, λ, r) and partition the gradient and the
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information matrix such that

d(θ) =
∂L(θ)
∂θ

=


∂L(θ)
∂η

∂L(θ)
∂λ

∂L(θ)
∂r

 (39)

and

J(θ) = −
[
∂2L(θ)
∂θ∂θ′

]
=


Jη Jηλ Jηr

Jλη Jλ Jλr

Jrη Jrλ Jr

 (40)

To be more specific, consider the null hypothesis Hc
0. The general model is represented by the

loglikelihood function L(η′, λ, r). For the null hypothesis Hc
0, the investigator sets r = 0 and tests

λ = 0 using the loglikelihood function L1(η′, λ) = L(η′, λ, 0). The standard Rao-Score statistic

based on L1(η′, λ) is denoted by RSλ. Let η̃ be the maximum likelihood estimator of η when λ = 0

and r = 0. If L1(η′, λ) were the true model, it is well known that when λ = 0 the test statistic

RSλ → χ2
1(0) and the test will have the correct size and will be locally optimal. Now suppose

that the true loglikelihood function is L2(η′, r) = L(η′, 0, r) so that the alternative L1(η′, λ) is

misspecified. Using a sequence of local values r = ξ/
√
n, the asymptotic distribution of RSλ under

L2(η′, r) is χ2
1(c1) where c1 is the non-centrality parameter, see Bera and Yoon (1993), Davidson

and MacKinnon (1987) and Saikkonen (1989) for details. Due to the presence of this non-centrality

parameter, RSλ will over-reject the null hypothesis even when λ = 0. Therefore, the test will

have an incorrect size. In light of this non-centrality parameter, Bera and Yoon (1993) suggested a

modification to RSλ so that the resulting test statistic is robust to the presence of r. The new test

essentially adjusts the asymptotic mean and variance of the standard RSλ.

Following equation (6) in Bera et al. (1998), we derive this modified RS test as follows

RS∗λ =
1
n

[dλ(θ̃)− Jλr·η(θ̃)J−1
r·η (θ̃)dr(θ̃)]′

[Jλ·η(θ̃)− Jλr·η(θ̃)J−1
r·η (θ̃)Jrλ·η(θ̃)]−1

[dλ(θ̃)− Jλr·η(θ̃)J−1
r·η (θ̃)dr(θ̃)] (41)

where dλ(θ̃) is the gradient for λ evaluated at the restricted MLE, Jλ·η ≡ Jλ·η(θ̃) = Jλ− JληJ−1
η Jηλ
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and Jr·η is similarly defined. Also, Jλr·η = Jλr − JληJ−1
η Jηr and Jrλ·η is similarly defined. All the

above quantities are estimated under the null hypothesis Hc
0 : λ = 0 assuming r = 0. The null

hypothesis Hd
0 : λ = 0 assuming r = 1 can be handled similarly with r = 1 rather than 0.

For the null hypotheses He
0 and Hf

0 , the modified RS test statistic is given by

RS∗r =
1
n

[dr(θ̃)− Jrλ·η(θ̃)J−1
λ·η(θ̃)dλ(θ̃)]′

[Jr·η(θ̃)− Jrλ·η(θ̃)J−1
λ·η(θ̃)Jλr·η(θ̃)]

−1

[dr(θ̃)− Jrλ·η(θ̃)J−1
λ·η(θ̃)dλ(θ̃)]. (42)

where dr(θ̃), Jrλ·η(θ̃), and Jλ·η(θ̃) are computed as described below (66) under the respective null

hypothesis.

In the Monte Carlo experiment in Section 4, we compute the simple LM test and the correspond-

ing Bera-Yoon modified LM test for each hypothesis considered. The simple RS tests for no spatial

correlation under linearity or loglinearity, i.e., Hc
0 and Hd

0 , are given in Anselin (1988) and Anselin

and Bera (1998), while the simple RS tests for functional form assuming no spatial correlation, i.e.,

He
0 and Hf

0 , are given in Davidson and MacKinnon (1985).

Note that it is not possible to robustify tests in the presence of global misspecification (i.e., λ

and r taking values far from their values under the null), see Anselin and Bera (1998). Also, it is

important to note that the modified RS tests satisfy the following decomposition

RSλr = RS∗λ +RSr = RSλ +RS∗r (43)

i.e., the joint test can be decomposed into the sum of the modified RS test of one type of alternative

and the simple RS test for the other, see Bera and Yoon (1993).

3 Empirical Example

Anselin (1988) considered a simple relationship between crime and housing values and income in

1980 for 49 neighborhoods in Columbus, Ohio. The data are listed in Table 12.1, p. 189 of Anselin

(1988). Crime is measured as per capita residential burglaries and vehicle thefts, and housing values
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and income are measured in thousands of dollars. The OLS regression gives

Crime = 68.619− 1.597 Housing − 0.274 Income
(4.735) (0.334) (0.103)

where the standard errors are given in parentheses.

