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Abstract

We study a model in which heterogenous boundedly rational agents interact locally in order to

play a coordination game. Agents di®er in their mobility with mobile agents being able to relocate

within a country. The model yields the following predictions: (1) mobile agents always bene¯t from

increased mobility, (2) immobile agents bene¯t from increased mobility at low levels of mobility,

(3) immobile agents lose from increased mobility at high levels of mobility, (4) there is an optimal

\country size," (5) \income inequality" is weakly increasing in mobility, (6) if there are arbitrarily

small payo® di®erences between two countries, opening borders causes a \brain drain" e®ect; in

the long run, all mobile agents reside in the favored (former) country and e±ciency is attained

only in that country.

1We thank George Mailath for helpful discussions.
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I. Introduction

Economists have long studied the e®ects of location and mobility on economic decisions by in-

dividual consumers and ¯rms. Why is it, for example, that di®erent, often seemingly Pareto

ranked, conventions coexist among di®erent locations? What are the e®ects of regulation that

restricts/allows mobility across locations? Answers to these questions are relevant for the study

of issues such as crime, unemployment, growth, etc.

Here we study a model where boundedly rational agents are randomly matched repeatedly in

order to play a coordination game with tension between risk dominance and Pareto dominance.

This is perhaps the simplest stylized framework in which we can formally study the e®ects of

mobility and of exogenous restrictions on mobility on the agents' choices of locations and actions.

We assume that agents are heterogeneous, di®ering in their mobility, where mobility is a function

of the number of locations that agents have access to. Mobile agents can move across a ¯nite set

of locations the collection of which we shall call a \country." The remaining agents are immobile

and cannot move across locations. Our model yields a number of predictions about the e®ects of

di®erent arrangements regarding mobility levels and the corresponding set of long-run outcomes.

Mobile agents weakly bene¯t from increased mobility. If country size is small, i.e. mobility of

the mobile agents is restricted to a small number of locations, then the risk-dominant equilibrium

obtains at every location. In contrast, if country size is su±ciently large, there are enough mobile

players to ensure e±cient play at one of the locations and all mobile agents will be at that location.

Immobile agents bene¯t from increased mobility at low levels of mobility. Country size has to be

su±ciently large to ensure e±cient play at one location. In that case, the immobile agents at that

location bene¯t from the externality generated by the presence of the mobile ones. Immobile agents

lose from increased mobility at high levels of mobility. The reason is that any given immobile player

is ex ante less likely to bene¯t from the above mentioned externality if country size is increased
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further. As measured by the di®erence in realized payo®s, income inequality is weakly increasing in

mobility. In this sense, there is an optimal country size since allowing every mobile agent to move

freely reduces the fraction of immobile agents that bene¯t from the externality. Finally, if there are

arbitrarily small payo® di®erences between two countries that favor one country, opening borders

causes a \brain drain" e®ect; in the long run, all mobile agents reside in the favored (former)

country and e±ciency is attained only in that country. Note that this is true even if the risk-

dominant equilibrium in the favored country is dominated by the Pareto-dominant equilibrium in

the less well o® country. The result that the mobile agents move to the favored country is not

a direct consequence of the payo® di®erential. Rather, it results from the greater robustness of

e±cient play in the favored country.

There are many possible origins of restrictions on geographical mobility. They could be due to

the conventional political or legal constraints on labor mobility across countries. They could be

skill based, when skilled workers are employable in a larger number of communities. They could be

the result of racial or gender discrimination. Or, they could be the result of strong community ties.

Finally, we may think of di®erential mobility as di®erential access to communication resources.

