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Abstract

In many economic and social contexts, individuals can undertake

a transaction only if they are `linked' or related to each other. We

take the view that these links are costly, in the sense that it takes

e�ort and resources to create and maintain them. The link formation

decisions of the players de�ne a network of social interaction. We

study the incentives of individuals to form links and the e�ects of this

link formation on the nature of social coordination.

Our analysis shows that equilibrium networks have simple archi-

tectures; they are either complete networks or stars. Moreover, the

process of network formation has powerful e�ects on social coordina-

tion. For low costs of forming links all individuals coordinate on the

the risk-dominant action, while for high costs of forming links individ-

uals coordinate on the eÆcient action.
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1 Introduction

In recent years, several authors have examined the role of interaction struc-

ture { di�erent terms like network structure, neighborhood in
uences, and

peer group pressures, have been used { in explaining a wide range of eco-

nomic phenomena. This includes work on social learning and adoption of new

technologies, evolution of conventions, collective action, labor markets, and

�nancial fragility.1 The broad message of this literature is that interaction

structure matters in important ways. This leads us to examine the reason-

ableness/robustness of di�erent structures and is the primary motivation for

developing a model in which the evolution of the interaction structure is itself

an object of study.

We propose a general approach to study this question. We suppose that

individual entities can undertake a transaction only if they are `linked'. This

link may refer to a social or a business relationship, or it may refer simply to

awareness of the others. We take the view that links are costly, in the sense

that it takes e�ort and resources to create and maintain them. This leads us

to study the incentives of individuals to form links and the implications of

this link formation for aggregate outcomes.

In the present paper, we apply this general approach to the study of social

coordination. There is a group of players, who have the opportunity to play

a 2 � 2 coordination game with each other. We start with the case where

two players can only play with one another if they have a direct pair-wise

link. These links can be made on individual initiative but are costly to form.

So each player prefers that others incur the cost and form links with him.

For simplicity, the game is assumed to yield only positive payo�s in every

bilateral interaction. Individuals care about aggregate payo�s and, therefore,

they always accept any link supported (i.e. paid) by some other player. The

link decisions of di�erent players de�ne a network of social interaction. In

addition to the choice of links, each player also has to choose an action that

1See e.g., Allen and Gale (1998), Anderlini and Ianni (1997), Bala and Goyal (1998),

Chwe (1996), Coleman (1966), Ellison and Fudenberg (1993), Ellison (1993), Ely (1996),

Goyal and Janssen (1997), Granovetter (1974), Haag and Laguno� (1999), and Morris

(1997), among others.
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she will use in all the games that she will engage in. We are interested in the

nature of networks that emerge and the e�ects of link formation on social

coordination.

In our setting, links as well as actions in the coordination game are chosen

by individuals on an independent basis. This allows us to study the social

process as a non-cooperative game. We start by examining the Nash equi-

librium of the static game. We �nd that a variety of networks { including

the complete network, the empty network and partially connected networks

{ can be supported in equilibrium. Moreover, the society can coordinate on

di�erent actions and conformism as well as diversity with regard to actions

of individuals is possible in Nash equilibrium. This multiplicity motivates an

examination of the dynamic stability of di�erent outcomes.

We develop a dynamic model in which, at regular intervals, individuals

choose links and actions to maximize their payo�s. Occasionally they make

errors or experiment. Our interest is in the nature of long run outcomes,

when the probability of these errors is small. We �nd that the dynamics

generate clear-cut predictions both concerning the architecture of networks

as well as regarding the nature of social coordination.

In particular, except for the case where costs of link formation are very

high, every pair of players is linked and the complete network is the unique

stable network. Figure 1a gives an example of a complete network in a soci-

ety with 4 players. This result also shows that partially connected networks

are not stable. We also �nd that, if players are at all connected, they always

coordinate in the long run on the same action, i.e. social conformism obtains.

However, the nature of coordination depends on the costs of link formation.

For low costs of link formation, players coordinate on the risk-dominant ac-

tion, while for high costs of link formation they coordinate on the eÆcient

action. Thus our analysis reveals that, even though the eventual network is

the same in all cases of interest, the process of network formation itself has

serious implications for the nature of social coordination.
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Figure 1a
Complete Network
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Figure 1b
Center-sponsored Star

These results are obtained in a model where two players can only play a game

if they have a direct link between them. We also brie
y examine a variation

of this model, in which two players can play a game if they are directly or

indirectly linked with each other.2 In this setting, we �nd that the center-

sponsored star is the unique strict equilibrium architecture. This is a network

in which one player forms a link with every other player and pays for all the

links. Figure 1b provides an example of this architecture for a society with 4

players. We also �nd that the costs of link formation matter for the nature

of social coordination in a pattern which is similar to the basic model.

To summarize: we develop a framework to study the co-evolution of the

network of interaction and the actions in a coordination game. Our analysis

shows that this framework is tractable. In particular, we �nd that equilib-

rium networks possess simple architectures { they are complete networks or,

in a variation of the basic model, stars. Moreover, the process of network

formation has powerful e�ects on the nature of social coordination. For low

costs of link formation everyone chooses the risk-dominant action, while for

high costs everyone chooses the eÆcient action.

We now place the paper in context. Traditionally, sociologists have held

the view that individual actions, and in turn aggregate outcomes, are in

large part determined by interaction structure. By contrast, economists

have tended to focus on markets, where social ties and the speci�c features

of the interaction structures are typically not important. In recent years,

economists have examined in greater detail the role of interaction structure

and found that it plays an important role in shaping important economic phe-

nomena (see the references given above, and also Granovetter, 1985). This

2More precisely, two players can play a game with each other if there is a path between

them in the social network.
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has led to a study of the processes through which the structure emerges. The

present paper is part of this general research program.

We relate the paper to the work in economics next. We suppose that

an individual players can form pair-wise links by incurring some costs, at

their own initiative, i.e., link formation is one-sided. This allows us to model

the network formation process as a non-cooperative game. This element

of our model is similar to the work of Goyal (1993) and Bala and Goyal

(1999). Related work on network formation includes Jackson and Wolinsky

(1996) and van den Nouweland (1994). The primary contribution of the

present paper is the development of a common framework within which the

emergence of interaction networks and the selection of equilibrium can be

suitably studied.3

There has been considerable work on equilibrium selection. From an evo-

lutionary viewpoint, this work includes Blume (1993), Kandori, Mailath and

Rob (1993), and Young (1993), among others.4 The general insight of this

work is that when players are uncertain about the strategies of their oppo-

nents, risk-dominance considerations tend to prevail over those of eÆciency,

and an ineÆcient but risk-dominant equilibrium becomes stable in the long

run. However, this original �nding has been re-examined by several authors,

and the result has been shown to be sensitive to di�erent assumptions, such

as the nature of the strategy revision rule (Robson and Vega-Redondo,1996),

the costs of 
exibility (Galesloot and Goyal, 1997), precise modelling of mu-

tation (Bergin and Lipman, 1996) and the role of mobility of players across

locations (Bhaskar and Vega-Redondo, 1998; Ely, 1996; Mailath, Samuelson

and Shaked,1994; Oechssler, 1997). Our paper is related to this last strand

of work.

The basic insight to be gained from the evolutionary literature on player

mobility can be summarized as follows. If individuals can separate/insulate

themselves easily from those who are playing an ineÆcient action (e.g., the

3In independent work, Jackson and Watts (1999) have developed a related model which

addresses similar concerns. We discuss their work in the concluding section.
4For a consideration of this same equilibrium selection problem from a di�erent (\educ-

tive") perspective, the reader may refer to the classical book of Harsanyi and Selten (1988)

or the more recent paper by Carlson and van Damme (1993).
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risk-dominant action), then eÆcient \enclaves" will be readily formed and

eventually attract the \migration" of others (who will therefore turn to play-

ing eÆciently). Heuristically, one may be inclined to establish a certain

parallelism between easy mobility and low costs of forming links. However,

the considerations involved in each case turn out to be very di�erent, as is

evident from the sharp contrast between our conclusions (recall the above

summary) and those of the mobility literature.

There are two main reasons for this contrast. First, in our case, players

do not indirectly choose their pattern of interaction with others by moving

across a pre-speci�ed network of locations (as in the case of player mobility).

Rather, they construct directly their interaction network (with no exogenous

restrictions) by choosing those agents with whom they want to play the

game. Second, the cost of link formation (which are payed per link formed)

act as screening device that is truly e�ective only if it is high enough. In a

heuristic sense, we may say that it is precisely the restricted \mobility" it

induces in that case which helps insulate (and thus protect) the individuals

who are choosing the eÆcient action. If the link-formation cost is too low,

the extensive interaction it facilitates may have the unfortunate consequence

of rendering risk-dominance considerations decisive.

