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Abstract

We axiomatize updating rules for preferences that are not necessarily in the expected utility

class. Two sets of results are presented. The first is the axiomatization and representation of

conditional preferences. The second consists of the axiomatization of three updating rules: the

traditional Bayesian rule, the Dempster-Shafer rule, and the generalized Bayesian rule. The

last rule can be regarded as the updating rule for the multi-prior expected utility (Gilboa and

Schmeidler (1989)). The operational merit of it is that it is equivalent to updating each prior

by the traditional Bayesian rule.
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1 Introduction

The traditional approach to updating is the Bayesian rule. This approach is justified by the ax-

iomatic treatment of Savage (1954), where it is shown that, in situations of uncertainty, if a decision

maker’s preference satisfies a certain set of axioms, his preference can be represented by an expected

utility with respect to a subjective probability measure and that probability measure represents the

decision maker’s belief about the likelihood of events. Moreover, in light of new information, the

decision maker updates his belief according the Bayesian rule. This Savage paradigm has been the

foundation of much of the economic theories under uncertainty. At the same time, however, the

Savage paradigm has been challenged by behavior exhibited in Ellsberg paradox (Ellsberg (1961)),

which seems to question the very notion of representing a decision maker’s belief by a probability

measure and hence by implication the validity of the Bayesian rule.

Such discrepancy between the theories and the empirical facts has been the driving force behind

various attempts to extend the Savage paradigm. The earliest attempt dates back at least to

Dempster (1967, 1968). Since then, the extensions have been developed along two fronts. One is the

axiomatization of preferences that can accommodate behavior such as that seen in Ellsberg paradox.

Schmeidler (1989) axiomatizes a class of preferences as the integral of a utility function with respect

to a non-additive probability. Schmeidler’s axiomatization is in the Anscome-Aumann framework.

Gilboa (1987), Nakamura (1990), and Sarin and Wakker (1992) develop the same class of preferences

in the Savage setting. Gilboa and Schmeidler (1989) provides a theory of expected utility with

multi-priors.1 The second front is on developing updating rules for beliefs/preferences that cannot

be represented by probability measures/expected utility. The existing literature includes Dempster

(1967, 1968), Shafer (1976, 1979), and more recently, Gilboa and Schmeidler (1993).

In this paper we address the issue of how people update their beliefs when their preferences

do not necessarily fall into the class of expected utility. The motivation for this paper comes from

two sources. First, while there has been progress in the decision theory literature, the results on

updating rules for non-expected utility type of preferences are not completely satisfactory. For

instance, Machina and Schmeidler (1992) and Epstein and Le Breton (1993) extend the notion of

subjective beliefs and updating to non-expected utility. The beliefs, however, are still represented

by probability measures and the updating rule is still Bayesian as in the Savage paradigm. Dempster

(1967, 1968) and Shafer (1976, 1979) generalize the Bayesian rule. However, the Dempster-Shafer
1For more references to this literature, see Camerer and Weber (1992) and Sarin and Wakker (1998) and the

references therein.
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rule they propose lacks rigorous axiomatic foundation. Gilboa and Schmeidler (1993) are the first

to study axiomatically updating with general preferences. However, most preferences in the class

they study do not support a separation of preference and belief, making it difficult to interpret

intuitively the notion of updating. The second source of motivation comes from the recent advance

in asset pricing literature. Epstein and Wang (1994, 1995) develop an intertemporal asset pricing

model under Knightian uncertainty. In the model, the agent’s preference is represented by a multi-

period version of the multi-prior expected utility developed by Gilboa and Schmeidler (1989). The

evolution of the agent’s belief is modeled by a transition belief kernel that maps a state to a set of

(conditional) probability measures, rather than to a single (conditional) probability measure as in

the Savage paradigm. The learning/updating issue is not formally addressed. Hansen, Sargent and

Tallarini (1999) and Anderson, Hansen and Sargent (1999) introduce preference for robustness into

an otherwise standard intertemporal asset pricing model. The issue of robustness arises from the

agent’s concern over misspecification of the economic model describing the state of the economy and

his preference for his decision rule to be robust to the misspecification. One potential justification

for these models to abstract away from the issue of learning is that the Knightian uncertainty or

the potential error in model specification is taken by the agent as the state of affairs, or the models

are the reduced form of a model with learning.2 While this is sometimes justifiable, for a more

complete rational expectations model, it seems desirable to allow the agent to learn and update,

especially if one is to study the impact of learning on asset price/return dynamics.

We present two sets of results. Section 4 contains the first set: the axiomatization and repre-

sentation of conditional preferences. The second set of results consists of three updating rules: the

traditional Bayesian rule (Section 5.1), the Dempster-Shafer rule (Section 5.2), and the generalized

Bayesian rule (Section 5.3). The last rule can be regarded as the updating rule for the multi-prior

expected utility. The operational merit of it is that it is equivalent to updating each prior by the

traditional Bayesian rule.

The rest of the paper is organized as follows: Section 2 contains a brief overview of the method-

ology. In Section 3, we introduce the set of multi-period consumption-information profiles. These

consumption-information profiles correspond to the acts in Savage setting. Each profile has two

components, one is the consumption profile, which is standard; the other is the information profile,

which describes the information flow according to which the preference is updated. Section 6 dis-

cusses some of the potential applications. Proofs and supporting technical details are collected in
2Dow and Werlang (1994) show that if uncertainty is persistent, learning and updating will not completely elimi-

nate uncertainty.
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the Appendix.

2 Overview of the Methodology and Related Literature

Following Savage (1954) and Gilboa and Schmeidler (1993), our approach is axiomatic. We differ,

however, in the assumed primitives. In the literature, there exist two strands of research on updating

rules for preferences more general than expected utility. One strand maintains the probability

framework. Machina and Schmeidler (1992) show that notion of subjective probability can be

extended to non-expected utility preferences. Epstein and Le Breton (1993) further show that the

updating rule for such non-expected utility preferences must be Bayesian if dynamic consistency is

to be ensured. The second strand of research goes beyond the probability framework. Gilboa and

Schmeidler (1993) study the updating rules for general preferences. While different in the class of

preferences dealt with, these two strands of literature share a common feature in the primitives

assumed. They both start with an initial preference. Axioms are imposed on the initial preference.

The implied updating rules are then derived. In Machina and Schmeidler (1992) and Epstein and

Le Breton (1993), a subjective probability or belief component of the preference is first separated

from the initial preference. It is then shown to update according to the Bayesian rule. In Gilboa

and Schmeidler (1993), updating rules are defined using the initial preference. No belief component

is separated from the initial preference. In the case of Choquet expected utility, the Dempster-

Shafer rule is derived. This paper starts in a different direction. It takes as primitives the family

of conditional preferences. The premise is that the updating rule is encoded in this family of

conditional preferences, in the connection between the current and future conditional preferences,

in particular. We use a set of axioms to analyze that connection and extract the updating rule

encoded.

In addition to the presumed preferences, the second difference in the assumed primitives per-

tains to the objects of choice. Traditionally, the objects of choice are one period acts. This perhaps

is the natural consequence of starting with initial preferences. At a more fundamental level, it

reflects the distinction between the payoff approach, where even in a multi-period setting an object

of choice is described only by its payoff vector, and the temporal lottery approach, where both

the payoff vector and the timing of resolution of uncertainty are important (Kreps and Porteus

(1978)). In a multi-period uncertain environment, it seems intuitive or rational that if a decision

maker anticipates new information at a future time, he would evaluate the entire (multi-period)
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act by a backward induction based on the incoming information. This implies that the evaluation

should depend on not only the payoffs but also the information flow of the multi-period act. Thus,

following the approach first started by Skiadas (1997, 1998), we mold consumption and information

flows together as the objects of choice.