Under the conventional political interpretation, one could say that \globalization," i.e., a re-

moval of cross-border restrictions on mobility, favors mobile agents. They seek out opportunities

and they form stable clusters, at which the e±cient outcome prevails. Those immobile agents

who happen to be at the location where such an e±cient cluster forms, e®ectively bene¯t from an

externality generated by the mobile ones. Ex ante, the e±cient cluster is equally likely to form

at any location that the mobile agents have access to. Moreover, in the long run, the e±cient

cluster will spend equal amounts of time at any of those locations. In that sense, all the immobile

agents bene¯t from the externality. A precondition for the e±cient cluster to form in a country is

that there are su±ciently many mobile agents in that country, which in our model is a function of

country size. Thus the externality that bene¯ts the immobile agents requires there to be su±cient

mobility. Once there is enough mobility to put the externality in place, however, further increases
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in mobility reduce the frequency with which the externality is encountered by a given immobile

agent. In a sense, greater mobility allows mobile agents to emigrate and leave immobile agents

behind who on their own are unable to sustain e±cient outcomes. This immigration/emigration

interpretation can be made somewhat tighter by considering one-way permeability of borders:

immobile agents in immigrant (emigrant) regions bene¯t (lose).

Our model predicts that greater mobility shifts the \income distribution" in favor of the mobile

agents. In light of the di®erent origins of geographic mobility, this can result in a bias in favor of

skilled agents, against agents who su®er from discrimination, against agents with cultural biases,

or against agents with limited access to communication resources.

The important role of externalities for the consequences of migration has been recognized in the

literature on migration; see for example the survey by Greenwood [1975]. Greenwood dates this

recognition to the application of the theory of human capital to the analysis of the international

brain drain. That literature points of the selectivity of migration, the fact that younger, better

educated workers are more likely to migrate. As a result, one might expect receiving regions to

bene¯t and sending regions to lose from migration. We get similar e®ects in our model without

selectivity, as the mobile agents at a given location have the same strategic options and the same

payo®s from their available actions as the immobile agents. Rather than selectivity of migration,

it is the mobility of the migrating agents itself that confers bene¯ts on the receiving region or

country. The reason is that mobile players move to locations at which e±cient equilibrium play

arises by chance. This increases the number of agents at that location and thus makes it less likely

that agents' mistakes will upset the e±cient equilibrium at that location.

More recently Akerlof [1997] has noted the pervasive role of externalities in social decisions,

as studied in the social interactions literature (see the references in Akerlof). He notes that

empirically, group e®ects have been found to be important (see the references in Akerlof) and, in

order to overcome identi¯cation problems in the econometric work on this issue, presents additional

ethnographic and biographical evidence. He observes that group loyalty may limit mobility and
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that group conformity may impede social advancement.

Our paper uses techniques from evolutionary game theory. In particular we shall often make use

of the concepts of the radius, coradius, and modi¯ed coradius of basins of attraction of a dynamical

system, as introduced by Ellison (1995) who built on Kandori, Mailath, and Rob (K-M-R,1993)

and Young (1993) who, in turn, used techniques in Freidlin and Wentzell (1984). We use an

adaptation of these techniques in one of our proofs that might prove useful in other applications.

Roughly, the radius of a basin of attraction of a set is the cheapest way out of the set, and the

coradius is the cheapest way into the set from the worst starting state. Usually one uses these

concepts to prove stochastic stability of a set by showing that for that set the radius exceeds the

coradius (or, if necessary, a modi¯ed version of the coradius). We use this argument repeatedly.

We show for two di®erent sets that the radius exceeds the (modi¯ed) coradius and conclude that

the stochastically stable set must be in the intersection of those two sets.2

The role of mobility in local interaction models has been explored by Bhaskar and Vega-

Redondo (1996), Ely (1996), and Oechsler (1997). These papers show that unlike in random

matching models, where the risk-dominant equilibrium is selected, local interaction favors the

Pareto-dominant equilibrium. The consequences of restricted mobility in these models have been

investigated by Anwar (1996) and Dieckmann (1999). Like the present model, Anwar and Dieck-

mann demonstrate that restricted mobility may lead to coexistence of di®erent conventions. One of

our innovations is to study heterogeneity in mobility and the distributional e®ects of such mobility.

II. The Model

There is one continent and k locations. A country is a collection of locations. Bigger countries

are larger sets of locations. As part of the exercise, we will vary the number (size) of countries

but we always assume that all countries are of equal size. The total population of the continent is

2Ellison (1995) studies a simple stylized example by using a similar argument.
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kM agents. Countries are symmetric and it is assumed that they do not overlap.3 Without loss

of generality assume that each location has initially M agents. A number, n; of the M agents are

immobile. The remaining m = M ¡ n; are mobile. The agents are randomly matched in pairs to

play a 2x2 symmetric coordination game. Action pro¯le (s1; s1) or (G) corresponds to the payo®

dominant equilibrium and action pro¯le (s2; s2) or (B) corresponds to the risk dominant (and in

this case Pareto inferior) one.