We apply the tests proposed in the last section to the crime data. The dependent and indepen-

dent variables Crime, Housing and Income are subject to the Box-Cox transformation while the

constant term is not. The results are reported in Table 1. The joint LM test statistic for Ha
0 : λ = 0

and r = 0, is 54.06. This is distributed as χ2
2 under Ha

0 and is significant. The LM test statistic

for Hb
0 : λ = 0 and r = 1, is 13.53. This is distributed as χ2

2 under Hb
0 and has a p-value of 0.001.

Both the linear and loglinear models without spatial autocorrelation are rejected in favor of a more

general Box-Cox model with spatial autocorrelation. Assuming a loglinear model, one does not

reject the absence of spatial correlation. However, assuming a linear model, one rejects the absence

of spatial correlation. These outcomes are not changed by allowing for local misspecification using

the corresponding Bera and Yoon (1993) adjusted LM statistics. In addition, if one assumes no

spatial correlation, one rejects loglinearity but not linearity of the model. Again, both outcomes

are not changed by allowing for local misspecification using the Bera and Yoon (1993) adjustment.

Conditional on a general Box-Cox model, the hypothesis of no spatial correlation is rejected with a

p-value of 0.006. Conditional on spatial correlation, the loglinear model is rejected with a p-value

of 0.000 and the linear model is not rejected with a p-value of 0.602.

For this empirical example, one does not know the true model. However, the evidence is against

a loglinear model and in favor of a linear model with spatial autocorrelation. In the next section,

Monte Carlo experiments are performed, where we know the true model and we can report the

empirical size and power performance of these tests.

4 Monte Carlo Results

The experimental design used in the Monte Carlo simulations follows those extensively used in other

spatial studies (e.g. Anselin and Rey, 1991; Florax and Folmer, 1992; Anselin et al., 1996). The
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model considered is given by

y(r) = X(r)β + Zγ + u (44)

where u = λWu+ v. We use the spatial weight matrix from the crime data in Anselin (1988). The

number of observations is n = 49. The explanatory variables X, an n×2 matrix, are generated from

a uniform (0,10) distribution and the coefficients β’s are set to 1. The Z variable consists of constant

term and γ is set equal to 4. The error term v is generated from a standard normal distribution. In

addition to a normal error, a student t error term is generated as well, with mean and variance equal

to that of the normal variates. The tests are evaluated at their asymptotic critical value for α = 0.05

and the power is reported. The three conditional tests in this paper involve numerical maximum

likelihood estimation. These are computationally more expensive compared to the unconditional or

Bera-Yoon type LM tests. For each combination of parameter values, 1000 replications were carried

out.

Figure 1 plots the frequency of rejections in 1000 replications using the joint LM statistic for

no spatial correlation and loglinearity, i.e., Ha
0 : λ = 0 and r = 0. This test tends to over-reject

with size equal to 18.5% rather than 5%. The power of the test increases as λ or r depart from

zero. In fact, if the true model is linear, the frequency of rejections of loglinearity with no spatial

autocorrelation is 100%. Figure 2 gives the frequency of rejections in 1000 replications using the

joint LM statistic for no spatial correlation and linearity, i.e., Hb
0 : λ = 0 and r = 1. This test tends

to over-reject with size equal to 11.3% rather than 5%. The power of the test increases as λ departs

from zero or r departs from 1. In fact, if the true model is loglinear, the frequency of rejections is

100%. Figure 3 gives the frequency of rejections in 1000 replications using the simple Rao-Score

statistic for no spatial correlation assuming a loglinear model, i.e., Hc
0 : λ = 0 assuming that r = 0.

This is the standard LM test statistic for no spatial correlation given by Anselin (1988) and Anselin

and Bera (1998). The size of the test is equal to 7.4% rather than 5%. For r = 0, the power of

this test increases as λ departs from zero. However, this test is sensitive to departures of r from

0. In fact, if the true model is linear, we reject that λ = 0 only 3.3% of the time when true λ is

equal to 0.6. This rejection frequency is only 0.2% when true λ is equal to -0.6. Figure 4 gives the

frequency of rejections in 1000 replications of the Bera and Yoon (1993) adjusted Rao-Score statistic

11



for Hc
0. This Bera-Yoon adjustment helps increase the power of the test as clear from comparing

Figure 3 to Figure 4. However, the size of this test is 11.7% and is sensitive to departures from local

misspecification. In fact, for r = 1, this test rejects the null when true in 83% of the cases. Figure