The rest of this paper is organized as follows. Section 2 describes the

basic model in which only directly linked players can play a game, while

Section 3 presents the results. Section 4 studies the case where players can

play a game if they are either directly or indirectly connected to each other.

Section 5 concludes. For expositional simplicity, all proofs have been placed

in the appendices.

2 Basic Model

2.1 Networks

Let N = f1; 2; : : : ; ng be a set of players, where n � 3. We are interested

in modelling a situation where each of these players can choose the subset

of other players with whom to play a �xed bilateral game. Formally, let
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gi = (gi;1; : : : gi;i�1; gi;i+1; : : : gi;n) be the set of links formed by player i. We

suppose that gi;j 2 f1; 0g, and say that player i forms a link with player

j if gi;j = 1. The set of link options is denoted by Gi. Any player pro�le

of link decisions g = (g1; g2 : : : gn) de�nes a directed graph, fN;�g, called a

network. Abusing notation, the network will also be denoted by g:

Speci�cally, the network g has the set of players N as its set of vertices

and its set of arrows, � � N �N; is de�ned as follows:

� = f(i; j) 2 N �N : gij = 1g:

Graphically, the link (i; j) may be represented as an edge between i and

j, a �lled circle lying on the edge near agent i indicating that this agent

has formed (or supports) that link. Every link pro�le g 2 G has a unique

representation in this manner. Figure 1 below depicts an example. In it,

player 1 has formed links with players 2 and 3, player 3 has formed a link

with player 1, while player 2 has formed no link.5
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Figure 1

Given a network g; we say that a pair of players i and j are directly

linked if at least one of them has established a linked with the other one, i.e.

if maxfgi;j; gj;ig = 1. To describe the pattern of players' links, it is useful

to de�ne a modi�ed version of g, denoted by �g, that is de�ned as follows:

�gi;j = maxfgi;j; gj;ig for each i and j in N . Note that �gi;j = �gj;i so that the

index order is irrelevant. We say there is a path in g between i and j if either

�gi;j = 1 or there exist agents j1,: : : ,jm distinct from each other and i and j

such that �gi;j1 = � � � = �gjk;jk+1 = � � � �gjm;j = 1.

A subgraph g0 � g is called a component of g if for all i; j 2 g0, i 6 =j,

there exists a path in g0 connecting i and j, and for all i 2 g0 and j 2 g,

5Since agents choose strategies independently of each other, two agents may simulta-

neously initiate a two-way link, as seen in the �gure.
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gi;j = 1 implies g0ij = 1. A network with only one component is called

connected. Given any g; the notation g+ ij will denote the network obtained

by replacing gi;j in network g by 1. Similarly, g�gi;j will refer to the network

obtained by replacing gi;j in network g by 0. A connected network g is said to

be minimally connected if the network obtained by deleting any single link,

g�gi;j, is not connected. A special example of minimally connected network

is the center-sponsored star: a network g is called a center-sponsored star if

there exists some i 2 N such that, for all j; k 2 Nnfig; j 6= k; gij = 1 and

gjk = 0.

2.2 Social Game

Every pair of directly linked individuals plays a given 2� 2 symmetric game

in strategic form with common action (or strategy) set given by A = f�; �g:

For each pair of actions a; a0 2 A; the payo� �(a; a0) earned by a player

choosing a when the partner plays a0 is given by the following table:

2

1
� �

� d e

� f b

Table I

The game is taken to be one of coordination, which amounts to postulat-

ing that

d > f , b > e: (1)

Without loss of generality, it is assumed that � is the eÆcient action, i.e.

d > b: (2)
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Furthermore, in order to focus on the most interesting scenario, it is supposed

that eÆciency and risk-dominance are con
icting criteria. That is:

d+ e < b+ f (3)

Let Nd(i; g) � fj 2 N : gi;j = 1g be the set of players in network g

with whom player i has established links, while �d(i; g) � jNd(i; g)j is its

cardinality. Similarly, let Nd(i; �g) � fj 2 N : �gi;j = 1g be the set of players

in network g with whom player i is connected (i.e. can play the coordination

game), while �d(i; �g) � jNd(i; �g)j is the cardinality of this set.6

An important feature of our approach is that links are assumed costly.

Precisely, every agent who establishes a link with some other player is taken

to incur a cost c > 0. Thus, we suppose that the cost of forming a link is

independent of the number of links being established and is the same across

all players. Another important feature of our model is that links are one-

sided. This aspect of the model allows us to use standard solution concepts

from non-cooperative game theory in addressing the issue of link formation.

To simplify matters in this respect, we shall assume that the payo� of the

bilateral game are all positive and, therefore, no player has any incentive to

refuse links initiated by other players.

We are now in a position to de�ne the payo� function for the complete

game. Under the assumption that every player i is obliged to choose the

same action in the (possibly) several bilateral games that she is engaged in,

her strategy space can be identi�ed with Si = Gi � A; where recall that Gi

is the set of possible link decisions by i and A is the common action space

of the underlying bilateral game. Then, given the strategies of other players,

s�i = (s1; : : : si�1; si+1; : : : sn), the payo� to a player i from playing some

strategy si = (gi; ai) is given by:

�i(si; s�i) =
X

j2Nd(i;�g)

�(ai; aj)� �
d(i; g) � c (4)

6In section 4 below, we consider a model where two players can play a game if they are

either directly or indirectly connected with each other.
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This allows us to particularize the standard notion of Nash Equilibrium

as follows. A strategy pro�le s� = (s�1; : : : s
�
n) is said to be a Nash equilibrium

for the game if, for all i 2 N;

�i(s
�

i ; s
�

�i) � �i(si; s
�

�i); 8si 2 Si: (5)

The set of Nash equilibria will be denoted by S�: A Nash equilibrium is

said to be strict if every player gets a strictly higher payo� with his current

strategy than he would with any other strategy.

2.3 Dynamics

Time is modelled discretely, t = 1; 2; 3; : : : . At each t, the state of the system

is given by the strategy pro�le s(t) � [(gi(t); ai(t))]
n
i=1 specifying the action

played, and links established, by each player i 2 N: At every period t, there

is a positive independent probability p 2 (0; 1) that any given individual gets

a chance to revise her strategy. If she receives this opportunity, we assume

that she selects a new strategy

si(t) 2 argmax
si2Si

�i(si; s�i(t� 1)): (6)

That is, she selects a best response to what other players chose in the pre-

ceding period. If there are several strategies that ful�ll (6), then any one

of them is taken to be selected with, say, equal probability. This strategy

revision process de�nes a simple Markov chain on S � S1 � ::: � Sn: In our

setting, which will be seen to display multiple strict equilibria, there are sev-

eral absorbing states of the Markov chain. This motivates the examination

of the relative robustness of each of them.7

To do so, we employ the, by now, standard techniques used by Kandori,

Mailath and Rob (1993), and Young (1993). We suppose that, occasionally,

players make mistakes, experiment, or simply disregard payo� considerations

in choosing their strategies. Speci�cally, it is postulated that, conditional on

7We note that the set of absorbing states of the Markov chain coincides with the set of

strict Nash equilibria of the one-shot game.
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receiving a revision opportunity, a player chooses her strategy at random

with some small \mutation" probability � > 0. For any � > 0, the process

de�nes a Markov chain that is aperiodic and irreducible and, therefore, has

a unique invariant probability distribution. Let us denote this distribution

by ��. We analyze the structure of �� as the probability of mistakes becomes

very small, i.e. formally, as � converges to zero.

De�ne lim�!0 �� = �̂. We shall say that a state s = (s1; s2; : : : ; sn) is

stochastically stable if �̂(s) > 0. Heuristically, we may view a stochastically

stable state as one which is played a signi�cant fraction of the time in the

long run, even when the perturbation probability " becomes arbitrarily low.

3 Analysis

This section is divided into three parts. The �rst one characterizes the net-

works as well as action pro�les that de�ne a Nash equilibrium of the induced

social game. The second part studies the unperturbed learning dynamics and

establishes results concerning convergence of the process. In the third part,

we examine the stochastic stability of di�erent equilibrium con�gurations.

3.1 Equilibrium outcomes

Let s� = [(g�i ; a
�
i )]

n
i=1 be a Nash equilibrium of the population game described

and denote by g� � (g�i )
n
i=1 the corresponding equilibrium network.8

Our �rst result concerns the nature of networks that arise in equilibria.

When costs of link formation are low (c < e), then a player has an incentive

to link up with other players irrespective of the actions the other players

are choosing. On the other hand, when costs are quite high (speci�cally,

b < c < d) then everyone who is linked must be choosing the eÆcient action.