In each period, each agent chooses a location and an action. The choice of action is subject to

noise while the choice of location is not.4 Of course, the choice of location is trivial for the immobile

agents. In each period, mobile agents will move to the location that gives them the highest payo®

among all locations available to them and given the state in the previous period. If indi®erent,

mobile agents choose a location at random. The mixed equilibrium is given by (xs1; (1 ¡ x)s2);

where x 2 (1
2 ; 1): Thus, (s2; s2) is the risk dominant action choice.

Let P be the state space, where P denotes the set of countries with generic element ½; and

let  be the restriction of the state space to a single country. A (restriction of the) state in  is

! = (z; f); where z is a vector describing the fraction of s1 players in each location (this does not

distinguish between mobile and immobile agents but this is without loss of generality), and f is

a vector describing the number of mobile agents in each location. The immobile agents stay put.

Regarding choice of location of the mobile agents, the underlying best reply dynamic is assumed.5

Let k½ stand for the location(s) that o®ers the highest expected payo® in country ½. Given that

the present state is !; the distribution of mobile agents across locations in country ½ is given by

b½(!) 2 ¢(k½); where ¢(k½) is the set of all possible distributions of mobile agents across the k½

locations. We assume that each element of ¢(k½) has positive probability.

Let u(s° ; k; !) be the expected payo® of action s° in a given location, k; given that the state

in the previous period was !: Regarding choice of action, the stochastic best reply dynamic a la

3However, see Section III.C for an example with overlapping populations.

4Introducing noise in the choice of location will not fundamentally alter our results.

5Our results hold for a more general class of monotone dynamics.
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K-M-R (1993) is assumed. Denoting the fraction of agents choosing action s1 at location k in

response to state ! by bk(!); we have:

bk(!)

8
>>>>>><
>>>>>>:

= 1; if u(s2; k; !) < u(s1; k; !);

2 ¢(fs1; s2g); if u(s2; k; !) = u(s1; k; !);

= 0; if u(s2; k; !) > u(s1; k; !):

The function zt+1 = b(!t) gives the pro¯le of strategies that will be used in each location at

t + 1, given that the time t state is !t: Since the stage game is a coordination one, the dynamic

described above leads to a set of states where everyone plays an identical action, G or B, in each

location. Actions could vary across locations. The long run behavior of the system depends on the

initial distribution of agents across states. This is resolved if noise is introduced into the system.

Assume that with probability ²; each player trembles and chooses an action from a full support

distribution. These choices are assumed to be iid across players and time. This yields a stochastic

dynamical system that de¯nes a Markov chain on the ¯nite state space P . This Markov chain

has a unique invariant distribution for a given rate ² > 0. The invariant distribution is globally

stable and ergodic and is interpreted as giving the proportion of time that the society spends in

each state. We will concentrate on the support of the distribution ¹; which results as the limit

case when ² is driven to zero.

In this paper we are interested in studying the e®ects of exogenous policies that restrict mo-

bility on the long run payo®s of agents in an environment where agents are heterogenous in their

mobility levels. As mentioned earlier, mobile agents might create an externality that is enjoyed

by themselves, as well as by a subset of the immobile agents. We shall, proceed by studying

how equilibrium selection might change as a function of di®erent restrictions on the level of the

externality. For now, we do not consider interactions across countries. Therefore we will focus on

a single country. The results extend trivially to the full state space. An element ! of  describes

a distribution of agents across locations (within a country) and actions. We ¯rst ¯x the size of a

country, by assuming that each country contains i locations where i 2 Dk, where Dk is the set of
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divisors of k; and concentrate on the set of states e ½  that have the following three properties:

(1) all mobile agents within the country are piled in one location;

(2) action G is played in that pile;

(3) action B is played in each of the remaining locations.