5 gives the frequency of rejections in 1000 replications using the simple Rao-Score statistic for no

spatial correlation assuming a linear model, i.e., Hd
0 : λ = 0 assuming that r = 1. The size of the

test is equal to 8.5% rather than 5%. For r = 1, the power of this test increases as λ departs from

zero. However, this test is sensitive to departures of r from 1. In fact, if the true model is loglinear,

we reject that λ = 0 only 27.7% of the time when true λ is equal to 0.6 and 15.2% of the time when

true λ is equal to - 0.6. Figure 6 gives the frequency of rejections in 1000 replications of the Bera

and Yoon (1993) adjusted Rao-Score statistic for Hd
0 . This adjustment helps increase the power of

the test as clear from comparing Figure 5 to Figure 6. However, the size of this test is 9.6% and is

sensitive to departures from local misspecification. In fact, for r = 0, this test rejects the null when

true in 38% of the cases. Figure 7 gives the frequency of rejections in 1000 replications using the

simple Rao-Score statistic for loglinearity assuming no spatial correlation, i.e., He
0 : r = 0 assuming

that λ = 0. The size of the test is equal to 16.6% rather than 5% and tends to over-reject the null

when in fact it is true. For λ = 0, the power of this test increases as r departs from zero. This

test is not very sensitive to departures of λ from 0. Figure 8 gives the frequency of rejections in

1000 replications of the Bera and Yoon (1993) adjusted Rao-Score statistic for He
0 . This adjustment

helps increase the power of the test as clear from comparing Figure 7 to Figure 8. However, the size

of this test is 17.5% and is sensitive to departures from local misspecification. In fact, for λ = 0.6,

this test rejects the null when true in 32% of the cases. This rejection frequency is 22% when true

λ is equal to -0.6. Figure 9 gives the frequency of rejections in 1000 replications using the simple

Rao-Score statistic for linearity assuming no spatial correlation, i.e., Hf
0 : r = 1 assuming that

λ = 0. The size of the test is equal to 8.2% rather than 5% and tends to over-reject the null when

in fact it is true. For λ = 0, the power of this test increases as r departs from one. This test is

not very sensitive to departures of λ from 0. Figure 10 gives the frequency of rejections in 1000

replications of the Bera and Yoon (1993) adjusted Rao-Score statistic for Hf
0 . This adjustment helps

increase the power of the test as clear from comparing Figure 9 to Figure 10. However, the size of

this test is 8.9% and is sensitive to departures from local misspecification. In fact, for λ = 0.6, this

12



test rejects the null when true in 26% of the cases. This rejection frequency is 13% when true λ is

equal to -0.6. Figure 11 gives the conditional LM frequency of rejections for no spatial correlation

assuming a general Box-Cox model, i.e., Hg
0 : λ = 0 assuming an unknown r. This test tends to

over-reject the null when true. This over-rejection depends on the value of r. The power of this test

increases as λ departs from zero. Figure 12 gives the conditional LM frequency of rejections for

loglinearity assuming the presence of spatial correlation, i.e., Hh
0 : r = 0 assuming an unknown λ.

The size of the test varies between 7.9% and 9.3% depending on the value of λ. The power of this

test increases as r departs from zero. Figure 13 gives the conditional LM frequency of rejections for

linearity assuming the presence of spatial correlation, i.e., H i
0 : r = 1 assuming an unknown λ. The

size of the test varies between 8.0% and 10.6% depending on the value of λ. The power of this test

increases as r departs from one.

We have also checked the sensitivity of our results to the normality assumption. A student t

distribution with 3 degree of freedom was also considered with mean and variance equal to that of

the normal variates. Except for differences in magnitudes of empirical size and power, the graphs

for the t-distribution look the same as those for the normal distribution. The results are available

upon request from the authors.

5 Conclusion

This paper derived joint, conditional and modified Rao-Score tests for functional form and spatial

error correlation. They are illustrated using an empirical example. In addition, the power per-

formance of these tests were compared using Monte Carlo experiments. Some of our findings are

as follows: (i) Choosing the wrong functional form could lead to misleading inference regarding

the presence or absence of spatial correlation. (ii) Ignoring spatial correlation when present could

also lead to the wrong choice of functional form. Our experiments show that the power was more

sensitive to functional form misspecification than misspecification of spatial error dependence. (iii)

Bera and Yoon (1993) modified Rao-Score tests guard against local misspecification but their power

deteriorate for large departures from the null hypothesis. (iv) Joint as well as conditional LM tests

perform well in Monte Carlo experiments and are recommended.
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Table 1. Results for Crime Data