This, however, implies that it is attractive to form a link with every other

player and we get the complete network again. Thus, for relatively low and

high costs, we should expect to see the complete network.

8The fact that links are costly immediately implies the absence of super
uous links,

i.e. if g�i;j = 1 then g�j;i = 0.
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In contrast, when costs are at an intermediate level (f < c < b) a richer

set of con�gurations is possible. On the one hand, since c > f(> e); the link

formation is only worthwhile if other players are choosing the same action.

On the other hand, since c < b(< d); coordinating at either of the two

equilibria (in the underlying coordination game) is better than not playing

the game at all. This allows for networks with two disconnected components

in equilibria.

The above considerations are summarized and completed in the following

result.

Proposition 3.1 Suppose (1)-(3) and (4) hold. (a) If c < minff; bg; then

an equilibrium network is complete. (b) If f < c < b; then an equilibrium

network is either complete or can be partitioned into two complete compo-

nents.9 (c) If b < c < d; then an equilibrium network is either empty or

complete. (d) If c > d; then the unique equilibrium network is empty.

We now characterize the Nash equilibria of the static game. First, we

introduce some convenient notation. On the one hand, recall that ge denotes

the empty network characterized by geij = 0 for all i; j 2 N (i 6= j): On the

other hand, let

Gc � fg : 8i; j 2 N; �gij = 1; gijgji = 0g

stand for the set of complete and essential networks on the full player pop-

ulation N: Analogously, for any given subset M � N; denote by Gc(M) the

set of complete and essential subgraphs on M: Given any state s 2 S; we

shall say that s = (g; a) 2 Sh for some h 2 f�; �g if g 2 Gc and ai = h

for all i 2 N: More generally, we shall write s = (g; a) 2 S�� if there exists

a partition of the population into two subgroups, N� and N� (one of them

possibly empty), and corresponding components of g; ga and g�; such that:

(i) ga 2 Gc(N�); g� 2 Gc(N�);

(ii) 8i 2 N�; ai = �; 8i 2 N�, ai = �:

With this notation in hand, we may state the following result.

9Our parameter conditions allow both f < b and b < f:Of course, if the latter inequality

holds, Part (b) of Proposition 3.1 (and also that of Proposition 3.2 below) applies trivially.
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Proposition 3.2 Suppose (1)-(3) and (4) hold. (a) If c < minff; bg; then

the set of equilibrium states S� = S� [ S�. (b) If f < c < b; then S� [ S� �

S� � S��; the �rst inequality being strict for large enough n: (c) If b < c < d;

then S� = S� [ f(ge; (�; �; :::; �))g. (d) If c > d; then S� = fgeg � An.

The above result indicates that, whenever the cost of links is not ex-

cessively high (i.e. not above the maximum payo� attainable in the game)

Nash equilibrium conditions allow for a genuine outcome multiplicity. For

example, under the parameter con�gurations contemplated in Parts (a) and

(c), such an equilibrium multiplicity permits alternative states where either

of the two actions is homogeneously chosen by the whole population. Under

the conditions speci�ed in Part (b), the multiplicity concerns a wide range

of possible states where neither action homogeneity nor full connectedness

necessarily prevails. Therefore, the model raises a fundamental issue of equi-

librium selection.10 To address this issue, we approach matters dynamically

in the subsequent subsections.

3.2 Long-run learning dynamics

All (strict) Nash equilibria are rest points in terms of the unperturbed dy-

namics proposed in section 2.3. Here we examine if the set of such equilibria

are a dynamically sound prediction in the sense that, given any initial con-

dition, the learning dynamics is bound to lead (a.s.) to some state in S�.

This issue is addressed by the following result.

Proposition 3.3 Suppose (1)-(3) and (4) hold. Then the best response dy-

namics converges to one of the rest points indicated in Proposition 3.2.

Since the (unperturbed) process of social learning converges to the set S�;

long-run states of the perturbed dynamics will also be in this set. (Heuristi-

cally, if the perturbation probability is small, \most" of the time the process

will be in the set S�:) This observation, however, does not by itself settle the

10We note that the equilibria identi�ed in parts (a)-(b) and those in S� are also strict

equilibria.
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issue of how the perturbed process addresses the equilibrium selection prob-

lem, i.e. the question of what speci�c states in S� will prevail (again, most

of the time) independently of initial conditions. This is the issue addressed

in the next subsection.

3.3 Stochastic Stability

The states which are selected in the long run by the perturbed learning

dynamics are those in the support of �̂; the limit invariant distribution. For-

mally, the set of such stochastically stable states is de�ned as follows:

Ŝ � fs 2 S : �̂(s) > 0g:

The main result of this paper characterizes the set of stochastically stable

states.

Theorem 3.1 Suppose (1)-(3) and (4) hold. There exists some ~n such that,

if n � ~n; the set of stochastically stable sets is as follows. (a) If c < minff; bg;

then Ŝ = S�: (b) If f < c < b, then Ŝ = S�; provided d � b � b � f . (c) If

b < c < d, then Ŝ = S�: (d) If c > d then Ŝ = fgeg � An.

This result establishes an essentially unique pattern of play for (the in-

terior) of each of the four regions resulting from a comparison of the cost

of link formation and the payo�s of the underlying game.11 In particular,

unless the costs are excessively high, we should expect to see the complete

network. However, within this range of permissible cost levels, the precise

level of the costs matters crucially. When they are low, everyone chooses the

risk-dominant action, while if they are high everyone chooses the eÆcient

action. Thus even though the eventual network is the same, the process of

11The maintained assumptions on the game payo�s are just as before, i.e. the underlying

game is a coordination game where the eÆcient and risk-dominant actions di�er. However,

for Part (b) { which is void if f > b { an additional condition on payo�s is required, which

may be interpreted as imposing some lower bound on the \eÆciency premium" enjoyed

by action � at equilibrium. We conjecture that this condition may well be unnecessary,

but have been incapable of dispensing with it in the proof of the result. In any case, note

that it is fully compatible with (3), i.e. the assumption that eÆciency and risk dominance

con
ict.
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link formation has a powerful in
uence on the quality of social coordination

obtained.

In our framework, the dynamic process involves link formation decisions

as well as action choice in the underlying bilateral coordination game. Since

the analysis of such co-evolution of links and actions requires some new ar-

guments, it may be worthwhile at this point to elaborate on the intuition

underlying the result.

First, we derive the minimal size of a group of � and � action choosers

which can sustain itself, i.e., no agent has an incentive to switch actions.

We denote this size by K� and K�, respectively. Since d > b it follows that

K� < K�.

Second, we study the transition process from a state in which everyone

chooses action � and the network is complete to a state in which there is

a sustainable group of � choosers. Roughly speaking, we show that this

transition only requires a single event of simultaneous mutations involving

K� agents.

Third, the argument derives a lower bound on the number of mutations

needed to transit out of a state in which everyone chooses action � and the

network is complete. Denoting this lower bound by H�, it is shown that

H� < K�.

Fourth, we study the transition from an intermediate stage in which there

are two components conforming to di�erent actions to a complete network

in which everyone chooses the same action. We show that this transition

can be accomplished via a sequence of single mutations interspersed with

best-response play.

Finally, we note that the �rst, second, and fourth steps describe a tran-

sition tree, from a state s 2 S� to a state s 2 S�. Roughly speaking, this

requiresK� simultaneous mutations. On the other hand, the third and fourth

steps show that the transition from a state s 2 S� to a state s 2 S� requires

at least H� simultaneous mutations. Since, under the maintained assump-

tions on the parameters, we �nd that H� > K�, the arguments developed

by Kandori, Mailath and Rob (1993) and Young (1993) can then be used to

complete the proof of the theorem.
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4 Extension: Indirect Links

In the basic model we assumed that two players can undertake a transaction

(play the game) if and only if they have a direct link. In many settings,

individual players can also transact if they are indirectly linked, for example

through common acquaintances. There are a variety of ways in which the

bene�ts of indirect links can me modeled. To get a �rst idea of the impact of

such indirect links, we consider a model in which indirect links are as good as

direct links and focus on its Nash equilibria. Our analysis shows that those

networks which yield a strict Nash equilibrium have a simple architecture,

while the nature of social coordination is consistent with the pattern observed

in our basic model.

We say that two players are linked with each other if there is a path

between them in the network. Thus, given a network of interaction g, two

players can play a game if either gi;j = 1 or there exists a sequence of distinct

players i1; i2; i3; : : : ; im, such that all gi;i1 = gi1;i2 = � � � ::: = gim;j = 1. We

write i
�g
 ! j to indicate a path between players i and j in network �g. Let

N̂(i; g) � fj 2 N : i
�g
 ! jg be the players with whom player i is directly or

indirectly linked in a network g. Also recall thatNd(i; g) � fj 2 N : gi;j = 1g

is the set of players in network g with whom player i has formed links, while

�d(i; g) � jNd(i; g)j is the cardinality of this set.