We will make extensive use of techniques developed in Ellison (1995). For de¯nitions and addi-

tional applications the reader is referred to Fudenberg and Levine (1998). The characterization of

the long run predictions of the model (the stochastically stable outcomes) relies on the calculation

of the radius and the coradius of the basin of attraction of a family of sets. While the formaliza-

tion of these concepts requires the use of some mathematical notation, they are very intuitive to

grasp. Suppose the system is in an absorbing set A. The radius of the basin of attraction of A

corresponds to the minimum number of trembles necessary to leave the basin of attraction. Next

we need to compute the minimum number of trembles needed to reach the basin of attraction of

A, starting from an absorbing set outside A. Do the same for all other absorbing sets outside

A, and determine the maximum of these numbers. This number is the coradius of the basin of

attraction of A. Ellison derives a su±cient condition for an absorbing set to be uniquely selected

by the learning process: If the radius of the basin of attraction of an absorbing set A is larger than

its coradius, then all stochastically stable sets are contained in A.

We are interested in absorbing sets of the process, where play settles down to a stationary

distribution of choices of locations and actions. Let P!!0 denote the probability of transition from

state ! to state !0.

De¯nition 1 A set of states 0 is absorbing if (i) for all !0 2 0, ! =2 0, P!0! = 0, and (ii)

6 900 ½ 0, 00 6= 0 such that (i) holds for 00:

The ¯rst condition requires that once the process enters the absorbing set, it will not leave

it. The second condition requires that absorbing sets are minimal. Let A be a subset of the set

of absorbing sets of the model without noise. The basin of attraction of A, denoted by D(A), is
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the set of all states from which the unperturbed Markov process converges to a state in A with

probability one,

D(A) = f! 2 j Pr(9¿ 0 such that !¿ 2 A 8¿ > ¿ 0j!0 = !) = 1g:

The radius of the set D(A) is the number of trembles necessary to leave the set, starting from a

state in A. Let c(!; !0) be the number of trembles needed for the system to transit from state !

to state !0. That is, c(¢) measures the transition cost between these states. De¯ne a path by a

¯nite sequence (!1; !2; : : : ; !k) of distinct states. The cost of such a path is de¯ned by

c(!1; !2; : : : ; !k) = §k¡1
¿=1c(!

¿ ; !¿+1):

The radius of A is the least costly (in terms of trembles) path leading from any state in A to some

state outside the basin of attraction of A.

De¯nition 2 The radius of the basin of attraction of a set of absorbing sets A is:

R(A) = min
(!1;:::;!k)

c(!1; : : : ; !k) such that !1 2 A;!k =2 D(A):

The path (!1; : : : ; !k); de¯ning the radius of D(A); thus describes the cheapest way out of that

set. The coradius of the basin of attraction of a set of absorbing sets is de¯ned by the number

of trembles necessary to reach this set from the state where the minimum number of trembles

required to reach D(A) is maximized.

De¯nition 3 The coradius of the basin of attraction of a set of absorbing sets A is:

CR(A) = max
!1=2A

min
(!1;:::;!k)

c(!1; : : : ; !k)s.t. !k 2 D(A):

The smaller the coradius, the likelier is the event that simultaneous trembles shift the system

from any absorbing state to some state in D(A). We will make use of the following concept that

is related to the coradius.

De¯nition 4 The modi¯ed coradius of the basin of attraction of a set of absorbing sets A is:
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CR¤(A) = max
!1 =2A

min
(!1;:::;!k)

fc(!1; : : : ; !k) ¡
L¡1X

l=2

R(l)gs.t. !k 2 D(A)

and flgis the sequence of absorbing sets through which (!1; : : : ; !k) passes.

A su±cient condition for a set of states to be stochastically stable is that the radius of its basin

of attraction exceeds the modi¯ed coradius. Intuitively, while, in the presence of noise, all states

in the system are transient, the stochastically stable states are the ones where the system will

spend the largest fraction of its time in the \long run." We will, thus, concentrate our attention to

such states. Formally, let ¹(²) denote the unique ergodic distribution associated with the Markov

chain, and de¯ne the limit distribution by ¹¤ = lim²!0 ¹(²). The limit set is de¯ned by

¤ = f! 2  : ¹¤(!) > 0g:

De¯ne ¹¤(A) = §!2A¹¤(!), with ¹¤(¤) = 1. We have the following:

Theorem 1 (Ellison, 1995) For any absorbing set A, if R(A) > CR¤(A), then ¹¤(A) = 1.