Statistic p-value

Joint LM Tests

Ha
0 : λ = 0 and r = 0 54.058 0.000

Hb
0 : λ = 0 and r = 1 13.528 0.001

Rao Score Tests and Their Modified Forms

Hc
0 : RSλ=0 assuming r = 0 2.063 0.151

Hc
0 : RS∗λ=0 assuming r = 0 0.304 0.581

Hd
0 : RSλ=0 assuming r = 1 11.442 0.001

Hd
0 : RS∗λ=0 assuming r = 1 13.504 0.000

He
0 : RSr=0 assuming λ = 0 53.754 0.000

He
0 : RS∗r=0 assuming λ = 0 51.995 0.000

Hf
0 : RSr=1 assuming λ = 0 0.024 0.878

Hf
0 : RS∗r=1 assuming λ = 0 2.086 0.149

Conditional LM Tests

Hg
0 : λ = 0|unknown r 7.600 0.006

Hh
0 : r = 0|unknown λ 75.534 0.000

H i
0 : r = 1|unknown λ 0.272 0.602
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Appendix A: Hessain Matrix for the General Box-Cox Model with

Spatial Correlation

From (4), one can write

v = (I − λW )(y(r) − X(r)β − Zγ) = (I − λW )u

and the second-order derivatives of the loglikelihood function given in (5) yield the following results:

∂2 logL
∂σ2∂σ2

=
n

2σ4
− 1
σ6
v′v (45)

∂2 logL
∂σ2∂β′

= − 1
σ4
v′(I − λW )X(r) (46)

∂2 logL
∂σ2∂γ′

= − 1
σ4
v′(I − λW )Z (47)

∂2 logL
∂σ2∂λ

= − 1
σ4
v′Wu (48)

∂2 logL
∂σ2∂r

=
1
σ4
v′(I − λW )(C(y, r)− C(X, r)β) (49)

∂2 logL
∂β∂σ2

= − 1
σ4

[(I − λW )X(r)]′v (50)

∂2 logL
∂β∂β′

= − 1
σ2

[(I − λW )X(r)]′[(I − λW )X(r)] (51)

∂2 logL
∂β∂γ′

= − 1
σ2

[(I − λW )X(r)]′[(I − λW )Z] (52)

∂2 logL
∂β∂λ

= − 1
σ2

(WX(r))′v − 1
σ2

[(I − λW )X(r)]′(Wu) (53)

∂2 logL
∂β∂r

=
1
σ2

[(I − λW )X(r)]′[(I − λW )(C(y, r)− C(X, r)β)]

+
1
σ2

[(I − λW )C(X, r)]′[(I − λW )u] (54)

∂2 logL
∂γ∂σ2

= − 1
σ4

[(I − λW )Z]′v (55)

∂2 logL
∂γ∂β′

= − 1
σ2

[(I − λW )Z]′[(I − λW )X(r)] (56)
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∂2 logL
∂γ∂γ′

= − 1
σ2

[(I − λW )Z]′[(I − λW )Z] (57)

∂2 logL
∂γ∂λ

= − 1
σ2

[(I − λW )Z]′(Wu)− 1
σ2

(WZ)′v (58)

∂2 logL
∂γ∂r

=
1
σ2

[(I − λW )Z]′[(I − λW )(C(y, r)− C(X, r)β)] (59)

∂2 logL
∂λ∂σ2

= − 1
σ4
v′Wu (60)

∂2 logL
∂λ∂β′

= − 1
σ2
v′WX(r) − 1

σ2
(Wu)′[(I − λW )X(r)] (61)

∂2 logL
∂λ∂γ′

= − 1
σ2
v′WZ − 1

σ2
[W (y(r) − X(r)β − Zγ)]′[(I − λW )Z] (62)

∂2 logL
∂λ∂λ

= −
n∑
i=1

ω2
i

(1− λωi)2
− 1
σ2

(Wu)′(Wu) (63)

∂2 logL
∂λ∂r

=
1
σ2

[(I − λW )(C(y, r)− C(X, r)β)]′Wu+
1
σ2
v′W (C(y, r)− C(X, r)β) (64)

∂2 logL
∂r∂σ2

=
1
σ4
v′(I − λW )(C(y, r)− C(X, r)β) (65)

∂2 logL
∂r∂β′

=
1
σ2
v′(I − λW )C(X, r) +

1
σ2

(C(y, r)− C(X, r)β)′(I − λW )′[(I − λW )X(r)] (66)

∂2 logL
∂r∂γ′

=
1
σ2

[(I − λW )(C(y, r)− C(X, r)β)]′[(I − λW )Z] (67)

∂2 logL
∂r∂λ

=
1
σ2

(Wu)′(I − λW )(C(y, r)− C(X, r)β) +
1
σ2
v′W (C(y, r)− C(X, r)β) (68)

∂2 logL
∂r∂r

= − 1
σ2

[(I − λW )(C(y, r)− C(X, r)β)]′(I − λW )(C(y, r)− C(X, r)β)

− 1
σ2
v′(I − λW )(C ′(y, r)− C ′(X, r)β) (69)

where C ′(y, r) = ∂C(y, r)/∂r = [r2yr(log y)2 − 2ryr log y+ 2yr − 2]/r3 and C ′(X, r) = ∂C(X, r)/∂r

is similarly defined.
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Appendix B: Joint Tests