Given the strategies of other players, s�i = (s1; : : : si�1; si+1; : : : sn), the

payo� to a player i from playing some strategy si = (gi; ai) is now given by:

�̂i(si; s�i) =
X

j2N̂(i;�g)

�(ai; aj)� �
d(i; g) � c (7)

Given these payo�s, the de�nition of Nash equilibrium is as before. Our

�rst result derives some basic properties of equilibrium networks and actions.

Proposition 4.1 Suppose (1)-(3) and (7) hold. There exists some ~n such

that, if n � ~n; an equilibrium network is either minimally connected or empty.

If the equilibrium network is connected then everyone chooses the same action

and social conformism obtains.
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The proofs of results in this section are provided in Appendix B. We

note that an implication of allowing for indirectly linked players to play with

each other: any non-empty equilibrium network is connected and in such a

network everyone chooses the same action. Recall that in the basic model,

where only directly connected players are allowed to play with each other,

unconnected networks can be supported in a strict Nash equilibrium and

social diversity can also be sustained.

Minimal connectedness, however, is a permissive requirement and allows

for a a wide range of network architectures. Our main interest is in the ro-

bustness of the results of the basic model. With this aim in view, we now

approach matters more simply than before and adopt a purely static perspec-

tive. Speci�cally, we re�ne the notion of equilibrium and examine the nature

of strict Nash networks. It turns out that, in our setting, the requirement of

strict best response is quite e�ective. The following proposition provides a

characterization of strict Nash architectures. Recall that a center-sponsored

star is a network in which a single agent forms a link with every other player

and therefore pays for every link formed.

Proposition 4.2 Suppose (1)-(3) and (7) hold. There exists some ~n such

that, if n � ~n, then a strict Nash network is either empty or a center-

sponsored star.

We now provide the intuition behind this result. Consider a minimally

connected network as identi�ed in Proposition 4.1. Suppose that player i

forms a link with a player j in this network. Then, the requirement of strict

Nash has the implication that player j cannot be directly linked to any other

player. For, if player j were linked to some other player k; then player i

could interchange his link with player j for a link with player k and get the

same payo�s. This would mean that the link of player i with player j is not

a strict best response. Since the network in question must be connected this

argument also implies that player i is directly linked to every other player

and that he forms all the links. In other words, the only candidate for strict

Nash networks is the center-sponsored star.12

12This argument is similar to those used in Bala and Goyal (1999, Proposition 4.2).
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The above result on strict Nash networks helps us in providing a charac-

terization of strict Nash equilibria for di�erent values of cost of forming links.

This is contained in the following result, which parallels, for the present con-

text, the insights obtained in Proposition 3.2. The set of all center-sponsored

stars will be denoted by Gcs. Also let S�� be the set of strict Nash equilib-

rium.

Proposition 4.3 Suppose (1)-(3) and (7) hold. There exists some ~n such

that, if n � ~n; the following is true: (a) If 0 < c < b then S�� = [Gcs � f(�; ::; �)g][

[Gcs � f(�; ::; �)g]. (b) If b < c < d then S�� = Gcs�f(�; ::; �)g. (c) If c > d

then there is no strict Nash equilibrium.

5 Concluding Remarks

In many economic and social contexts, individuals can undertake a transac-

tion only if they are `linked' or related to each other. It is therefore natural

to postulate that individual players invest e�ort and resources in forming

links with others, their link decisions then de�ning the network of social in-

teraction. In this paper, we have studied the nature of networks that form

and the e�ects of link formation on social coordination.

We start with a basic model in which two players can transact or play

a game only if they have a direct link between them. We then consider a

variation of it where two players can play a game if they are directly or

indirectly linked. Our analysis reveals that, in both settings, equilibrium

networks have simple architectures. In the former model the unique equi-

librium architecture is the complete network, while in the latter model, the

unique equilibrium architecture is the star. Moreover, in both settings the

cost of forming links has a crucial e�ect on the nature of social coordination.

For low costs of forming links, individuals coordinate on the risk-dominant

action, while for high costs of forming links individuals coordinate on the

eÆcient action. These results suggest that the process of network formation

may have serious implications for the nature of social coordination.

18



An important aspect of our model is that link formation is one-sided. This

formulation has the advantage that it allows us to study the social process of

link formation and coordination as a non-cooperative game. In some settings,

it is perhaps more natural to think of link formation as a two-sided process:

a link is formed when the two players involved both incur some costs. This

implies that both players must acquiesce in the formation of the link. In

independent work, Jackson and Watts (1999) study such a model.

In their work, Jackson and Watts assume that two players can play a

game only if they are directly linked. This assumption corresponds to our

basic model. In this setting they �nd, like us, that the equilibrium network

is complete. However their results on social coordination are quite di�erent.

For instance, they �nd that, if the costs of link formation are high, then

both of the states where players choose a common action are stochastically

stable. In contrast, we �nd that, when the costs are high (but below the

maximum achievable payo�), the only stable states involve players choosing

the eÆcient action. This di�erence arises out of di�erences in the way we

model the link formation as well as the accompanying assumptions on the

timing of moves. They postulate that individuals choose links and actions

separately, i.e., players choose links taking actions as given while they choose

actions taking the links as a given. In our view, this feature of their model

is intimately linked to the two-sided link formation formulation. Individuals

contemplating the formation of a link have to form expectations regarding

the actions that will follow. Jackson and Wolinsky assume that past actions

should be taken as �xed, for the time being, when decisions on links are being

considered. By contrast, in our setting, any individual can independently

change both her action and her supported links.

These observations suggest that it is important to study the e�ects of

di�erent levels of 
exibility in the two choice dimensions, links and actions{

for example, it might be natural to postulate that link revision is more rigid

than action change.

Finally, we note that our analysis has examined the two polar cases with

regard to the value of indirect links: either only directly linked players can

interact (and indirect links are irrelevant), or indirect links are as good as
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direct links, irrespective of the length of the path between the players. We

would like to examine a more general formulation which allows for `distant'

links to be less valuable as compared to `near by' links.

6 Appendix A

Proof of Proposition 3.1: We take up part (a) �rst. Consider an incom-

plete network g. There are then two players, say i and j; such that gij = 0.

If ai = aj then the minimum payo� to player i from a link with player j is

b while the cost is c. Since c < b, player i has an incentive to form a link

with player j, which implies that g cannot be an equilibrium network. Next,

suppose that ai 6= aj and let player i (without loss of generality) be the player

who chooses action �. If she forms a link with player j then she will get a

payo� of f while the cost is c. Since c < f , this is clearly pro�table. Hence

an incomplete network cannot be sustained in equilibrium.

We now prove part (b). Consider an equilibrium network g and suppose

that g0 is a component of g. Suppose i and j belong to g0 and gij = 1. Then,

it follows that ai = aj because c > f > e and, if i and j are choosing di�erent

actions, then the player who forms the link can do strictly better by deleting

her link. A similar argument can be used to show that if i and j belong

to g0 but are indirectly linked then they must be choosing the same action

in the underlying coordination game. These arguments establish that every

player in the same component of an equilibrium network must choose the

same action.

Consider next an equilibrium network with two components g0 and g00.

We claim that ai 6= aj if i 2 g0 and j 2 g00. The reason for this is that if

ai = aj then the minimum payo� to i from playing the coordination game

with j is b. Since c < b this means that it is pro�table for player i to form

the link gij = 1, which implies that g is not an equilibrium network. The

�nal step is to note that since there are only two actions in the coordination

game, there can be at most two distinct components.
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We �nally show that each of the components in an equilibrium network

must be complete. From the above considerations, we know that every com-

ponent must involve homogeneous actions. This immediately implies that

the payo� to any given player from playing the coordination game with an-

other player (in the same component) is at last b. Since c < b, it is clearly

pro�table for every player to form a link with any other player in the same

component. Thus a component in an equilibrium network must be complete.