The result obviously holds if we substitute CR(A) for CR¤(A): Roughly, the result says that

a set A contains the stochastically stable states if it is more di±cult to leave the set than it is to

enter it from the worst possible starting point.

Let Ri(£), CRi(£); and CR¤
i (£) stand for the radius, coradius, and the modi¯ed coradius of

a set of states £ µ  when mobile agents are free to locate across i locations. The following gives

a su±cient condition for e to be selected. The proof proceeds by ¯rst demonstrating that e is

the unique set belonging in the intersection of two appropriately de¯ned sets of states, e[1 and

e [ 2: It is then shown that Ri(e [ 1) > CR¤
i (

e [ 1) and that Ri(e [ 2) > CRi(e [ 2):

This, in turn, implies that e contains the unique stochastically stable set.

Our long run predictions do not depend on initial conditions. Without loss of generality,

we shall assume that mobile and immobile agents are assigned symmetrically across locations

in period 0 (see Figure 1, top). The next proposition describes a su±cient condition for the
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stochastically stable set to be a subset of e: Figure 1 (bottom) illustrates the outcome predicted

by the proposition. In each of the four countries, the mobile players cluster in one location. At this

location, the e±cient equilibrium, G, is played. Everywhere else, the risk-dominant equilibrium

B prevails. It is worth mentioning that, absent mobility across locations, each individual location

would correspond to a K-M-R model, resulting in the risk dominant equilibrium being played

everywhere. In our case, the mobile agents are able to create a su±cient cluster in which the

e±cient outcome is played. At the same time, the immobile agents in the location where the G

pile is formed bene¯t from the externality..

Proposition 2 Fix the number of accessible locations, i > 1, for all mobile agents. Then the

stochastically stable set is a subset of e if x 2
³

1
2 ; n+im

2n+im

´
.

Proof. Let e be the set of states where all mobile agents are piled in one location and G is

played at that location and all immobile agents play B everywhere else. Let 1 be the set of states

where in every country all agents, mobile and immobile, play (B) and where mobile agents are

located arbitrarily across locations. Finally, let 2 be the set of states where mobile agents are

located arbitrarily across locations and only one action is played in any given location (actions

and the size of piles could vary across locations but we exclude e and 1 from this set). These

three sets include all absorbing states. The cheapest way out of e [ 1 is to move from e to 2:

This involves (any) one pile of immobile agents switching from B to G. Therefore, we have that

Ri(e [ 1) = xn: To calculate the modi¯ed coradius of e [ 1; we only need to consider paths

starting in ~ [ 2: The starting point giving rise to the most expensive such transition is the one

where all agents play G at all locations. Note that from there we can reach a state where all mobile

agents are piled at a single location at zero cost. From there, the minimal cost path into e [ 1

involves (1 ¡x)n(i ¡ 1) trembles; this is the minimal number of trembles needed to switch play at

the i¡1 locations that are only inhabited by immobile players from G to B. The modi¯ed coradius

is this cost minus the radii of the intermediate steps. Each of these equals (1 ¡ x)n; and there are

i ¡ 2 intermediate steps. Hence, CR¤
i (e [ 1) = (1 ¡ x)n(i ¡ 1) ¡ (1 ¡ x)n(i ¡ 2) = (1 ¡ x)n:
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Therefore, Ri(e [ 1) > CR¤
i (e [ 1) i® xn > (1 ¡ x)n; or i® x > n

2n : The cheapest way out of

e[2 is to move from e to 1: This involves the big pile of mobile agents playing G to switch to

B. We thus have that Ri(e [ 2) = (1 ¡ x)(n + im): On the other hand, if every agent in every

location plays B, the state where all mobile agents are piled in one location is reached with positive

probability. Then, xn trembles are needed to lead to immobile agents in one location to change

to G and, subsequently, have all mobile agents moving to that location leading to e: Hence, we

have that CRi(e [ 2) = xn: Therefore, Ri(e [ 2) > CRi(e [ 2) i® (1 ¡ x)(n + im) > xn; or

i® x < n+im
2n+im

:

It can be seen that the condition in Proposition 2 will tend to be satis¯ed if the fraction of mobile

agents is su±ciently high. Otherwise, the risk dominant outcome will prevail everywhere. On the

other hand, if mobility becomes su±ciently restricted, it might become impossible to support the

G outcome in any location. The intuition behind this result is simple. The emergence of a G

formation relies on the externality between agents that exhibit good behavior being su±ciently

strong. Thus, it requires a su±cient mass of mobile agents. Barriers to mobility might prevent

the critical mass from being formed, leading to the B outcome everywhere being the only outcome

in the stochastically stable set. The following Proposition asserts that, for certain parameters,

dividing a continent into too many small countries, i.e., restricting mobility to be very limited,

will lead to 1 being the only element of the stochastically stable set. This is done by looking at

the modi¯ed coradius of 1 in relation to the number of locations, i, that each mobile agent has

access to.

Proposition 3 Suppose that i < 2x¡1
1¡x

n
m : Then Ri(1) > CR¤

i (1):

Proof. We have that Ri(1) = xn; since the state where only immobile agents occupy a given

location is reached with positive probability and we need only one location to switch to G in order

to get out of 1: We also have that CR¤
i (1) = (n + im)(1 ¡ x): This is based on the following

reasoning. From the state where everyone plays G, the state where every mobile agent is piled in

one location is reached with positive probability. Then we need (1¡x)n(i¡1) trembles to switch all
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locations except the one where the big pile is located to B. Finally, we need (1¡x)(n+im) trembles

in order to switch the ¯nal location to B. The sum of the coradii of the intermediate steps is given

by (1¡x)n(i¡1) and CR¤
i (1) = (1¡x)n(i¡1)+(1¡x)(n+im)¡(1¡x)n(i¡1) = (n+im)(1¡x):

Therefore, Ri(1) > CR¤
i (1) i® xn > (n + im)(1 ¡ x) i® i < 2x¡1

1¡x
n
m :

The above two Propositions taken together imply some intuitive comparative statics. When

the number of locations in a country, i, is su±ciently small, then the risk dominant outcome is

likely to prevail everywhere (Proposition 3). On the other hand, for su±ciently large i; mobile

agents will pile themselves in locations in which the Pareto dominant action is played exclusively.

In addition, if the number of immobile agents, n, is low, then the mobile agents will pile themselves

in locations in which the Pareto dominant action is played exclusively (Proposition 2) while if the

number of immobile players is large, the risk dominant outcome prevails (Proposition 2). The

reverse implications are true if we vary the number of mobile players.

Note that the conditions in the statements of Propositions 2 and 3 are tight in the sense that for

any combination of the parameters i; x;m; and n we can characterize the stochastically stable set.

In other words if x 2
³

1
2
; n+im

2n+im

´
the stochastically stable set is a subset of e and if x 2

³
n+im
2n+im

; 1
´

the stochastically stable set is a subset of 1:

The next Proposition provides a rationale for why the optimal country size might be smaller

than the size of the entire continent. Intuitively, the probability that the pile of mobile players

forms at a given location in a country is inversely proportional to the country's size, provided the

pile forms at all. Our earlier results show that at the location where the pile forms all players play

G and the immobile players at that location bene¯t from an externality generated by the mobile

players. In a smaller country, a given immobile player is more likely to be visited by the pile and

therefore to bene¯t from this externality. Thus, an optimal level of \uni¯cation" emerges due to

two opposing e®ects. The ¯rst e®ect requires that there is enough mobility for the externality to

be su±ciently strong in order for the G pile to form in some location. The second e®ect requires

that mobility is su±ciently restricted so that each individual location has the G pile being form
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in that location relatively frequently. The proof is clear and will be omitted.

Proposition 4 Provided, each country is su±ciently large to render ~ stochastically stable, we

have: (a) the fraction of time that the G pile of each country spends in any given location increases

in the number of countries k (decreases in the number of locations, i). (b) the number of immobile

agents in the G state is n £ ½:

III. Some Extensions

In this section we present some examples of extensions of the basic model presented in the previous

section. We also discuss the robustness of the basic model to di®erent assumptions regarding the

meeting technology. One example we study in that direction is the case where the matching

technology allows for meetings between populations that are overlapping.