B.1 Hessian Matrix for the Loglinear Model with No Spatial Error Dependence

Under the hull hypothesis Ha
0 : λ = 0 and r = 0, the second order derivatives of the loglikelihood

function are given by

∂2 logL
∂σ2∂σ2

=
n

2σ4
− 1
σ6
v′v (70)

∂2 logL
∂σ2∂β′

= − 1
σ4
v′(logX) (71)

∂2 logL
∂σ2∂γ′

= − 1
σ4
v′Z (72)

∂2 logL
∂σ2∂λ

= − 1
σ4
v′W (log y − (logX)β − Zγ) (73)

∂2 logL
∂σ2∂r

=
1
σ4
v′[

1
2

(log y)2 − 1
2

(logX)2β] (74)

∂2 logL
∂β∂σ2

= − 1
σ4

(logX)′v (75)

∂2 logL
∂β∂β′

= − 1
σ2

(logX)′(logX) (76)

∂2 logL
∂β∂γ′

= − 1
σ2

(logX)′Z (77)

∂2 logL
∂β∂λ

= − 1
σ2

(W logX)′v − 1
σ2

(logX)′[W (log y − (logX)β − Zγ)] (78)

∂2 logL
∂β∂r

=
1
σ2

(logX)′[
1
2

(log y)2 − 1
2

(logX)2β] +
1
σ2

[
1
2

(logX)2]′[log y − (logX)β − Zγ] (79)

∂2 logL
∂γ∂σ2

= − 1
σ4
Z ′v (80)

∂2 logL
∂γ∂β′

= − 1
σ2
Z ′(logX) (81)

∂2 logL
∂γ∂γ′

= − 1
σ2
Z ′Z (82)

∂2 logL
∂γ∂λ

= − 1
σ2
Z ′[W (log y − (logX)β − Zγ)]− 1

σ2
(WZ)′v (83)

∂2 logL
∂γ∂r

=
1
σ2
Z ′[

1
2

(log y)2 − 1
2

(logX)2β] (84)
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∂2 logL
∂λ∂σ2

= − 1
σ4
v′W (log y − (logX)β − Zγ) (85)

∂2 logL
∂λ∂β′

= − 1
σ2
v′W logX − 1

σ2
[W (log y − (logX)β − Zγ)]′(logX) (86)

∂2 logL
∂λ∂γ′

= − 1
σ2
v′WZ − 1

σ2
[W (log y − (logX)β − Zγ)]′Z (87)

∂2 logL
∂λ∂λ

= −
n∑
i=1

ω2
i −

1
σ2

[W (log y − (logX)β − Zγ)]′[W (log y − (logX)β − Zγ)] (88)

∂2 logL
∂λ∂r

=
1
σ2

[
1
2

(log y)2 − 1
2

(logX)2β]′Wv +
1
σ2
v′W [

1
2

(log y)2 − 1
2

(logX)2β] (89)

∂2 logL
∂r∂σ2

=
1
σ4
v′[

1
2

(log y)2 − 1
2

(logX)2β] (90)

∂2 logL
∂r∂β′

=
1
σ2
v′(

1
2

(logX)2) +
1
σ2

[
1
2

(log y)2 − 1
2

(logX)2β]′(logX) (91)

∂2 logL
∂r∂γ′

=
1
σ2

[
1
2

(log y)2 − 1
2

(logX)2β]′Z (92)

∂2 logL
∂r∂λ

=
1
σ2

[W (log y − (logX)β − Zγ)]′[
1
2

(log y)2 − 1
2

(logX)2β]

+
1
σ2
v′W [

1
2

(log y)2 − 1
2

(logX)2β] (93)

∂2 logL
∂r∂r

= − 1
σ2

[
1
2

(log y)2 − 1
2

(logX)2β]′[
1
2

(log y)2 − 1
2

(logX)2β]

− 1
σ2
v′[

1
3

(log y)3 − 1
3

(logX)3β] (94)

B.2 Hessian Matrix for the Linear Model with No Spatial Error Dependence

Under the null hypothesis Hb
0 : λ = 0 and r = 1, the second order derivatives of the loglikelihood

function are given by

∂2 logL
∂σ2∂σ2

=
n

2σ4
− 1
σ6
v′v (95)

∂2 logL
∂σ2∂β′

= − 1
σ4
v′(X − JnK) (96)

∂2 logL
∂σ2∂γ′

= − 1
σ4
v′Z (97)

∂2 logL
∂σ2∂λ

= − 1
σ4
v′W (y − ιn − (X − JnK)β − Zγ) (98)

∂2 logL
∂σ2∂r

=
1
σ4
v′(C(y, 1)− C(X, 1)β) (99)

20



∂2 logL
∂β∂σ2

= − 1
σ4

(X − JnK)′v (100)

∂2 logL
∂β∂β′

= − 1
σ2

(X − JnK)′(X − JnK) (101)