Our methodology is perhaps best motivated from application’s point of view. First, for in-

tertemporally additive expected utility, due to the law of iterated expectation,

V0 = E0

[ ∞∑
t=0

βtu(ct)

]
= E0 [u(c0) + βE1[V1]] . (1)

It says that the unconditional formulation is equivalent to the recursive conditional formulation.

For more general preferences, however, law of iterated expectation need not hold, and the recursive

formulation is not necessarily equal to the unconditional formulation. It is well-understood that

when a preference cannot be represented by an intertemporally additive expected utility, which

happens, for instance, if either the preference is not intertemporally additive as in the case of general

recursive utility3 or the preference is not additive across states as in the case expected utility with

non-additive probability,4 in order to ensure dynamic consistency and independence of unrealized

events, the preference has to be formulated recursively. In this setting, current utility is obtained

by aggregating utility from current consumption and future conditional utility derived from future

consumptions, leading naturally to taking conditional preferences are primitives. Secondly, for an

intertemporal expected utility, uncertainty can be described either by an unconditional probability

measure or by a consistent family of conditional probability measures. Either way is equivalent with

the other. For starting with an unconditional probability measure, updating by Bayesian rule leads

to a consistent family of conditional probability measures. Conversely, starting with a consistent

family of conditional probability measures, one can construct a unique unconditional probability by

Kolmogorov theorem. This equivalence combined with the law of iterated expectation implies that

the intertemporally additive expected utility enjoys a property called timing indifference, which

means that an individual is indifferent to earlier or later resolution of uncertainty.5 Fundamentally,

it is this property that ensures the equivalence in (1) and partially justifies the payoff approach.

When the equivalence fails for the more general preferences, the definition of objects of choice

necessitates appropriate specification of the information flows.
3See Epstein and Zin (1989).
4See Schmeidler (1989), Gilboa (1987), Gilboa and Schmeidler (1989) in static setting and Epstein and Wang

(1994,1995) in dynamic setting.
5See Kreps and Porteus (1978), Chew and Epstein (1991), and Skiadas (1998).
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3 Consumption-Information Profiles

Let Ω be a finite set, which is taken as the state space for a generic period. The full state space

is Ω∞. Let B(R+) be the space of bounded functions from Ω to R+. An element of B(R+) is

viewed as the state-contingent consumptions in a period. Let F denote the collection of all possible

partitions of Ω. Each member of F can be viewed as the information revealed in a period.

As motivated in Section 2, the consumption-information profiles that we will construct below

have two components: a consumption component and an information component. Intuitively, the

consumption profile is a t-period tree as illustrated in Figure 1 for the case of t = 2. Here (c0, d1)

(c0, d1) c0

ω1

ω2

(c11, d21)

(c12, d22)

c21

c22

c23

c24

Figure 1: Two-Period Consumption Profile.

denotes the consumption profile, c0, c11, c12, c21, c22, c23, and c24, the time-state-contingent con-

sumptions, and d21 and d21, the continuation of d1 in state ω1 and ω2 respectively. The information

component describes the evolution of information or the resolution of uncertainty over time. It is

typically described by a filtration, i.e., a sequence of increasing σ-algebras on Ω∞.

We begin with t-period consumption-information profiles. For any space Y , let B(Y ) denote
the space of bounded functions x̃ : Ω→ Y . The space of t-period consumption-information profiles

is constructed recursively. Let D1 = B(R+)× F. For each t > 1, define

Dt = B(R+ ×Dt−1)× F.

A typical element of Dt is denoted by

d = (d̃,F),

where d̃ : ω → (c1(ω), d2(ω)) maps ω to (c1(ω), d2(ω)). Elements of R+ × Dt are called t-period
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consumption-information profiles. For example, let (c0, d1) ∈ R+×D2 be a two-period consumption-

information profile. Suppose

d1 = (d̃1,F), with F = {A,Ac}, d̃1 : ω1 → (c1(ω1), d2(ω1)),

c1(ω1) =
{
c11 if ω1 ∈ A
c12 if ω1 ∈ Ac , d2(ω1, ω2) =



c21 if ω1 ∈ A and ω2 ∈ B
c22 if ω1 ∈ A and ω2 ∈ Bc

c23 if ω1 ∈ Ac and ω2 ∈ E
c24 if ω1 ∈ Ac and ω2 ∈ Ec

.

Then (c0, d1) corresponds to the two-period tree in Figure 1.

As will become clear in Section 4, the component F in (d̃,F) is the information partition
with which the individual updates his preference/belief at the beginning of the next period after

the uncertainty in the current period has realized. As time elapses, the information filtration

embedded in d ∈ Dt gradually realizes step by step.6 This is the information based on which the

individual updates his preference. It needs not coincide with the objective information filtration

of the economy where the individual resides. For instance, in a world with switching regimes, the

current dividend can be high due to a high economic regime. However, the individual may not be

able to confirm the switching of regime and hence may not update his belief.7 Thus we do not

require

Dt =
{
(d̃,F) ∈ B(R+ ×Dt−1)× F, d̃ is F-measurable

}

in order to reflect that the individual may decide not to update his belief.

In a t-period consumption-information profiles, consumption ends after t period. We would of

course like the space of consumption-information profiles to contain these t-period consumption-

information profiles. We would also like the space to contain those profiles that extend indefinitely

into the future. For that purpose, we introduce the mappings ft. Let f1 : D2 → D1 be defined by,

for any d = (d̃,F) ∈ D2 with d̃ : ω → (c1(ω), d2(ω)),

f1(d̃,F) =
(
f1(d̃),F

)
and f1(d̃)(ω) = c1(ω),

where c1(ω) denotes the value of c1 in state ω. Inductively, for t > 1, ft : Dt+1 → Dt is defined by,
6The Appendix contains the information on how to extract the information filtration for updating that is embedded

in d ∈ Dt.
7The discrepancy between the objective and subjective information filtration may reflect some sort of friction in

information acquisition on the part of the individual.

6



for any d = (d̃,F) ∈ Dt+1 with d̃ : ω → (c1(ω), d2(ω)),

ft(d) = (ft(d̃),F), ft(d̃)(ω) = (c1(ω), ft−1(d2(ω))), for all ω ∈ Ω.

Intuitively, what mapping ft does is to transform a t-period consumption-information profile into a

(t− 1)-period one by cutting off the consumption in the last period and eliminate the information

partition in the second last period of the t-period profile.8 We define an infinite consumption-

information profile as the limit of a sequence of finite profiles with the property that each (t+ 1)-

period profile in the sequence is consistent with the preceeding t-period profile. Thus, we define

the space D of consumption-information profiles as

D = {(d1, d2, . . .) : dt ∈ Dt and dt = ft(dt+1), t ≥ 1}.

All t-period consumption-information profiles can be naturally embedded in R+ ×D. Specifically,
let dt be an element of Dt. It can be extended to a (t+ k)-period profile by attaching at the end

of each branch of it a k-period zero profile. With this extension, dt becomes an element of Dt+k.