We now prove part (c). There are two subcases to consider: c > maxfb; fg

or f > c > b: (Note, of course, that the former subcase is the only one possible

if b > f:) Suppose �rst that c > maxfb; fg, and let g be an equilibrium

network which is non-empty but also incomplete. Note that if �gi;j = 1; then

ai = aj = �. Moreover, if aj = �; then player j can have no links in the

network. (These observations follow directly from the hypothesis that c >

maxfb; fg.) However, since g is assumed incomplete, there must exist a pair

of agents i and j such that gij = 0. There are three cases possible with respect

to the actions of players i and j. First, suppose that ai = aj = �. Then,

since c < d; it is clearly pro�table for either of the two players to deviate and

form a link with the other player. Suppose next that ai = aj = �. Then,

players i and j can have no links and, furthermore, since g is non-empty,

there must be at least two other players k; l 2 N such that ak = al = �. The

payo� to players i and j in the network g is simply zero. In contrast, if, say,

player i deviates towards choosing action � and forming a link with k (or l),

she will increase her payo� strictly. Finally, consider the case where ai 6= aj

and let player i choose �. Then, if this player deviates to action � and forms

a link with player j she increases her payo� strictly. We have thus shown

that gij = 0 cannot be part of an equilibrium network. This proves that a

non-empty but incomplete network cannot be an equilibrium network in the

�rst subcase considered.

Consider now the second case with b < c < f and suppose, for the sake

of contradiction, that g is an equilibrium network that is non-empty but

incomplete. Then there is a pair of players i and j such that �gi;j = 0. If

ai = aj = �; then it is immediate that each of the players has an incentive to

form a link with the other. Thus g cannot be part of a Nash equilibrium. The
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other possibility is that one of these two players, say i; chooses �. We note

that since b < c < f , the non-empty network g is not consistent with everyone

choosing action �. Thus, player j must be choosing action �. Moreover, since

c < f; it follows that player i must �nd it optimal to connect with every other

player choosing �. Finally, note that no player k 6= i will form a link with

player i since e < b < c < f . These observations immediately imply that

player i must, in equilibrium, support a link with another player if and only

if this other player chooses action �. It follows, therefore (since f < d), that

this player can do strictly better by deviating to action � and supporting a

link with every player choosing � (in particular, player j), which leads to the

desired contradiction for the second subcase of part (c).

Part (d) is immediate from the hypothesis that c > d.

�

Proof of Proposition 3.2: We start proving Part (a). In view of Part (a)

of Proposition 3.1 and the fact that the underlying game is of a coordination

type, the inclusion S� [ S� � S� is obvious. To show the converse inclusion,

take any state s such that the sets A(s) � fi 2 N : si = �g and B(s) � fi 2

N : si = �g are both non-empty. We claim that it cannot be an equilibrium

state.

Two subcases need to be considered: c < e and e < c < minff; bg: We

start by proving the �rst subcase. Assume, for the sake of contradiction, that

such a state s is a Nash equilibrium of the game and denote m � jA(s)j ;

0 < m < n: Then, the following optimality conditions must apply. On the

one hand, for players i 2 A(s); we must have:

(m� 1)d+ (n�m)e� �d(i; g) � c � (m� 1)f + (n�m)b� �d(i; g) � c (8)

and for players j 2 B(s) :

(n�m� 1)b +mf � �d(j; g) � c � (n�m� 1)e+md� �d(j; g) � c: (9)

Note that the above two conditions rely on the fact that, since c < e; every

deviating player would want to keep supporting her previous links. It is

immediate to see that these conditions are jointly incompatible.
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Assume now that c > e: Then, the counterpart of the previous optimality

condition for all players i 2 A(s) is as follows: 8r � �d(i; g);

(m� 1)d+ (n�m)e� �d(i; g) � c

� (m� 1� r)f + (n�m)b� (�d(i; g)� r) � c
(10)

where we implicitly use the fact that, at equilibrium, all players in A(s) will

only support links to other players in A(s) and, furthermore, that all players

in B(s) will support a complete set of links to players in A(s): Clearly, the

maximum for the RHS of (10) is attained for r = 0 (since c < f); which

implies that the present optimality condition is identical to (8).

Consider now the players choosing action �: For each j 2 B(s); the

relevant optimality condition in the present case can be written as follows:

(n�m� 1)b+mf � �d(j; g)c � (n�m� 1� (�d(j; g)�m))e+md�mc

(11)

It may be checked that (10) implies:

m

n
�

b� e

b + d� e� f
+

1

n

d� f

b + d� e� f
(12)

and (11) implies:

m

n
�

b� e

b + d� e� f
�

1

n

b� e

b+ d� e� f
: (13)

Again, (12) and (13) are incompatible, thus proving the desired conclusion.

Now, we turn to Part (b). As in Part (a), the inclusion S� [ S� � S�

is trivial, in view of Part (a) of Proposition 3.1. To show that the inclusion

S� � S�� holds strictly for large enough n; consider a state s where both

A(s) and B(s); de�ned as above, are both non-empty and fully connected

components. Speci�cally, focus attention on those con�gurations that are

symmetric within each component, so that every player in A(s) supports
m�1
2

links and every player in B(s) supports m�n�1
2

links. (As before, m

stands for the cardinality of A(s) and we implicitly assume, for simplicity,

that m and n � m are odd numbers.) For this con�guration to be a Nash

equilibrium, we must have that the players in A(s) satisfy:

d(m� 1)�
m� 1

2
c � f

m� 1

2
+ b(n�m)� c(n�m) (14)
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where we use the fact that, in switching to action �; any player formerly

in A(s) will have to support herself all links to players in B(s) and will

no longer support any links to other players in A(s) { of course, she still

anticipate playing with those players from A(s) who support links with her.

On the other hand, the counterpart condition for players in B(s) is:

(n�m� 1)b�
n�m� 1

2
c � dm+ e

n�m� 1

2
� cm (15)

where, in this case, we rely on considerations for players in B(s) that are

analogous to those explained before for players in A(s): Straightforward al-

gebraic manipulations show that (14) is equivalent to:

m

n
�

1

n

2d� c� f

2b+ 2d� 3c� f
+

2(b� c)

2b + 2d� 3c� f
(16)

and (15) is equivalent to:

m

n
�

1

n

c + e� 2b

2b + 2d� 3c� e
+

2b� c� e

2b+ 2d� 3c� e
: (17)

We now check that, under the present parameter conditions:

2b� c� e

2b+ 2d� 3c� e
>

2(b� c)

2b+ 2d� 3c� f
:

Denote U � 2b � c, V � 2b + 2d � 3c, and rewrite the above inequality as

follows:

U � e

U � c
>
V � e

V � f
(18)

which is weaker than:

U � e

U � f
>
V � e

V � f
(19)

since c > f: The function �(x) � x�e

x�f
is uniformly decreasing in x since

f > e: Therefore; since U < V; (19) obtains, which implies (18). Hence it

follows that, if n is large enough, one can �nd suitable values of m such that

(16) and (17) jointly apply. This completes the proof of Part (b).
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We now present the proof for part (c). We know from Proposition 3.1 that

the complete and the empty network are the only two possible equilibrium

networks. Since c > b > f > e, it is immediate that, in the complete network,

every player must choose � and this leads to a Nash equilibrium. Concerning

the empty network, for it to be consistent with equilibrium, it must be the

case that no player has an incentive to form a link with any other player.

This implies that no player must choose �. Hence the only action pro�le

consistent with equilibrium in the empty network is the one where everyone

chooses the action �. Trivially, this outcome de�nes a Nash equilibrium.

The proof of part (d) follows directly from the hypothesis c > maxfd; b; f; eg.

�

Proof of Proposition 3.3: It is enough to show that, from any given state

!0, there is a �nite chain of positive-probability events (bounded above zero,

since the number of states is �nite) that lead to a rest point of the best

response dynamics.

Choose one of the two strategies, say �; and denote by B(0) the set of

individuals adopting action � at !0. Order these individuals in some pre-

speci�ed manner and starting with the �rst one suppose that they are given in

turn the option to revise their choices (both concerning strategy and links).

If at any given stage � , the player i in question does not want to change

strategies, we set B(� + 1) = B(�) and proceed to the next player if some

are still left. If none is left, the �rst phase of the procedure stops. On the

other hand, if the player i considered at stage � switches from � to �; then

we make B(� + 1) = B(�)nfig and, at stage � + 1; re-start the process with

the �rst-ranked individual in B(� + 1); i.e. not with the player following i:

Clearly, this �rst phase of the procedure must eventually stop at some �nite

�1.

Then, consider the players choosing strategy � at �1 and denote this set

by A(�1) � NnB(�1): Proceed as above with a chain of unilateral revision

opportunities given to players adopting � in some pre-speci�ed sequence,

restarting the process when anyone switches from � to �: Again, the second

phase of the procedure ends at some �nite �2:
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By construction, in this second phase, all strategy changes involve an

increase in the number of players adopting �, i.e. B(�2) � B(�1): Thus, if

the network links a�ecting players in B(�1) remain unchanged throughout,

it is clear that no player in this set would like to switch to � if given the

opportunity at �2 + 1. However, in general, their network links will also

evolve in this second phase, because individual players in A(�1) may form or

delete links with players in B(�1). In principle, this could alter the situation

of individual members of B(�1) and provide them with incentives to switch

from � to �. It can be shown, however, that this is not the case. To show

it formally, consider any given typical individual in B(�1) and denote by r̂h;

h = �; �; the number of links received (but not supported) by this player

from players choosing action h. On the other hand, denote m̂ � jA(�1)j.