∂2 logL
∂β∂γ′

= − 1
σ2

(X − JnK)′Z (102)

∂2 logL
∂β∂λ

= − 1
σ2

[W (X − JnK)]′v − 1
σ2

(X − JnK)′[W (y − ιn − (X − JnK)β − Zγ)] (103)

∂2 logL
∂β∂r

=
1
σ2

(X − JnK)′[(C(y, 1)− C(X, 1)β)]

+
1
σ2

[C(X, 1)]′[y − ιn − (X − JnK)β − Zγ] (104)

∂2 logL
∂γ∂σ2

= − 1
σ4
Z ′v (105)

∂2 logL
∂γ∂β′

= − 1
σ2
Z ′(X − JnK) (106)

∂2 logL
∂γ∂γ′

= − 1
σ2
Z ′Z (107)

∂2 logL
∂γ∂λ

= − 1
σ2
Z ′W [y − ιn − (X − JnK)β − Zγ]− 1

σ2
(WZ)′v (108)

∂2 logL
∂γ∂r

=
1
σ2
Z ′(C(y, 1)− C(X, 1)β] (109)

∂2 logL
∂λ∂σ2

= − 1
σ4
v′W (y − ιn − (X − JnK)β − Zγ) (110)

∂2 logL
∂λ∂β′

= − 1
σ2
v′W (X − JnK)− 1

σ2
[W (y − ιn − (X − JnK)β − Zγ)]′(X − JnK) (111)

∂2 logL
∂λ∂γ′

= − 1
σ2
v′WZ − 1

σ2
[W (y − ιn − (X − JnK)β − Zγ)]′Z (112)

∂2 logL
∂λ∂λ

= −
n∑
i=1

ω2
i

− 1
σ2

[W (y − ιn − (X − JnK)β − Zγ)]′[W (y − ιn − (X − JnK)β − Zγ)] (113)

∂2 logL
∂λ∂r

=
1
σ2

[C(y, 1)− C(X, 1)β]′W (y − ιn − (X − JnK)β − Zγ)

+
1
σ2
v′W (C(y, 1)− C(X, 1)β) (114)
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∂2 logL
∂r∂σ2

=
1
σ4
v′(C(y, 1)− C(X, 1)β) (115)

∂2 logL
∂r∂β′

=
1
σ2
v′C(X, 1) +

1
σ2

(C(y, 1)− C(X, 1)β)′(X − JnK) (116)

∂2 logL
∂r∂γ′

=
1
σ2

[C(y, 1)− C(X, 1)β]′Z (117)

∂2 logL
∂r∂λ

=
1
σ2

[W (y − ιn − (X − JnK)β − Zγ)]′(C(y, 1)− C(X, 1)β)

+
1
σ2
v′W (C(y, 1)− C(X, 1)β) (118)

∂2 logL
∂r∂r

= − 1
σ2

[C(y, 1)− C(X, 1)β]′[C(y, 1)− C(X, 1)β]− 1
σ2
v′(C ′(y, 1)− C ′(X, 1)β)(119)

Appendix C: Conditional Tests

C.1 Hessian Matrix for the null hypothesis Hg
0 : λ = 0 |unknown r

Under the null hypothesis Hg
0 : λ = 0 |unknown r, the second order derivatives of the loglikelihood

function are given by

∂2 logL
∂σ2∂σ2

=
n

2σ4
− 1
σ6
v′v (120)

∂2 logL
∂σ2∂β′

= − 1
σ4
v′X(r) (121)

∂2 logL
∂σ2∂γ′

= − 1
σ4
v′Z (122)

∂2 logL
∂σ2∂λ

= − 1
σ4
v′Wu (123)

∂2 logL
∂σ2∂r

=
1
σ4
v′(C(y, r)− C(X, r)β) (124)

∂2 logL
∂β∂σ2

= − 1
σ4

[X(r)]′v (125)

∂2 logL
∂β∂β′

= − 1
σ2

[X(r)]′[X(r)] (126)

∂2 logL
∂β∂γ′

= − 1
σ2

[X(r)]′Z (127)

∂2 logL
∂β∂λ

= − 1
σ2

[WX(r)]′v − 1
σ2

[X(r)]′(Wu) (128)

∂2 logL
∂β∂r

=
1
σ2

[X(r)]′[(C(y, r)− C(X, r)β)] +
1
σ2

[C(X, r)]′u (129)
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∂2 logL
∂γ∂σ2

= − 1
σ4
Z ′v (130)

∂2 logL
∂γ∂β′

= − 1
σ2
Z ′[X(r)] (131)

∂2 logL
∂γ∂γ′

= − 1
σ2
Z ′Z (132)

∂2 logL
∂γ∂λ

= − 1
σ2
Z ′(Wu)− 1

σ2
(WZ)′v (133)

∂2 logL
∂γ∂r

=
1
σ2
Z ′[(C(y, r)− C(X, r)β)] (134)