Since k is arbitrary, dt corresponds naturally to an infinite sequence of finite profiles such that any

one of them grows out its predecessor. Thus dt becomes an element of D.

The space R+ ×D will be the domain on which conditional preferences are defined. We endow

D with the pointwise convergence topology. More specifically, for any space Y , the topology on

B(Y ) is the standard pointwise convergence topology. On F, define the topology by the metric

ρ(F ,G) =
∑
ω∈Ω

∑
ω′∈Ω

∣∣∣∣∣∣
#(F)∑
i=1

1
#(Fi)

∑
ω′′∈Fi

1{ω}(ω
′′)1Fi(ω

′)−
#(G)∑
j=1

1
#(Gj)

∑
ω′′∈Gi

1{ω}(ω
′′)1Gj (ω

′)

∣∣∣∣∣∣ , (2)

where #(F) and #(Fi) denote the number of elements in F and Fi respectively, and 1F is the

indicator function. This metric induces the pointwise convergence topology introduced by Cotter

(1986) on set of σ-algebras. Intuitively, two partitions F and G are different if there are at least

two subsets Fi ∈ F and Gj ∈ G such that Fi ∩ Gj �= ∅ and Fi �= Gj . In that case, there exist

ω and ω′ such that ω ∈ Fi ∩ Gj and ω′ ∈ Fi, but ω′ �∈ Gj , or ω′ �∈ Fi, but ω′ ∈ Gj . For

this pair of ω and ω′, the term inside the absolute value sign in equation (2) is strictly positive,

implying ρ(F ,G) > 0. Conversely, if ρ(F ,G) > 0, then reversing the argument above implies that
F and G are not identical. Thus, conforming to the intuition, if Fn is a sequence of partitions and

8As will be seen later, this information partition becomes irrelevant once the consumption in the last period is cut
off.
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ρ(Fn,F) → 0, then Fn “converges” to F because for large n, ρ(Fn,F) = 0. Now for each t ≥ 1,

give B(R+ ×Dt−1) the standard pointwise convergence topology, and Dt = B(R+ ×Dt−1)×F the

product topology. Finally, we give D the product topology.

As it is, the definition of space D, although intuitive, is not convenient to use. The following

theorem provides some structure to it.

Theorem 3.1 D is homeomorphic to B(R+ ×D)× F.

The main merit of this theorem is that it allows us to write d = (d1, d2, . . .) as

d = (d̃,F), where d̃ : ω → (c1(ω), d2(ω)) ∈ R+ ×D.

That is, we can view d as a random variable whose value in each state ω is a (infinite) consumption-

information profile. This structure of elements of D will be useful in the subsequent analysis.

In addition to what is explained earlier, our space D differs from what exist in the literature in

some other respects. In Kreps and Porteus (1978), Epstein and Zin (1989) and Chew and Epstein

(1991), the space D consists of multi-period lotteries, i.e., trees with a probability attached to each

of its branches. Modeling consumption profiles as multi-period lotteries implicitly assumes that the

probabilities associated with various events have already been evaluated. In an uncertainty world,

by definition, probabilities are not given. To allow for the derivation of subjective probability as in

Savage (1954), or non-probabilistically sophisticated preferences, it is imperative that we model the

space D at a more primitive level by removing the assumption of exogenously given probabilities.

Wang (1999) also models consumption profiles as multi-period trees without probabilities. However,

the information profiles are not modeled. Our consumption-information profiles are closest to the

acts in Skiadas (1997, 1998). However, Skiadas (1997, 1998) requires that the consumption profile be

adapted to the information profile and does not exploit the recursive structure as in our construction

of Dt and in Theorem 3.1.

4 Conditional Preferences

The objective of this section is to axiomatize and provide the numerical representation for a class

of conditional preferences. This class of conditional preferences will provide the basis for our later

study of updating rules.
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Let t ≥ 1 and F1 × · · · × Ft ⊂ Ωt be a sequence of past events. A conditional preference

�F1×···×Ft given F1 × · · · × Ft is a complete ordering on R+ ×D. A family of conditional prefer-

ences is a collection of conditional preferences indexed by all possible evolution of past events, i.e.,{
�F1×···×Ft : F1 × · · · × Ft ⊂ Ωt, t ≥ 1

}
.

Axiom 1 (Continuity) For all F1 × · · · × Ft ⊂ Ωt and all sequences {(cn, dn)} and {(c′n, d′n)} ∈
R+ ×D with (cn, dn) → (c, d) and (c′n, d′n) → (c′, d′), if (cn, dn) �F1×···×Ft (c′n, d′n) for all n, then

(c, d) �F1×···×Ft (c′, d′).

Axiom 2 (Risk Separability): For all F1 × · · · × Ft ⊂ Ωt, (c, d) and (c′, d′) ∈ R+ × D,

(c, d) �F1×···×Ft (c, d′) if and only if (c′, d) �F1×···×Ft (c′, d′).

Axiom 3 (Deterministic Information Independence) For all A1 × · · · ×At ⊂ Ωt, B1 × · · · ×

Bt ⊂ Ωt, and deterministic consumption-information profiles, (c, d) and (c′, d′), (c, d) �A1×···×At

(c′, d′) if and only if (c, d) �B1×···×Bt (c′, d′).

These three Axioms are straightforward to interpret. Continuity is a technical property. Risk

Separability says that if two consumption-information profiles have identical current consumption,

then the ranking of these two profiles should be independent of the common current consumption.

Deterministic Information Independence Axiom says that if there is no uncertainty associated with

the consumption profiles, then the ranking of the consumption profiles should be independent of

how the preferences are updated. In other words, all conditional preferences rank deterministic

consumption profiles the same.9

To state the next property we need the following definitions. An event A ⊂ Ω is said to be null

if for all (c, d), (c′, d′) and (c′′, d′′) ∈ R+ ×D, (0, (d′1A + d1Ac ,F)) ∼ (0, (d′′1A + d1Ac ,F)), where
F = {A,Ac} and the addition and multiplication are as in the space of random variables. An event

A ⊂ Ω is said to be universal if for all (c, d), (c′, d′) and (c′′, d′′) ∈ R+ ×D, (0, (d1A + d′1Ac ,F)) ∼
(0, (d1A + d′′1Ac ,F)). Clearly, A is null if and only if Ac is universal. Null events are those that

are considered to have zero likelihood of happening.
9Due to this axiom, although in an one-period consumption-information profile, there is an information component,

it is irrelevant. This is because when (c0, d1) ∈ R+ ×Dt evolves to the last period,

(ct−1(ω1, . . . , ωt−1), dt(ω1, . . . , ωt−1)) ∈ R+ ×D1,

the consumption will end when the uncertainty in this last period is realized. There is no further consumption.
Therefore, how preference is updated further after that is irrelevant.
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Axiom 4 (Consistency) For all (ci, di) and (c′i, d
′
i) ∈ R+ ×D, i = 1, . . . , n, and all partitions

F = {A1, . . . , An} of Ω, if (ci, di) �F1×···×Ft×Ai (c
′
i, d

′
i), for i = 1, . . . , n, then for any c ∈ R+,

(
c,

[
n∑

i=1

(ci, di)1Ai ,F
])

�F1×···×Ft

(
c,

[
n∑

i=1

(c′i, d
′
i)1Ai ,F

])
.