A. Income Distribution

Consider an example where there are two countries, each containing two symmetric locations.6

Suppose there are three types of agents. Agents of the ¯rst type are completely immobile. Agents

of the second type are mobile across locations within a country but immobile across countries.

Finally, agents of the third type are completely mobile across all locations in all countries. As

we mentioned earlier, in the context of our stylized model mobility across locations could also be

interpreted as mobility across di®erent skills for workers. Like before, we will assume without loss

of generality that agents of all mobility levels are initially assigned symmetrically across locations

(see Figure 2, top). In this environment fully mobile agents enjoy a higher frequency of the high

payo® since they can relocate to any location in which a G pile is formed. Partially mobile agents

enjoy a lower frequency of the high payo® since they can relocate to any location in their own

country in which a G pile is formed. Finally, immobile agents enjoy the lowest frequency of the high

payo® since they can only take advantage of a G pile if it is formed in their own location. Thus,

6The intuition of this example easily generalizes to many countries and many locations.
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a distribution of payo®s across agents is generated with higher expected payo®s corresponding to

higher levels of mobility. In addition, there are two possibilities regarding outcomes in the two

countries. If one country alone does not have the critical mass of mobile agents in order to support

the e±cient outcome in one of its locations, the risk dominant outcome will prevail everywhere in

that country (see Figure 2, middle). This is the result of the highly mobile agents immigrating

and help building a G pile in one of the locations of the other country. If, on the other hand, each

single country has a critical mass of mobile agents, the G outcome will prevail in one location of

each country (see Figure 2, bottom).

B. Rich and Poor Countries

Consider again a variant of the basic model of the previous section where there are two countries,

\rich" and \poor", and i
2 symmetric locations in each country (see Figure 3, top). In order to

explore the implications of having one country that is \richer" than the other, we assume that

the coordination game played in that country has a payo® matrix that has an arbitrarily small

positive constant, ®; added to each payo®. Of course, if we restrict mobility across the two

countries, provided that the risk dominant equilibrium is not \too risk dominant," a G pile will be

observed in one location of each country in the long run (see Figure 3, middle). Now assume that

the border opens. Suppose that a G pile is formed in one location of the poor country. In that case,

xn trembles in one of the locations in the rich country will switch that location to the G outcome.

Since the payo® of the G outcome is higher in the rich country than in the poor country, the pile of

mobile players will immediately relocate to the rich country. On the other hand, to destroy such a

pile if it is formed in one of the locations of the rich country a total of (1 ¡ x)(n+ im) trembles is

needed. This example suggests that the G pile will visit the rich country in¯nitely more often than

the poor one. In other words, absent any restrictions on immigration of the mobile agents, the

mobile agents will pile in the rich country (see Figure 3, bottom). We identify this with a \brain

drain" e®ect. An arbitrarily small initial di®erence in payo®s between the two countries will lead
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to dramatic di®erence in the long run odds for coordination to the Pareto superior outcome in

the poor country. Absent any restrictions on mobility, the mobile agents of the poor country will

relocate leading to the positive externality from mobility being present only in the rich country.

C. Overlapping Populations

Consider a continent with three locations, ordered from left to right, and two types of agents,

immobile ones and partially mobile ones. One set of partially mobile agents has access to the two

locations on the left, another set to the two locations on the right (see Figure 4). It can be shown

that our results have analogs in this environment. Consider the following classes of states, which

are distinguished by the actions played in the three locations:

1

·
BBB

¸

2

2
6666664

BGG

GGB

GGG

3
7777775

3

2
66666666664

GBG

BBG

GBB

BGB

3
77777777775

We can establish that the stochastically stable set lies in 3. This set includes only polymorphic

states, in which di®erent conventions coexist across locations that are partially overlapping. The

argument is an analog to the proof of Proposition 2. We need xn trembles to move from BBG

to BGG; and note that there is no less costly transition out of the basin of attraction of 1 [ 3.