∂2 logL
∂λ∂σ2

= − 1
σ4
v′Wu (135)

∂2 logL
∂λ∂β′

= − 1
σ2
v′WX(r) − 1

σ2
(Wu)′[X(r)] (136)

∂2 logL
∂λ∂γ′

= − 1
σ2
v′WZ − 1

σ2
[W (y(r) − X(r)β − Zγ)]′Z (137)

∂2 logL
∂λ∂λ

= −
n∑
i=1

ω2
i −

1
σ2

(Wu)′(Wu) (138)

∂2 logL
∂λ∂r

=
1
σ2

[C(y, r)− C(X, r)β]′Wu+
1
σ2
v′W (C(y, r)− C(X, r)β) (139)

∂2 logL
∂r∂σ2

=
1
σ4
v′(C(y, r)− C(X, r)β) (140)

∂2 logL
∂r∂β′

=
1
σ2
v′C(X, r) +

1
σ2

(C(y, r)− C(X, r)β)′[X(r)] (141)

∂2 logL
∂r∂γ′

=
1
σ2

[(C(y, r)− C(X, r)β)]′Z (142)

∂2 logL
∂r∂λ

=
1
σ2

(Wu)′(C(y, r)− C(X, r)β) +
1
σ2
v′W (C(y, r)− C(X, r)β) (143)

∂2 logL
∂r∂r

= − 1
σ2

[(C(y, r)− C(X, r)β)]′(C(y, r)− C(X, r)β)

− 1
σ2
v′(C ′(y, r)− C ′(X, r)β) (144)
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C.2 Hessian Matrix for the null hypothesis Hh
0 : r = 0 |unknown λ

Under the null hypothesis H0: r = 0 |unknown λ, the second order derivatives of the loglikelihood

function are given by

∂2 logL
∂σ2∂σ2

=
n

2σ4
− 1
σ6
v′v (145)

∂2 logL
∂σ2∂β′

= − 1
σ4
v′(I − λW ) logX (146)

∂2 logL
∂σ2∂γ′

= − 1
σ4
v′(I − λW )Z (147)

∂2 logL
∂σ2∂λ

= − 1
σ4
v′Wu (148)

∂2 logL
∂σ2∂r

=
1
σ4
v′(I − λW )(C(y, 0)− C(X, 0)β) (149)

∂2 logL
∂β∂σ2

= − 1
σ4

[(I − λW ) logX]′v (150)

∂2 logL
∂β∂β′

= − 1
σ2

[(I − λW ) logX]′[(I − λW ) logX] (151)

∂2 logL
∂β∂γ′

= − 1
σ2

[(I − λW ) logX]′[(I − λW )Z] (152)

∂2 logL
∂β∂λ

= − 1
σ2

(W logX)′v − 1
σ2

[(I − λW ) logX]′(Wu) (153)

∂2 logL
∂β∂r

=
1
σ2

[(I − λW ) logX]′[(I − λW )(C(y, 0)− C(X, 0)β)]

+
1
σ2

[(I − λW )C(X, 0)]′[(I − λW )u] (154)

∂2 logL
∂γ∂σ2

= − 1
σ4

[(I − λW )Z]′v (155)

∂2 logL
∂γ∂β′

= − 1
σ2

[(I − λW )Z]′[(I − λW ) logX] (156)

∂2 logL
∂γ∂γ′

= − 1
σ2

[(I − λW )Z]′[(I − λW )Z] (157)

∂2 logL
∂γ∂λ

= − 1
σ2

[(I − λW )Z]′(Wu)− 1
σ2

(WZ)′v (158)

∂2 logL
∂γ∂r

=
1
σ2

[(I − λW )Z]′[(I − λW )(C(y, 0)− C(X, 0)β)] (159)
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∂2 logL
∂λ∂σ2

= − 1
σ4
v′Wu (160)

∂2 logL
∂λ∂β′

= − 1
σ2
v′W logX − 1

σ2
(Wu)′[(I − λW ) logX] (161)

∂2 logL
∂λ∂γ′

= − 1
σ2
v′WZ − 1

σ2
[W (log y − β logX − Zγ)]′[(I − λW )Z] (162)

∂2 logL
∂λ∂λ

= −
n∑
i=1

ω2
i

(1− λωi)2
− 1
σ2

(Wu)′(Wu) (163)

∂2 logL
∂λ∂r

=
1
σ2

[(I − λW )(C(y, 0)− C(X, 0)β)]′Wu+
1
σ2
v′W (C(y, 0)− C(X, 0)β) (164)

∂2 logL
∂r∂σ2

=
1
σ4
v′(I − λW )(C(y, 0)− C(X, 0)β) (165)

∂2 logL
∂r∂β′

=
1
σ2
v′(I − λW )C(X, 0)