Moreover, the latter ordering is strict if (ci, di) �F1×···×Ft×Ai (c
′
i, d

′
i) for some Ai that is not null.

The intuition behind this axiom is readily explained with Figure 2. For Figure 2(a), when

d

A1

A2

...

An

(c1, d1)

(c2, d2)

(cn, dn)

(a)

d′

A1

A2

An

...

(c′1, d
′
1)

(c′2, d
′
2)

(c′n, d′
n)

(b)

Figure 2: Consistency

event Ai happens, the realized consumption profile is (ci, di), which is itself a (T − 1)-period pro-

file yet to be fully realized over the next T − 1 periods. Figure 2(b) has a similar interpretation.

Suppose that for all i = 1, . . . , n, (ci, di) �F1×···×Ft×Ai (c
′
i, d

′
i). That is, when event Ai is re-

alized at the end of period one, (ci, di) is preferred to (c′i, d
′
i). Consistency then requires that

(c, [
∑n

i=1(ci, di)1Ai ,F ]) �F1×···×Ft (c, [
∑n

i=1(c
′
i, d

′
i)1Ai ,F ]) today for any c ∈ R+. In other words, if

ex-post d is preferred to d′, then ex-ante d must also be preferred.

The intuitive appeal of the Consistency Axiom seems obvious. As will be seen in Section 4 this

axiom guarantees that the conditional preferences aggregate in a time-consistent fashion. It is well

understood that in a dynamic optimization problem, if the objective function is not time-consistent,

a strategy chosen today may be regretted later on. That is, if given the opportunity, the strategy

chosen earlier will be abandoned in favor of another one, causing inconsistency in choices over time.
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Consistency can also be viewed as a generalization of monotonicity. Indeed, when combined

with Stationarity, Risk Separability and Deterministic Information Independence Axioms, it implies

the usual monotonicity property.

Axiom 5 (Stationarity) For all (c, d), (c′, d′) ∈ R+ ×D and F1 × · · · ×Ft ⊂ Ωt, (c, d) �F1×···×Ft

(c′, d′) if and only if (c, d) �F1×···×Ft×Ω (c′, d′).

This axiom says that if there is no information revealed in the next period, the conditional

preference remains unchanged.

Now we are ready to present the first representation theorem. First some preliminary definitions

and notations. A numerical function Vt[F1 × · · · × Ft] : D → R is said to represent the conditional

preference �F1×···×Ft if, for all (c, d) and (c′, d′) ∈ R+ ×D,

(c, d) �F1×···×Ft (c
′, d′)

if and only if

V [F1 × · · · × Ft, (c, d)] ≥ V [F1 × · · · × Ft, (c′, d′)].

Given a numerical function Vt[F1 × · · · × Ft] that represents the conditional preference �F1×···×Ft ,

define a companion numerical function V (F1 × · · · × Ft, d) on D by

V (F1 × · · · × Ft, d) = f [V (F1 × · · · × Ft, (0, d))],

where f is the unique strictly increasing function such that for all c ∈ R+,

V (c) = f [V (F1 × · · · × Ft, (0, c))].

Here V (c) is the conditional utility of one time consumption at time 0 when by convention no histor-

ical information is recorded, and (0, c) is the deterministic consumption profile whose consumption

at time 1 is c and whose consumption at any other time is zero. Intuitively, V (F1 × · · · × Ft, d) is

the utility of d at time t+1 evaluated just before the uncertainty in the period between time t and

t+ 1 is realized. To illustrate, let (c, d) = (c, (c̃1,F)) be an one-period consumption profile and

V (F1 × · · · × Ft, (c, d)) = u(c) + βE [u(c̃1)|F1 × · · · × Ft] .

Then V (c) = u(c), f(x) = x/β and

V (F1 × · · · × Ft, d) = E [u(c̃1)|F1 × · · · × Ft] .
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Next, for each

d = (d̃,F), d̃ : ω → (c1(ω), d2(ω)), F = {A1, . . . , An} ∈ F,

in D, define Ṽ [F1 × · · · × Ft, d] : Ω→ R by

Ṽ [F1 × · · · × Ft, d](ω) = V [F1 × · · · × Ft ×Ai, (c1(ω), d2(ω))], if ω ∈ Ai. (3)

Ṽ [F1×· · ·×Ft, d] can be regarded as the ex-post evaluation of d after the uncertainty in the current

period is realized. A function µ : B(R) → R is called a certainty equivalent if (a) µ(x) = x for all

x ∈ R, and (b) µ(x̃) ≥ µ(ỹ) if x̃ ≥ ỹ.

Theorem 4.1 A family of conditional preferences
{
�F1×···×Ft : F1 × · · · × Ft ⊂ Ωt, t ≥ 1

}
satisfies

Axioms 1–5 if and only if it can be represented by a family of continuous functions

{
V (F1 × · · · × Ft) : F1 × · · · × Ft ⊂ Ωt, t ≥ 1

}

on R+ ×D such that

V [F1 × · · · × Ft, d] = µ(F1 × · · · × Ft, Ṽ (F1 × · · · × Ft, d)) (4)

and

V [F1 × · · · × Ft, (c, d)] =W (c, V [F1 × · · · × Ft, d]), (5)

where µ(F1 × · · · × Ft, ·) is a continuous certainty equivalent and W : R+ × R → R is continuous

and strictly increasing.

Theorem 4.1 is our basic aggregation theorem. Of particular interest is the structure of aggrega-

tion it provides. The functionW is the time aggregator. It describes for deterministic consumption

profiles, how utility of future consumptions is aggregated with that derived from current consump-

tion. The certainty equivalent µ is the state aggregator. It aggregates utilities derived from state-

contingent consumption-information profiles, taking into consideration the fact that preferences are

constantly updated in light of new information.

Consider next an axiom that is similar to Risk Separability, with respect to deterministic losses.

Axiom 6 (Future Independence): For all F1 × · · · × Ft ⊂ Ωt, all x1, x2, x′1 and x′2 ∈ R and

deterministic losses Y = (y1, y2, . . .) and Y ′ = (y′1, y
′
2, . . .) ∈ D, (x1, x2, Y ) �F1×···×Ft (x′1, x

′
2, Y ) if

and only if (x1, x2, Y
′) �F1×···×Ft (x′1, x

′
2, Y

′).
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If we add this Axiom to Axioms 1-5, the time aggregator can be significantly simplified.

Theorem 4.2 A family of conditional preferences
{
�F1×···×Ft : F1 × · · · × Ft ⊂ Ωt, t ≥ 0

}
satisfies

Axioms 1–6 if and only if it can be represented by a family of continuous functions

V [F1 × · · · × Ft, (c, d)] = u(c) + βµ(F1 × · · · × Ft, Ṽ (F1 × · · · × Ft, d)). (6)

where µ(F1 × · · · × Ft, ·) is a continuous certainty equivalent and u : R+ → R is strictly increasing

and continuous. Furthermore, u is unique upto affine transforms.

Without loss of generality, we will assume that u(0) = 0.