Then, since the �rst phase of the procedure stops at �1; one must have:

max
q�;q�

b(q� + r̂�) + f(q� + r̂�)� c(q� + q�)

� max
q�;q�

e(q� + r̂�) + d(q� + r̂�)� c(q� + q�)
(20)

for all q�; q� such that 0 � q� � m̂ � r̂�; 0 � q� � n � m̂ � 1 � r̂�:

Now denote by ~rh and ~m the counterpart of the previous magnitudes (r̂h

and m̂) prevailing at �2: By construction, we have ~m � m̂; ~r� � r̂�, and

~r� � r̂�: We note that ~m � m̂ by construction of the process. Next note

that if ~r� > r̂� then this implies that some player who chooses action � has

formed an additional link with player i in the interval between �1 and �2.

This is only possible if c < e. It also implies that player i did not have a link

with this player at �1. This is only possible if c > f , a contradiction. Thus

~r� � r̂�. Finally note that ~r� � r̂� follows from the fact that the all the

players choosing � at �1 do not revise their decisions in the interval between

�1 and �2.

Therefore, (20) implies:

max
q�;q�

b(q� + ~r�) + f(q� + ~r�)� c(q� + q�)

� max
q�;q�

e(q� + ~r�) + d(q� + ~r�)� c(q� + q�)
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for all q�; q� such that 0 � q� � ~m � ~r�; 0 � q� � n � ~m � 1 � ~r�: This

allows us to conclude that the concatenation of the two phases will lead the

process to a rest point of the best response dynamics, as desired.

�

Proof of Theorem 3.1: In view of Propositions 3.2 and 3.3, the proof

of Parts (a), (c) and (d) are straightforward applications of the standard

arguments used in received evolutionary theory. Therefore, we shall simply

sketch very brie
y the main ideas. For Part (a), since c < f , the only rest

points of the best-response dynamics involve states with a single complete

component and a given action being played uniformly. Thus, from any given

such state in Sh (h 2 f�; �g) the possibility of implementing a transition

to some state in Sh0

(h0 2 f�; �g; h0 6= h) depends on enough simultaneous

mutations taking place that shifts the system to the basin of attraction of the

set Sh0

: In the end, whether S� or S� is the set that includes the stochastically

stable states depends on which of the two can be accessed from the other one

through the minimum number of simultaneous mutations. This is determined

by risk-dominance considerations, which are postulated to favor action � by

(3). Therefore, the set of stochastically stable states must lie in the set S�.

In fact, since all states in this set may be connected by steps involving a

single mutation and the ensuing operation of the best-response dynamics,

the set S� de�nes what Samuelson (1994) has labelled a mutation-connected

component. A direct implication of this fact is that all states in S� must be

stochastically stable.

Concerning Part (c), refer again to Propositions 3.2 and 3.3, which in-

dicate that the only candidates to being stochastically stable are the states

in S� and the state (ge; (�; �; :::; �)): But, clearly, the latter state is ex-

tremely fragile to mutation since only one individual mutating to action �

may trigger a chain of best responses by others which leads the system into

some state in S�: Since, reciprocally, the transition from any state in Sa

to the state (ge; (�; �; :::; �)): requires many simultaneous mutations, only

the states in S� (in fact, all of them since they de�ne a mutation-connected

component) are stochastically stable. And next, for Part (d), the fact that

27



all absorbing states of the unperturbed best-response dynamics de�ne the

mutation-connected component fgeg � An yields the stated conclusion.

Now, we present the detailed argument for Part (b). The proof for this

case builds upon the following four lemmas, all of them stated under the

general assumptions of the theorem and the speci�c parameter con�gurations

contemplated in its Part (b).

Lemma 1 Let s 2 S� be an equilibrium state that displays two (complete)

components, g� and g�; that partition the population into two non-empty

subsets, A(s) and B(s); with ai = � 8i 2 A(s) and ai = � 8i 2 B(s): Then,

if their respective cardinalities satisfy 0 <j A(s) j; j B(s) j< n one must have:

j A(s) j �1

j B(s) j
� K� �

2b� 2c

2d� e� c
(21)

j B(s) j �1

j A(s) j
� K� �

2d� 2c

2b� f � c
; (22)

provided that j A(s) j and j B(s) j are odd. If either of them is even, the

respective conditions are as follows:

j A(s) j �1� (c� e)

j B(s) j
� K� (23)

j B(s) j �1� (c� f)

j A(s) j
� K�: (24)

One of these lower bounds is exactly attained at some state s 2 S�.

Proof: Let g� and g� be two graph components, as described in the

statement of the Lemma. Focus on g� and denote by m �j A(s) j the

cardinality of g�. For concreteness, assume that m and n � m are odd, so

that (21) applies { if one of them were even, the argument is adapted in a

straightforward manner to obtain (23). Denote by qi denote the number of

links supported by player i 2 A(s) and let q̂� � maxi2A(s) qi stand for the

maximum number of links supported by some individual in A(s): Since g� is

complete, note for future reference that the minimum possible q̂ is attained

when every agent in A(s) is connected to exactly the same number m�1
2

of

other agents.
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If the state under consideration is to be a rest point of the best-response

dynamics, it must be the case that every individual in A(s) displays no

incentives to switch actions and link herself to the other �-component. This

requires that, for every i 2 A(s); we have:

d(m� qi � 1) + (d� c)qi � e(m� qi � 1) + (b� c)(n�m): (25)

By rearranging terms, we can write this expression as follows:

d(m� qi � 1) + (d� c)qi � e(m� qi � 1)� (b� c)(n�m) � 0: (26)

Since c > f > e, this expression is decreasing in qi. Thus the most

favorable circumstances under which this expression may be satis�ed for all

i 2 A(s) is when each qi attains the minimum value for q̂�; namely m�1
2
.

Introducing this value in (25), we obtain:

(d� e)
m� 1

2
+ (d� c)

m� 1

2
� (b� c)(n�m)

or

m� 1

n�m
�

2b� 2c

2d� e� c
:

Proceeding analogously for the �-component, we obtain the similar condition:

m0 � 1

n�m0
�

2d� 2c

2b� f � c

where m0 now stands for the cardinality of the set B(s): This completes the

proof of the Lemma. k

Lemma 2 Consider any equilibrium state s 2 S� such as that considered in

Lemma 1. The following statements hold.

(a) State s can be reached from some state s0 2 S�(� S�) by a suitable

chain of single mutations together with one simultaneous mutation of

j B(s) j agents, the best-response dynamics operating in between each

of these mutation events.
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(b) State s can be reached from some state s00 2 S�(� S�) by a suitable

chain of single mutations together with one simultaneous mutation of

j A(s) j agents, the best-response dynamics operating in between each

of these mutation events.

Proof : Consider Part (a) and suppose, for simplicity, that the cardinal-

ity j B(s) j of component g� in s is odd. Choose some state s0 as described

where the links among the agents in NnB(s) are exactly as those that these

agents display in s: First, through a sequence of single mutations and ensuing

best-response adjustment, it is clear that the process may make a transition

from any s0 as described to an (equilibrium) state s1 2 S� where every

i 2 B(s) supports exactly jB(s)j�1

2
links to other agents in B(s): For exam-

ple, to achieve this �nal outcome, it is enough that, in sequence, each of the

agents i which has more than
jB(s)j�1

2
links at that point experiences a uni-

lateral mutation who removes one of her links to some agent j with a lower

number of supported links at that stage. If every such mutation is followed

by a revision opportunity received by agent j; the latter will support a link

to i. Eventually, the system reaches a state with the property desired.

Once state s1 has been reached, a similar concatenation of single muta-

tions may lead the process to a state where all players still play action � but

with no agent in B(s) supporting a link to agents in NnB(s): Call this state

s2 2 S
�:

Finally, assume that a simultaneous mutation of all agents in B(s) makes

them switch from action � to action �, no other features of the situation

being a�ected (in particular every pre-existing link remaining in place). If

now the agents in NnB(s), and only them, receive a revision opportunity,

they will quit supporting their links to agent in B(s). This follows from the

assumption that c > f . This leads to state s, as desired, thus proving Part

(a). Part (b) is proven analogously. k
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Lemma 3 Let s = (g; a) be any arbitrary state (not necessarily an equilib-

rium) such that the subgraph de�ned on the set A(s) � fi 2 N : ai = �g (not

necessarily a proper component of g) is complete: Then, if

n� jA(s)j

jA(s)j � 1
< H� �

d� c

b� e
(27)

every state s0 = (g0; a0) which is reachable from s with positive probability

through the exclusive operation of the best-response dynamics has jA(s0)j =

fi 2 N : a0i = �g � jA(s)j.