Similarly, we need (1 ¡ x)n trembles in order to move from any state in 2 to 1 [ 3: So we

have that R(1 [ 3) = xn and CR(1 [ 3) = (1 ¡ x)n: Clearly, since x > 1
2 ; R(1 [ 3) >

CR(1 [ 3). On the other hand, we need (1 ¡ x)(n + 2m) trembles to move from BBG to
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BBB;and note that there is no less costly transition out of the basin of attraction of 2 [ 3.

Similarly, we need xn trembles in order to move from any state in 1 to GBB: So we have that

R(2 [3) = (1 ¡ x)(n + 2m) and CR(2 [ 3) = xn: Therefore, for R(2 [ 3) > CR(2 [3)

we need that (1 ¡ x)(n + 2m) > xn, or, x < n+2m
2n+2m . Notice, that this condition will not be

satis¯ed unless the fraction of mobile players, m, is su±ciently high. Since 3 lies in the above

two unions, we conclude that, provided that the above condition holds, the stochastically stable set

lies in 3. This example demonstrates that our main analysis may be carried out under di®erent

speci¯cations of the matching technology.

IV. Conclusions

We studied a model where boundedly rational agents are randomly matched repeatedly in order

to play a coordination game with tension between risk dominance and Pareto dominance. This

game can be thought of as a metaphor for many social situations in which multiple Pareto ranked

equilibria are possible. We concentrated on the role of introducing di®erent levels of mobility to

equilibrium selection and, thus, to the long run distribution of payo®s across players and locations.

The model had a number of predictions. Mobile agents weakly bene¯t from increased mobility. If

mobility of the mobile agents is restricted, the risk-dominant equilibrium obtains at every location.

In contrast, if country size is su±ciently large, there are enough mobile players to ensure e±cient

play at one of the locations and all mobile agents will be at that location. Immobile agents bene¯t

from increased mobility at low levels of mobility, and country size has to be su±ciently large

to ensure e±cient play at one location. The immobile agents at that location bene¯t from the

externality generated by the presence of the mobile players. Immobile agents lose from increased

mobility at high levels of mobility. Income inequality is weakly increasing in mobility. Thus, there

is an optimal country size. Finally, if there are arbitrarily small payo® di®erences between two

countries that favor one country, opening borders causes a \brain drain" e®ect; in the long run, all

mobile agents reside in the favored (former) country and e±ciency is attained only in that country.
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Our predictions are restricted to the long run outcomes of an evolutionary process. Such

predictions have been criticized on the basis of the slow rate of convergence. In other words, given

the small probability of the iid random trembles, the status quo state (whatever that might be) is

likely to be observed for a large number of periods before a transition is observed. There are several

lines of defence against this criticism. First, Ellison (1993) has shown that \local interactions,"

that is local matching rules, under which agents are matched with high probability with a small

group of neighbors, dramatically improve the rates of convergence without changing equilibrium

selection predictions. We expect our results to be true under local matching. A second avenue,

would be to assume that the tremble probability, ²; is not arbitrarily close to zero but, rather,

2¡20%. In future work, we are planning to simulate the model for such tremble rates. Finally we

could drop the independence assumption on the trembles. If the trembles are positively correlated

across agents, the rates of convergence will improve. At the same time, provided that trembles

are not \almost perfectly correlated" (for that case no equilibrium selection occurs) the selection

results will not change.7

In our model, an individual's payo® options depend on which community, or set of accessible

locations, he belongs to. This links our model to recent work on inequality that has emphasized

the role of group e®ects for socioeconomic outcomes and has been referred as the memberships

theory of inequality by Durlauf (1997).8 As noted by Durlauf, strong community identi¯cation

and membership can foster both pernicious and benign social norms. Our highly stylized model

delivers predictions consistent with this assessment, and adds a role for community size. In our

model, high-risk, high-payo® actions are less prevalent in small communities. Larger communities

make such actions more likely. However, community ties may play a bene¯cial role when they lead

to the retention of agents who are mobile within a community.

7See Young (1998a,b) for a discussion of this issue.
8One of the central tenets of this theory is: \Individual preferences, beliefs, and opportunities are strongly

in°uenced by one's memberships in various groups. Such groups may be ¯xed, such as race, or may be determined

by the economy or society, such as neighborhoods, schools, or ¯rms," see Durlauf, 1997.
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