5 Updating Rules

The purpose of this section is to axiomatize three updating rules. As briefly mentioned in the

introduction, the starting point of our approach to updating is to take conditional preferences as

the primitives. The premise is that updating rules are encoded in the (evolution of) conditional

preferences. Together with other factors, the updating rules determine how future conditional

preferences are aggregated to current conditional preferences. In this respect, Theorems 4.1 and

4.2 provide the basic structure of the aggregation in time and state dimensions. It should be clear

that it is the aggregation along the state dimension that carries the information on the updating

rules. Our study of updating rules will thus focus on that aggregation. The axioms introduced in

this section will be directed at the aggregators µ(F1 × · · · × Ft, ·).

It should be noted at the outset that the aggregators µ(F1 ×· · ·×Ft, ·) carry more information
than just about updating rules. For instance, they contain information about the individual’s

attitude toward risk and uncertainty.10 When combined with the time aggregator W , it can also

help determine the individual’s attitude toward intertemporal substitution. We will focus only on

the updating aspect.
10See Epstein (1999) on attitudes toward risk and uncertainty in a Savage setting.
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5.1 Bayesian Updating Rule

First we axiomatize the ubiquitous Bayesian rule. Bayesian rule is important not only because of

its wide applications, but also because, in the context of this paper, it serves as a benchmark for

the other two updating rules that we will axiomatize later.

Let F0 denote the trivial partition {Ω}. If F0 is the information partition, there is no new

information revealed over the period and hence nothing to be learned.

Axiom 7 (Strong Timing Indifference): Let F1 × · · · × Ft ⊂ Ωt, and {A1, . . . , An} and

{B1, . . . , Bm} be two partitions of Ω. For all (two-period) consumption-information profiles of

the form (0, d1) and (0, d′1) with d1 = (d̃1,F0), d̃1(ω1) = (0, d2i) if ω1 ∈ Ai and d̃2i(ω2) = cij if

ω2 ∈ Bj , i = 1, . . . , n, j = 1,. . . , m; d′1 = (d̃′1,F0), d̃′1(ω1) = (0, d′2j) if ω1 ∈ Bj and d̃′2j(ω2) = cij

if ω2 ∈ Ai, i = 1, . . . , n, j = 1,. . . , m, we have (0, d1) ∼F1×···×Ft (0, d′1).

The basic intuition behind this axiom can be readily explained with Figure 3. There are two

d
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Figure 3: Strong Timing Indifference

events A and B. In Figure 3(a), event A transpires first and event B follows. In Figure 3(b), event

B happens first and then event A follows. Thus the timing of resolution of uncertainty in Figure

3(a) and (b) are reversed. There are no consumptions at time 0 and 1. It can be easily verified

that the state-contingent consumptions are identical in these two consumption-information profiles.
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Axiom 7 says that in this situation, the two consumption-information profiles should be ranked as

indifferent.

Theorem 5.1 Suppose that the family {�F1×···×Ft : F1 × · · · × Ft ⊂ Ωt, t ≥ 1} of conditional

preferences satisfies Axioms 1-6. Then �F1×···×Ft satisfies Strong Timing Indifference if and only

if there exist a probability measure P (F1 × · · · × Ft, ·) and a strictly increasing function ψF1×···×Ft

such that the certainty equivalent in Theorem 4.2 is given by

µ(F1 × · · · × Ft, Ṽ (F1 × · · · × Ft, d))

= ψ−1
F1×···×Ft

(∫
ψF1×···×Ft(Ṽ (F1 × · · · × Ft, d)) dP (F1 × · · · × Ft)

)
, (7)

where ψF1×···×Ft satisfies ψF1×···×Ft(0) = 0 and, for all x̃ ∈ B(R),

βψ−1
F1×···×Ft

[∫
ψF1×···×Ft[x̃] dν(F1 × · · · × Ft)

]
= ψ−1

F1×···×Ft

[∫
ψF1×···×Ft [βx̃] dν(F1 × · · · × Ft)

]
.

To explain the implication of Theorem 5.1 for updating, it is helpful to clarify first the role

ψF1×···×Ft in equation (7). Let d = (c̃,F) ∈ D1 be an one-period consumption-information profile.

Then

Ṽ (F1 × · · · × Ft, d)(ω) = u(c(ω)).

Applying (7) yields

µ(F1 × · · · × Ft, u(c̃)) = ψ−1
F1×···×Ft

(∫
ψF1×···×Ft ◦ u(c̃) dν(F1 × · · · × Ft)

)
. (8)

It should be clear from this expression that the more concave ψF1×···×Ft is the more risk averse the

certainty equivalent µ(F1 × · · ·×Ft, ·) is.11 Thus ψF1×···×Ft can be viewed as the (state-contingent)

risk aversion parameter of the conditional preference. That the aggregator µ(F1×· · ·×Ft) has such

a (state-contingent) risk aversion parameter should not come as a surprise. After all, as explained

in the beginning of this section, µ(F1×· · ·×Ft) carries the information not only about the updating

rule but also about other behavioral characteristics of the conditional preferences. In order to focus

on the updating rule encoded in the aggregator, however, we impose
11See Epstein and Zin (1989), for example.
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Assumption 5.2 (Time-State Invariant Risk Aversion) ψF1×···×Ft(x) = x, for all F1 × · · · ×

Ft ⊂ Ωt and t ≥ 1 .

Combining Theorems 4.2 and 5.1 and this assumption together we have

Theorem 5.3 The family {�F1×···×Ft : F1×· · ·×Ft ⊂ Ωt, t ≥ 1} of conditional preferences satisfies

Axioms 1-7 and Assumption 5.2 if and only if there exist probability measures P (F1 × · · · × Ft, ·)
and a strictly increasing function u with u(0) = 0 such that

V (F1 × · · · × Ft, (c, d)) = u(c) + β
∫
Ṽ (F1 × · · · × Ft, d) dP (F1 × · · · × Ft). (9)

Turn now to updating. We show that the probability measures P (F1×· · ·×Ft) in Theorems 5.1

and 5.3 are the (subjective) conditionals of some initial probability measure on the state space Ω∞

and hence (9) is the familiar intertemporally additive expected utility. In other words, any family

of conditional preferences that satisfies Axiom 1-7 and Assumption 5.2 has a belief component

described by that initial probability measure and the belief updates according to the Bayesian

updating rule. To that end, fix a filtration {Ft}T
t=1. In this paper, a filtration is defined as a

sequence of partitions of ΩT of the form: Ft = {F1 × · · · × Ft × ΩT−t}, t = 1, . . . , T . We now

construct a probability measure PT on ΩT such that P (F1 × · · · × Ft) are its conditionals. Let

P (ω1, . . . , ωt, A) = P (F1 × · · · × Ft, A) for (ω1, . . . , ωt) ∈ F1 × · · · × Ft ∈ Ft, (10)

for any A ⊂ Ω and define the probability measure PT on ΩT by, for any A ∈ (ΩT ,FT ),

PT (A) =
∫ (∫ (

· · ·
(∫

1AP (ω1, . . . , ωT−1, dωT )
)
· · ·
)
P (ω1, dω2)

)
P (dω1). (11)

Then for any A ⊂ Ω and (ω1, . . . , ωt) ∈ F1 × · · · × Ft ⊂ Ωt,

PT (A|Ft)(ω1, . . . , ωt) = P (ω1, . . . , ωt, A) = P (F1 × · · · × Ft, A).

Thus P (ω1, . . . , ωt, A) are the conditionals of PT given the filtration {Ft}. Let (c0, d1) ∈ R+ ×DT

by any T -period consumption-information profile such that the filtration embedded in d1 is the

same as {Ft}T
t=1.