Proof: It is enough to show that given any state s = (g; a) which induces

a complete subgraph on A(s) and satis�es (27), no player i 2 A(s) would

like to switch actions, independently of what is the pattern of connections

among the players in A(s) and those in NnA(s): Take any player i 2 A(s)

and denote:

� qhi ; as the set of links supported by i to other individuals in the set

fj 2 N : aj = hg; for each h = �; �;

� rhi ; as the set of links to i supported by individuals in the set fj 2 N :

aj = hg; for each h = �; �:

Of course, note that by the hypothesis we make on s; q�i + r�i = jA(s)j �

m: On the other hand, q
�
i and r

�
i are a priori unrelated, except that q

�
i +r

�
i �

jNnA(s)j = n�m: Suppose now that i receives a revision opportunity. With

the former notation in hand, the (optimal) expected payo� of i to staying

with � is given by

��(q
�
i ; r

�
i ) � d(m� 1)� cq�i + er

�
i ; (28)

where we are implicitly relying on the fact that, if player i stays with strategy

�; in the new state ~s induced by i's adjustment, she will support no links to

players in NnA(s) That is, adapting previous notation in the obvious way,

~q
�
i = 0: On the other hand, if i were to decide switching to strategy �; her

expected payo�s are bounded above by the following expression:

��(q
�
i ; r

�
i ) � e(m� 1� q�i ) + b(n�m)� c(n�m� r�i ): (29)
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where, analogously as before, we implicitly use the fact that if player i

switches to �; the new state ~s will display ~q�i = 0: Denote  (q�i ; r
�
i ) �

��(q
�
i ; r

�
i )� ��(q

�
i ; r

�
i ): Mere inspection of (28) and (29) shows that

min
q�i ;r

�
i

 (q�i ; r
�
i ) =  (m� 1; n�m) = (d� c)(m� 1)� (b� e)(n�m):

By construction, if  (m�1; n�m) > 0; no agent i 2 A(s) would want to

switch actions at s, no matter what its speci�c details might be (in particular,

the pattern of links). Thus, if

n� jA(s)j

jA(s)j � 1
< H� �

d� c

b� e
;

the best-response dynamics is sure not to decrease the number of players

choosing �: This completes the proof of the Lemma. k

Lemma 4 Consider any equilibrium state s involving two non-degenerate (�

and �) components with respective cardinalities j A(s) j> 0 and j B(s) j> 0.

Then, there is another equilibrium state s0 with cardinality for the resulting

� component j A(s0) j> j A(s) j that can be reached from s by a suitable

chain of single mutations, the best-response dynamics operating in between

each of them. An identical conclusion applies to some equilibrium state s00

with j A(s00) j<j A(s) j.

Proof : Let s be any state with non-degenerate �- and �-components,

whose respective player sets A(s) and B(s) have cardinalities m > 0 and

n�m > 0: To address the �rst part of the Lemma, consider any given agent

i 2 B(s) and let qi be the number of links supported by her. We need to

contemplate di�erent possibilities:

1. Suppose qi < n�m�1. Then, there must be some other agent j 2 B(s)

with gji = 1 (i.e. supporting a link to i): Take any such j and suppose

that this individual experiences a mutation, whose only e�ect is to

remove her link to i: Assume then that only player i receives a revision

opportunity. Two subcases must be considered:
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(a) She might decide to keep playing � and establish a link to j, in

which case her number of supported links becomes qi + 1 and a

new rest point of the best response dynamics is attained.

(b) She might decide to switch to �; in which case she will also estab-

lish direct links to all agents in A(s), thus eventually inducing a.s.

a new rest point of the best response dynamics with the desired

properties (i.e. a larger number of players in the �-component) if

the players in B(s)nfig alone then receive a (say, simultaneous)

revision opportunity.

2. Now suppose that qi = n�m� 1, which implies that agent i supports

links to all other agents in B(s): Assume that she experiences a mu-

tation, whose e�ect is to remove all her supported links and switch to

action �: Furthermore, suppose that all agents in A(s) (and only them)

are given a revision opportunity, thus making all of them establish links

to agent i: Again, the �nal outcome for the ensuing operation of the

best response dynamics is a.s. a new rest point of the best response

dynamics with the desired properties.

Combining the above considerations, it follows that, after a �nite chain

of events involving only single mutations and the operation of the best-

response dynamics in between mutations, the process may reach a state with

a larger size of the �-component. This proves the �rst conclusion stated in

the Lemma. A symmetric argument on the �-component shows that a similar

chain of events may lead the process to increasing the size of this component,

thus establishing the second stated conclusion as well. k

We can now complete the proof of part (b) of Theorem 1. Let

m� �
K�

K� + 1
n+

1

K� + 1
(30)

stand for the minimum size of a stable �-component (for concreteness, with

an odd number of players), where K� is de�ned in Lemma 1. On the other

hand, note that, from Lemma 3, the number of simultaneous mutations `�
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that must occur at a state in S� before a stable � component could be

possibly formed through the operation of the best-response dynamics alone

is bounded below as follows:

`� �
H�

H� + 1
n�

1

H� + 1
: (31)

We now argue that:

H� �
d� c

b� e
> Ka �

2b� 2c

2d� e� c
: (32)

To see this, simply note that our assumption that d� b > b� f implies

d� c > 2b� 2c

and that, on the other hand, since b < d;

b� e < 2d� e� c:

Combining (30), (31), and (32), we conclude that, for large n;

`� > m�:

This fact and the former Lemmata allow us to prove the desired conclusion,

by relying on the by-now standard techniques of Freidlin and Wentzel (1984).

In essence, these techniques require identifying, for each s 2 S�, the s-tree

h that displays the minimum resistance cost c(h), where these costs may be

computed as the minimum number of mutations required for all the tran-

sitions contemplated in h. Once these minimum-cost trees are found, the

stochastically stable states are simply those which have such minimum-cost

tress with a cost that is itself minimum across all states in S�: (See Kandori,

Mailath and Rob (1993), Young (1993), or Kandori and Rob (1995) for a

detailed description of the procedure.)

To apply this approach to our case, denote by u � jS�j the cardinality of

the set of equilibria. In view of Lemmas 1, 2, and 4, for any state in s 2 S�;

there is an s-tree h whose cost is

c(h) =

�
K�

K� + 1
+O(1=n)

�
� n+ (u� 2)
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On the other hand, by Lemmas 1 and 3, for any s0 2 S�nS�; the cost of any

s0-tree h0 is bounded below as follows:

c(h0) �

�
H�

H� + 1
+O(1=n)

�
� n + (u� 2):

where we rely on the fact that K� > H�: Thus, in view of (32), we may

conclude that, for large enough n; c(h) < c(h0); which is enough to establish

the desired conclusion. This completes the proof of Part (b).

�

7 Appendix B

Proof of Proposition 4.1: We �rst show that every player in a component

chooses the same action in equilibrium. Suppose player i chooses � while

player j chooses � and they both belong to the same component. Let there

be be k players in this component with k� players choosing action � and k�

(= k � k�) players choosing action �. The payo� to player i from action �

is given by

(k� � 1)d+ k�e (33)

The payo� to player i from action � is given by

(k� � 1)f + k�b (34)

Since, in equilibrium, player i prefers action � it follows that (k��1)(d�

f) � k�(b � e). Similar calculations show that since, in equilibrium, player

j prefers action � it must be true that (k� � 1)(b � e) � k�(d � f). Given

that d > f and b > e, this generates a contradiction. Thus every player in

the same component must choose the same action, in equilibrium.

We now show that there can be at most two non-singleton components

in an equilibrium network. Consider a non-empty network. It follows that

there is at least one non-singleton component in this network. Let g0 � g be
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such a component. From above we know that every player in this component

chooses the same action. Let this action be �, without loss of generality. We

now show that every other player who chooses chooses � also belongs to this

component. Suppose not. Let i 2 g0 and j 2 g00, where g0 is as above and g00

is some other component of the network g. Suppose that ai = aj = �. Also

let k0 and k00 be, respectively, the cardinality of the two components and let

k0 � k00. Recall that k0 � 2; so there is some agent in g0 who has formed

a link. Suppose without loss of generality that this player is i. It follows

from the hypothesis of Nash equilibrium that the return from a link must

exceed the cost. The maximum possible payo� in the component g0 is given

by (k0 � 1)d. It follows therefore that (k0 � 1)d � c. Note however that if

player j forms a link with some player in the component g0 then his additional

payo� is given by k0d > (k0 � 1)d � c. This contradicts the optimality of

the strategy of j. A similar argument holds if the players in the component

choose �. This argument proves that there can be at most one non-singleton

component comprising players choosing an action. Since there are only two

actions in the coordination game it follows that there can be at most two

non-singleton components in any equilibrium.