+
1
σ2

(C(y, 0)− C(X, 0)β)′(I − λW )′[(I − λW ) logX] (166)

∂2 logL
∂r∂γ′

=
1
σ2

[(I − λW )(C(y, 0)− C(X, 0)β)]′[(I − λW )Z] (167)

∂2 logL
∂r∂λ

=
1
σ2

(Wu)′(I − λW )(C(y, 0)− C(X, 0)β) +
1
σ2
v′W (C(y, 0)− C(X, 0)β) (168)

∂2 logL
∂r∂r

= − 1
σ2

[(I − λW )(C(y, 0)− C(X, 0)β)]′(I − λW )(C(y, 0)− C(X, 0)β)

− 1
σ2
v′(I − λW )(C ′(y, 0)− C ′(X, 0)β) (169)

C.3 Hessian Matrix for the null hypothesis H i
0: r = 1 |unknown λ

Under the null hypothesis H0: r = 1 |unknown λ, the second order derivatives of the loglikelihood

function are given by

∂2 logL
∂σ2∂σ2

=
n

2σ4
− 1
σ6
v′v (170)

∂2 logL
∂σ2∂β′

= − 1
σ4
v′(I − λW )(X − 1) (171)

∂2 logL
∂σ2∂γ′

= − 1
σ4
v′(I − λW )Z (172)

∂2 logL
∂σ2∂λ

= − 1
σ4
v′Wu (173)

∂2 logL
∂σ2∂r

=
1
σ4
v′(I − λW )(C(y, 1)− C(X, 1)β) (174)
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∂2 logL
∂β∂σ2

= − 1
σ4

[(I − λW )(X − 1)]′v (175)

∂2 logL
∂β∂β′

= − 1
σ2

[(I − λW )(X − 1)]′[(I − λW )(X − 1)] (176)

∂2 logL
∂β∂γ′

= − 1
σ2

[(I − λW )(X − 1)]′[(I − λW )Z] (177)

∂2 logL
∂β∂λ

= − 1
σ2

[W (X − 1)]′v − 1
σ2

[(I − λW )(X − 1)]′(Wu) (178)

∂2 logL
∂β∂r

=
1
σ2

[(I − λW )(X − 1)]′[(I − λW )(C(y, 1)− C(X, 1)β)]

+
1
σ2

[(I − λW )C(X, 1)]′[(I − λW )u] (179)

∂2 logL
∂γ∂σ2

= − 1
σ4

[(I − λW )Z]′v (180)

∂2 logL
∂γ∂β′

= − 1
σ2

[(I − λW )Z]′[(I − λW )(X − 1)] (181)

∂2 logL
∂γ∂γ′

= − 1
σ2

[(I − λW )Z]′[(I − λW )Z] (182)

∂2 logL
∂γ∂λ

= − 1
σ2

[(I − λW )Z]′(Wu)− 1
σ2

(WZ)′v (183)

∂2 logL
∂γ∂r

=
1
σ2

[(I − λW )Z]′[(I − λW )(C(y, 1)− C(X, 1)β)] (184)

∂2 logL
∂λ∂σ2

= − 1
σ4
v′Wu (185)

∂2 logL
∂λ∂β′

= − 1
σ2
v′W (X − 1)− 1

σ2
(Wu)′[(I − λW )(X − 1)] (186)

∂2 logL
∂λ∂γ′

= − 1
σ2
v′WZ − 1

σ2
[Wu]′[(I − λW )Z] (187)

∂2 logL
∂λ∂λ

= −
n∑
i=1

ω2
i

(1− λωi)2
− 1
σ2

(Wu)′(Wu) (188)

∂2 logL
∂λ∂r

=
1
σ2

[(I − λW )(C(y, 1)− C(X, 1)β)]′Wu+
1
σ2
v′W (C(y, 1)− C(X, 1)β) (189)

∂2 logL
∂r∂σ2

=
1
σ4
v′(I − λW )[C(y, 1)− C(X, 1)β] (190)

∂2 logL
∂r∂β′

=
1
σ2
v′(I − λW )C(X, 1)

26



+
1
σ2

(C(y, 1)− C(X, 1)β)′(I − λW )′[(I − λW )(X − 1)] (191)

∂2 logL
∂r∂γ′

=
1
σ2

[(I − λW )(C(y, 1)− C(X, 1)β)]′[(I − λW )Z] (192)

∂2 logL
∂r∂λ

=
1
σ2

(Wu)′(I − λW )(C(y, 1)− C(X, 1)β) +
1
σ2
v′W (C(y, 1)− C(X, 1)β) (193)

∂2 logL
∂r∂r

= − 1
σ2

[(I − λW )(C(y, 1)− C(X, 1)β)]′(I − λW )(C(y, 1)− C(X, 1)β)

− 1
σ2
v′(I − λW )(C ′(y, 1)− C ′(X, 1)β) (194)
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