12 Replacing P (F1 × · · · × Ft, ·) in (9) with PT (·|Ft), we have

V (F1 × · · · × Ft, (ct(ωt), dt+1(ωt))) = u(ct(ωt)) + βEPT [Ṽ (F1 × · · · × Ft, dt+1(ωt))|Ft],
12In the Appendix we show how the information filtration embedded in d can be extracted.
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for ωt = (ω1, . . . , ωt) ∈ F1 × · · · × Ft ⊂ Ωt. Applying the law of iterated expectation,

V (c0, d1) = EPT

(
T∑

t=0

βtu(ct)

)
,

as is to be shown.

5.2 Dempster-Shafer Rule

The Dempster-Shafer rule for updating non-additive probability measures first appeared in Demp-

ster (1967, 1968) and Shafer (1976, 1979) in statistics literature. Our axiomatization of the rule is

based on the following timing indifference axiom.

Axiom 8 (Timing Indifference): Let F1 × · · · × Ft ⊂ Ωt, and {A1, . . . , An} and {B1, . . . , Bm}
be two partitions of Ω. For all (two-period) consumption-information profiles of the form (0, d1)

and (0, d′1) with d1 = (d̃1,F0), d̃1(ω1) = (0, d2i) if ω1 ∈ Ai and d̃2i(ω2) = cij if ω2 ∈ Bj, i = 1, . . . ,

n, j = 1,. . . , m; d′1 = (d̃′1,F0), d̃′1(ω1) = (0, d′2j) if ω1 ∈ Bj and d̃′2j(ω2) = cij if ω2 ∈ Ai, i = 1,

. . . , n, j = 1,. . . , m, we have (0, d1) �F1×···×Ft (0, d′2), provided ci1 ≤ · · · ≤ cim and c1j ≤ · · · ≤ cnj

for all i and j.

This is a weaker timing indifference axiom than Axiom 7. The first part of the definition

describes two two-period consumption-information profiles (0, d1) and (0, d′1) just as in Axiom 7

that have identical period-two state-contingent consumptions and zero consumptions at time 0

and 1, and whose timing of resolution of uncertainty is reversed of each other. The difference lies

in the additional requirement on the ordering of period-two state-contingent consumptions. To

understand what this additional condition asks for, consider two two-period risks as in Figure 4.

Focus on the better-than sets. Recall that, given a random variable c̃ representing state-contingent

consumptions and a number z representing a level of consumption, the better-than set is given by

{ω : c̃(ω) ≥ z}, i.e., the set of states in which the realized consumption is less than z. Without
further assumptions on cij , the better-than sets from the two two-period consumption-information

profiles can different in general. In situations of uncertainty, better-than sets are the easiest to

deal with, because for z1 < z2, {ω : c̃(ω) ≥ z1} ⊃ {ω : c̃(ω) ≥ z2}. That is, all better-than sets
are nested according to set inclusion. As a minimal requirement, it seems sensible to require the
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Figure 4: Timing Indifference

individual be able to rank the likelihood of nested events. This monotonicity requirement is far

less imposing than requiring that the individual be able to rank the likelihood of two events which

are not nested, which becomes even more imposing when the likelihood has to be additive as in

a probability measure. Thus in comparing two consumption-information profiles when the timing

of events is switched, it is desirable to control for the difference in the better-than sets. It turns

out that the two consumption-information profiles have identical better-than sets if and only if

they satisfy the additional condition in Timing Indifference Axiom. To see this, refer again back

to Figure 4. Observe first that if cij satisfies the condition in the axiom, then the better-than

sets in any time-one subtree are Bc and Ω in d, and Ac and Ω in d′. Observe next that since the

payoff in each branch of the lower subtree is greater than that in the corresponding branch of the

upper subtree, the lower sub-trees in both d and d′ have higher utility to the individual than the

upper sub-trees. Suppose that the utility of the upper and lower sub-trees of d are V1 and V2,

respectively, with V1 < V2. Then, at time 0 and looking one-period ahead, the better-than sets

for d are Ac = {V ≥ V2} and Ω = {V ≥ V1}. Since, at any sub-tree of d, the one-period ahead
better-than sets are Bc and Ω, the possible better-than sets in d are Ac, Bc and Ω. It can be readily

verified that d′ has the same better-than sets. Therefore, if ci1 < ci2 and c1j < c2j for i, j = 1, 2,

then d and d′ have not only the same state-contingent losses, but also the same better-than sets.

The converse is also true.

Remark: It turns out that d and d′ have the same collection of better-than sets can also be

described by the notion of comonotonicity introduced by Schmeidler (1986). Let x̃ and ỹ be two

18



one-period risks. x̃ and ỹ are said to be comonotonic if for all ω and ω′ ∈ Ω such that x̃(ω) �= x̃(ω′)
or ỹ(ω) �= ỹ(ω′), we have [x̃(ω) − x̃(ω′)][ỹ(ω) − ỹ(ω′)] > 0. It is easy to see that x̃ and ỹ are

comonotonic if and only if the following two conditions hold: (a) x̃ and ỹ assume the same number

of distinct values, say x1 < x2 < · · · < xn, y1 < y2 < · · · < yn, and (2) {ω ∈ Ω : x̃(ω) ≥ xi} = {ω ∈
Ω : ỹ(ω) ≥ yi} for all i (Schmeidler (1986)). Now in this terminology, ci1 < ci2 and c1j < c2j for

i, j = 1, 2, which is the condition of Axiom 8 with strict inequalities, is equivalent to that the two

one-period state-contingent consumptions of the first tree are comonotonic plus that the same is

true for the second tree. The general case with weak inequalities can be viewed as the limit of the

case with strict inequalities.

To relax individual’s likelihood ranking to only nested events, we need a more general type of

integrals—Choquet integrals (Choquet (1953/4)). Let A1, . . . , An be a partition of the state space

Ω, x̃ be a random variable on Ω that takes values x1 < · · · < xn on the partition and Bi = ∪n
j=iAj ,

i = 1,. . . , n, be the better-than sets. Let ν be a monotonic set function such that ν(∅) = 0 and

ν(Ω) = 1. The Choquet integral of x̃ with respect to ν is defined as (Schmeidler (1986))

∫
x̃ dν =

n∑
i=1

[ν(Bi)− ν(Bi+1)]xi, (12)

where, by convention, Bn+1 = ∅. It reduces to the standard integral when ν is a probability
measure.