We next show that if n is large then there can be at most one non-

singleton component in equilibrium. Consider an equilibrium network g.

Suppose that there are two non-singleton components in g, g0 and g00, with

respective cardinalities k0 and k00. Suppose without loss of generality that

k0 � k00. Then, it follows that k0 � n=2. The payo�s to a player j 2 g00 from

forming a link with a player i 2 g0 are bounded below by (n=2)e. Therefore,

for large enough n, it is worthwhile for player i to form such a link. This

contradicts the hypothesis that g is part of a Nash equilibrium. This proves

that an equilibrium network is either connected or empty.

We �nally consider the issue of minimal connectedness. Suppose that g is

an equilibrium network and it is not minimally connected. This means that

there is a link gi;j = 1 such that g � gi;j is also connected. But then player

i can delete the link gi;j, and still be part of a connected society. Given the

payo�s speci�ed in (7), this implies that player i can strictly increase his
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payo�s, contradicting the hypothesis that g is an equilibrium network. This

completes the proof.

�

Proof of Proposition 4.2: From Proposition 4.1, we know that an equilib-

rium network is either empty or minimally connected. Consider a minimally

connected equilibrium network g. Suppose that player i has a link with player

j in this network, i.e. gi;j = 1. We show that in a strict Nash equilibrium,

this implies that player j does not have a link with any other player, i.e.,

gj;k = 0 for all k 6= i.

Suppose there is some player k such that gj;k = 1. In this case, individual

i can simply interchange his link with j for a link with k and get the same

payo�s. Thus, the strategy of forming a link with j is not a strict best

response. Hence g is not a strict Nash network.

The above argument also implies that, since g is connected, player i must

be linked to every other player directly. The resulting network is therefore

a star. Moreover, it also follows that this link must be formed by player i

himself. For otherwise, if there is a player k such that gk;i = 1; then this

player is again indi�erent between the link with i and some other agent in

the star. This implies that the star must be center-sponsored and completes

the proof.

�

Proof of Proposition 4.3: First, consider case (a). We know from Propo-

sition 4.1 that every player in a component chooses the same action. We also

know that there are only two possible equilbrium arhitectures, g 2 Gcs and

ge. Clearly, the empty network cannot be part of a strict Nash equilibrium

(see also arguments for part (c) below). Thus the only candidates for strict

Nash equilibrium are s 2 Gcs � f(�; �; :::; �)g or s 2 Gcs � f(�; �; :::; �)g. It

is easily checked that any of those are indeed strict Nash equilibria.

Consider case (b) next. Again, the empty network is not sustainable by a

strict Nash equilibrium. Then the only candidates are s 2 Gcs�f(�; �; :::; �)g

or s 2 Gcs � f(�; �; :::; �)g. It is immediate to see that none of the latter

is sustainable as an equilibrium since c > b, which implies that the central

player does not have an incentive to form a link with isolated players. Thus
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the only remaining candidates are the former states, which are easily checked

to be strict Nash equilibria.

Finally, consider case (c). If c > d; then the center-sponsored star cannot

be an equilibrium network. Thus, the only candidate for a strict equilibrium

network is the empty one. However, if a network is empty, the choice of

actions is irrelevant. This means that there is no strict Nash equilibrium in

this case. The proof is complete.

�

References

[1] Allen, F. and D. Gale (1998), Financial Contagion, Journal of Political

Economy, forthcoming.

[2] Anderlini, L. and A. Ianni (1996), Path-dependence and Learning from

Neighbors, Games and Economic Behavior, 13, 2, 141-178.

[3] Bala, V. and S. Goyal (1999), A Non-Cooperative Model of Network

Formation, Econometrica, forthcoming.

[4] Bala V. and S. Goyal (1998), Learning from Neighbours, Review of Eco-

nomic Studies 65, 595-621.

[5] Bergin, J. and B. Lipman, (1996), Evolution with State-Dependent Mu-

tations, Econometrica, 64, 943-957.

[6] Bhaskar, V. and F. Vega-Redondo (1998), Migration and the evolution

of conventions, WP A Discusi�on, Universidad de Alicante.

[7] Blume, L. (1993), Statistical Mechanics of Strategic Interaction, Games

and Economic Behavior 4, 387-424.

[8] Canning, D. (1992), Average Learning in Learning Models. Journal of

Economic Theory 57, 442-472.

[9] Carlson, H. and and E. van Damme (1993), Global Games and Equilib-

rium Selection, Econometrica 61, 5, 989-1019.

38



[10] Chwe, M. (1998), Structure and Strategy in Collective Action, mimeo,

University of Chicago.

[11] Coleman, J. (1966), Medical Innovation: A Di�usion Study, Second

Edition, Bobbs-Merrill, New York.

[12] Dutta, B. and S. Mutuswami (1997), Stable Networks, Journal of Eco-

nomic Theory 76, 322-344.

[13] Ellison, G. (1993), Learning, Local Interaction, and Coordination.

Econometrica 61, 1047{1071.

[14] Ellison, G. and D. Fudenberg (1993), Rules of Thumb for Social Learn-

ing, Journal of Political Economy 101, 612-644.

[15] Ely, J. (1996), Local Conventions, mimeo Northwestern University.

[16] Fre��dlin, M.I. and A. D. Vent�tsel0 (1979), Fluktuatsii v Dinamicheskikh

Sistemakh Pod De��stviem Malykh Slucha��nykh Vozmushcheni��. Nauka,

Moscow.

[17] Freidlin, M. I. and A. D. Wentzell (1984), Random Perturbations of

Dynamical Systems. Translation of Fre��dlin and Vent�tsel0 (1979) by

J. Sz�ucs. Springer-Verlag, New York.

[18] Galesloot, B. and S. Goyal (1997), Costs of Flexibility and Equilibrium

Selection, Journal of Mathematical Economics 28, 249-264.

[19] Goyal, S. (1993), Sustainable Communication Networks, Tinbergen In-

stitute Discussion Paper 93-250.

[20] Goyal, S. and M. Janssen (1997), Non-Exclusive Conventions and Social

Coordination, Journal of Economic Theory 77, 34-57.

[21] Granovetter, M. (1974), Getting a Job: A Study of Contacts and Ca-

reers, Harvard University Press, Cambridge MA.

[22] Granovetter, M (1985), Economic Action and Social Structure: The

Problem of Embeddedness, American Journal of Sociology 3, 481-510.

39



[23] Haag, M. and R. Laguno� (1999), Social Norms, Local Interaction, and

Neighborhood Planning, mimeo, Georgetown University.

[24] Harsanyi, J.C. and R. Selten (1988), A General Theory of Equilibrium

Selection, Cambridge, Mass., MIT Press.

[25] Jackson, M. and A. Wolinsky (1996), A Strategic Model of Economic

and Social Networks, Journal of Economic Theory 71, 1, 44-74.

[26] Jackson, M. and A. Watts (1999), On the formation of interaction net-

works in social coordination games, mimeo, Caltech.

[27] Kandori, M., and R. Rob, (1995), Evolution of equilibria in the long

run: A general theory and applications, Journal of Economic Theory

65, 383-414.

[28] Kirman, A. (1997), The Economy as an Evolving Network, Journal of

Evolutionary Economics 7, 339-353.

[29] Kandori, M. and G. J. Mailath and R. Rob (1993), Learning, Mutation,

and Long Run Equilibria in Games. Econometrica 61, 29{56.

[30] Mailath, G. Samuelson, L. and Shaked, A., (1994), Evolution and En-

dogenous Interactions, mimeo., Social Systems Research Institute, Uni-

versity of Wisconsin.

[31] Morris, S. (1997), Contagion, mimeo Yale University.

[32] Nouweland, A. van den (1993), Games and networks in Economic Situ-

ations, unpublished Ph.D Dissertation, Tilburg University.

[33] Oechssler, J (1997), Decentralization and the coordination problem,

Journal of Economic Behavior and Organization 32, 119-135.

[34] Robson, A. and F. Vega-Redondo (1996), EÆcient Equilibrium Selection

in Evolutionary Games with Random Matching, Journal of Economic

Theory 70, 65-92.

40



[35] Samuelson, L. (1994), Stochastic stability in games with alternative best

replies, Journal of Economic Theory 64, 35-65.

[36] Young, H. P. (1993), The Evolution of Conventions. Econometrica 61,

57{84.

41