Theorem 5.4 Suppose that the family {�F1×···×Ft : F1 × · · · × Ft ⊂ Ωt, t ≥ 1} of conditional

preferences satisfies Axioms 1-6. Then �F1×···×Ft satisfies Timing Indifference if and only if there

exist a monotonic set function ν(F1 × · · · × Ft, ·) and a strictly increasing function ψF1×···×Ft,

µ(F1 × · · · × Ft, Ṽ (F1 × · · · × Ft, d))

= ψ−1
F1×···×Ft

(∫
ψF1×···×Ft(Ṽ (F1 × · · · × Ft, d)) dν(F1 × · · · × Ft)

)
, (13)

where ψF1×···×Ft satisfies ψF1×···×Ft(0) = 0 and, for all x̃ ∈ B(R),

βψ−1
F1×···×Ft

[∫
ψF1×···×Ft[x̃] dν(F1 × · · · × Ft)

]
= ψ−1

F1×···×Ft

[∫
ψF1×···×Ft [βx̃] dν(F1 × · · · × Ft)

]
.
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The function ψF1×···×Ft again has the interpretation as the risk aversion parameter of the

certainty equivalent µ(F1 × · · · × Ft, ·).13 We assume that ψF1×···×Ft(x) = x. Combining this

assumption with Theorems 4.2 and 5.4 we have

Theorem 5.5 The family {�F1×···×Ft : F1×· · ·×Ft ⊂ Ωt, t ≥ 1} of conditional preferences satisfies

Axioms 1-6, 8 and Assumption 5.2 if and only if there exist monotonic set functions ν(F1×· · ·×Ft, ·)
and strictly increasing function u such that u(0) = 0 and,

V (F1 × · · · × Ft, (c, d)) = u(c) + β
∫
Ṽ (F1 × · · · × Ft, d) dν(F1 × · · · × Ft). (14)

If we are to explore the updating rule encoded in the conditional preferences, it seems necessary

that the conditional preferences embody a component of belief about the likelihood of events.14 The

formal definition will not be given of what is meant by a preference having a belief or liklihood

evaluation component. The reader is referred to Machina and Schmeidler (1992), Epstein and

Le Breton (1993) and Wang (1999) for the formal definitions. Restricting to the case of Choquet

integrals as in (12), however, it is intuitively clear that if the certainty equivalent, µ(F1×· · ·×Ft, ·),
is represented by a Choquet integral as in (14), then ν(F1 × · · · × Ft, ·) represents the belief or
likelihood evaluation of the conditional preferences. Therefore, our study of the Dempster-Shafer

updating rule will be focused on ν(F1 × · · · × Ft, ·).

To derive the Dempster-Shafer updating rule from equation (14) of Theorem 5.5, we need to

define an unconditional non-additive prior and examine how the conditional non-additive prob-

abilities ν(F1 × · · · × Ft) are related to the unconditional prior. For simplicity, we examine the

two-period case. Define the unconditional non-additive prior ν on Ω2 by, for any A×B ⊂ Ω2,

ν(A×B) = V (0, d1),

where d1 = (d̃1,F) with F = {A,Ac},

d̃1 : ω1 → (0, d2(ω1)), d2(ω1, ω2) =
{
1 if ω1 ∈ A and ω2 ∈ B
0 otherwise

.

13See Epstein (1999) for separating risk aversion from uncertainty aversion for preferences that cannot be rep-
resented by an expected utility, and more generally, for non-probabilistically sophisticated preferences. The basic
intuition is that if there is a subclass of events whose probabilities are objectively known to the decision maker and if,
for acts involving only this subclass of events, the decision maker’s preference can be represented by, say an expected
utility, then any behavior characteristics implied must pertain to risk. Then it should be clear that when restricted
to that subclass of events, the function ψF1×···×Ft determines the risk aversion of the certainty equivalent just as in
the case of Subsection 5.1. It is in this sense that we call it the risk aversion parameter.

14See Gilboa and Schmeidler (1993) for updating rules for general preferences which do not necessarily have a belief
component.
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This definitions looks more complicated than what it really is. The (0, d1) corresponds to the two-

period tree in Figure 1 with c21 equal to one and the rest all equal to zero. For sets in Ω2 of the

form ∪n
i=1Ai ×Bi where Ai are disjoint,

ν(∪n
i=1Ai ×Bi) = V (0, d1),

where d1 = (d̃1,F) with F = {A1, . . . , An},

d̃1 : ω1 → (0, d2(ω1)), d2(ω1, ω2) =
{
1 if ω1 ∈ Ai and ω2 ∈ Bi

0 otherwise
.

Now to see how the conditional non-additive probabilities ν(F, ·), F ⊂ Ω, at time 1 are related to

the unconditional non-additive probability, ν(·), at time 0, let A and B ⊂ Ω. First it is readily

verified that

ν(A×B) = ν(A)ν(A,B).

Thus

ν(A,B) = ν(A×B)/ν(A).

It is formally the same as the Bayesian rule. Next it is again readily verified that

ν([A×B] ∪Ac) = (1− ν(Ac))ν(A,B) + ν(Ac).

Thus

ν(A,B) =
ν([A×B] ∪Ac)− ν(Ac)

(1− ν(Ac))
.

This last expression is called the Dempster-Shafer updating rule.

The main drawback of the Dempster-Shafer updating rule, in the context of this paper, is

perhaps its lack of consistency with the conditionals. While the conditionals appear in the preference

representation as the Choquet integrators, the unconditional does not play a similar role, unless

of course it is a probability measure. One may then question whether it really represents belief

in the sense of Savage (1954) and Machina and Schmeidler (1992) if it does not play a role in

the preference. This question leads naturally to the updating rule that we will study in the next

subsection.
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5.3 Generalized Bayesian Updating Rule

In this subsection we axiomatize a subclass of the conditional preferences characterized by Axioms

1-6 and 8 and examine an updating rule called the generalized Bayesian updating rule.15

The additional axiom that we now introduce is based on a notion of pessimism by Wakker

(1999).

Axiom 9 (Pessimism) Let x̃ and ỹ ∈ B(Ω) be two one-period consumption profiles that assume

x1 ≤ · · · ≤ xi1 ≤ · · · ≤ xi2 ≤ · · · ≤ xN , and

y1 ≤ · · · ≤ yi1 ≤ · · · ≤ yi2 ≤ · · · ≤ yN

on non-null events A1, A2, . . . , AN , respectively, such that xi1 = yi1 and xi2 > yi2. Let x̃′ and

ỹ′ ∈ B(Ω) be another two one-period consumption profiles that assume

x1 ≤ · · · ≤ xi2 ≤ · · · ≤ x′i2 ≤ · · · ≤ xN , and

y1 ≤ · · · ≤ yi2 ≤ · · · ≤ y′i2 ≤ · · · ≤ yN

on A1, A2, . . . , AN , respectively, such that x′i2 = y
′
i2 . For all F1 × · · · × Ft ⊂ Ωt and t ≥ 1, if

µ(F1 × · · · × Ft, x̃) = µ(F1 × · · · × Ft, ỹ),

then

µ(F1 × · · · × Ft, x̃
′) ≥ µ(F1 × · · · × Ft, ỹ

′).

Intuitively, an individual is pessimistic if he assigns more likelihood to the lower outcomes.

This rank-dependent assignment of likelihood is the intuition described in the axiom above. To see

it, let x̃, ỹ, x̃′ and ỹ′ be as described in axiom. Figure 5 describes a case of four outcomes. Suppose

that, as in Theorem 5.4,

µ(F1 × · · · × Ft, x̃) =
n∑

i=1

[ν(F1 × · · · × Ft, Bi)− ν(F1 × · · · × Ft, Bi+1)] u(xi), (15)

15Walley (1991) studies the rule for general (static) multi-prior expected utility functions, a class broader than we
study here. In dynamic setting, the generalized Bayesian rule may cause inconsistency for the broader class of utility
functions. See the discussion at the end of this subsection.
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x̃ ỹ x̃′ ỹ′
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Figure 5: Pessimism

where Bi =
⋃n

j=iAj , i = 1, . . . , N , are the better-than sets. In this expression, borrowing from an

intuition from expected utility, ν(F1 × · · · × Ft, Bi) − ν(F1 × · · · × Ft, Bi+1) can be viewed as the

implied likelihood assigned to the outcome x̃ = xi. Using (15),

µ(F1 × · · · × Ft, x̃) = µ(F1 × · · · × Ft, ỹ)

is equivalent to

n∑
i=1

[ν(F1 × · · · × Ft, Bi)− ν(F1 × · · · × Ft, Bi+1)] [u(xi)− u(yi)] = 0.

Similarly,

µ(F1 × · · · × Ft, x̃
′) ≥ µ(F1 × · · · × Ft, ỹ

′)

is equivalent to

n∑
i=1

[ν(F1 × · · · × Ft, Bi)− ν(F1 × · · · × Ft, Bi+1)] [u(x′i)− u(y′i)] ≥ 0.

A subtraction yields

(ν(F1 × · · · × Ft, Bi2)− ν(F1 × · · · × Ft, Bi2+1)) [u(xi2)− u(yi2)]

≤ (ν(F1 × · · · × Ft, Bi1)− ν(F1 × · · · × Ft, Bi1+1)) [u(xi2)− u(yi2)],

which is true if and only if,

ν(F1 × · · · × Ft, Bi2)− ν(F1 × · · · × Ft, Bi2+1) ≤ ν(F1 × · · · × Ft, Bi1)− ν(F1 × · · · × Ft, Bi1+1).
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That is, when there are more higher, or fewer lower, outcomes than xi2 in x̃
′ than in x̃, it is assigned

higher likelihood in x̃′ than in x̃, which is exactly the intuitive definition of pessimism.

An axiom of optimism can be symmetrically defined. Since pessimism or optimism speaks

directly to the likelihood assigned to the lower or higher outcomes, the ranking of the outcomes is

important in the assignment of likelihood. This is partially reflected in the definition of Choquet

integral where the better-than sets Bi, rather than the “level sets” Ai, are used. The following

theorem is for the case of pessimism. As is seen in the theorem, the pessimism is captured by the

min over a set of probability measures (see (i) of Theorem 5.8 also). There is also a version of the

theorem for optimism by symmetry.

Theorem 5.6 Suppose that the family {�F1×···×Ft : F1 × · · · × Ft ⊂ Ωt, t ≥ 1} of conditional

preferences satisfies Axioms 1-6 and 8 so that as in Theorem 5.4, µ(F1×· · ·×Ft, Ṽ (F1×· · ·×Ft, d))

is given by (13). Then �F1×···×Ft satisfies Axiom 9 if and only if there exists a closed and convex

subset P(F1 × · · · × Ft) of probability measures on Ω such that, for all x̃ ∈ B(R+),

µ(F1 × · · · × Ft, x̃) = ψ−1
F1×···×Ft

(
min

p∈P(F1×···×Ft)

∫
ψF1×···×Ft(x̃) dp

)
. (16)

Combining Theorems 4.2 and 5.6 and Assumption 5.2 together we have

Theorem 5.7 The family {�F1×···×Ft : F1×· · ·×Ft ⊂ Ωt, t ≥ 1} of conditional preferences satisfies

Axioms 1-6, 8, 9 and Assumption 5.2 if and only if there exist closed and convex subsets P(F1 ×
· · · × Ft) of probability measures on Ω and strictly increasing function u with u(0) = 0 such that

V (F1 × · · · × Ft, (c, d)) = u(c) + β min
p∈P(F1×···×Ft)

∫
Ṽ (F1 × · · · × Ft, d) dp. (17)

We now examine the implication of this theorem for updating. Suppose that, as in the theorem,

each ν(F1 × · · · × Ft) corresponds to a convex and closed set P(F1 × · · · × Ft) of probability

measures on Ω. Let {Ft} be a filtration. Consider the state space Ω∞ endowed with the σ-algebra

F∞ = σ(Ft, t ≥ 1). Fix a s ≥ 0. Let P (ω1, . . . , ωt, ·), t = s,. . . , be a sequence of Ft-measurable

selection from P(F1 × · · · × Ft), i.e.,

P (ω1, . . . , ωt, ·) ∈ P(F1 × · · · × Ft), if (ω1, . . . , ωt) ∈ F1 × · · · × Ft ∈ Ft. (18)
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For each t ≥ s, define a conditional finite dimensional measure by

Pt(ω1, . . . , ωs, As+1 × · · · ×At)

=
∫

· · ·
∫
1As+1×···×At(ωs+1, . . . , ωt)P (ω1, . . . , ωt−1, dωt) · · ·P (ω1, . . . , ωs, dωs+1). (19)

This sequence of conditional finite dimensional measure is consistent. By Kolmogorov Theorem,

there exists a probability measure Ps(ω1, . . . , ωs, ·) on (Ω∞,F∞) such that its restriction to Ωt−s

is equal to Pt(ω1, . . . , ωs, ·). Let Ps(ω1, . . . , ωs), s ≥ 0, denote the set of all such measures. Let

ωs = (ω1, . . . , ωs). By construction, if Ps(ωs, ·) ∈ Ps(ωs), then

Ps(ωs, ·|Ft+1)(ωs+1) ∈ Ps+1(ωs+1).

That is, if P is any probability measure in Ps(ωs), then its conditionals fall into Ps+1(ωs+1).

Conversely, if Ps+1(ωs+1) is a Fs+1-measurable selection from Ps+1(ωs+1) and Ps(ωs) ∈ Ps(F1 ×

· · ·×Fs), then Ps+1(ωs+1) and Ps(ωs) together via equation (19) with t = s+1 define a probability

measure in Ps(ωs), which in particular implies that Ps+1(ωs+1) consists only of conditionals from

Ps(ωs). When the family Pt(ωt) satisfies such relationship, it is said to update according to the

generalized Bayesian rule.

To simplify notation, we shall write Ps(ω1, . . . , ωs) as Ps(F1 × · · · × Fs), for (ω1, . . . , ωs) ∈
F1 × · · · × Fs, when it is more convenient. This is justified because if (ω1, . . . , ωs) and (ω′1, . . . , ω

′
s)

are both in F1 × · · · × Fs, then Ps(ω1, . . . , ωs) = Ps(ω′1, . . . , ω
′
s).

Theorem 5.8 Suppose that the conditions of Theorem 5.7 hold. Let {Ft} be a filtration on Ω∞ and

{ν(F1×· · ·×Ft) : F1×· · ·×Ft ∈ Ft, t ≥ 1} be the (sub-) family of conditional non-additive probability

measures associated with the conditional preferences, {P(F1×· · ·×Ft) : F1×· · ·×Ft ∈ Ft, t ≥ 1} be

the set of probability measures on Ω in Theorem 5.6, and {Pt(F1×· · ·×Ft) : F1×· · ·×Ft ∈ Ft, t ≥ 1}
be the set of probability measures on Ω∞ defined above through (18) and (19).

(i) For any t, A ⊂ Ω, and ωt ≡ (ω1, . . . , ωt) ∈ Ωt, if ωt ∈ F1 × · · · × Ft,

ν(F1 × · · · × Ft, A) = min {P (A) : P ∈ P(F1 × · · · × Ft)} (20)

= min
{
EP [1F1×···×Ft×A|Ft] (ωt) : P ∈ P0

}
. (21)
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(ii) For any d1 ∈ DT such that the filtration embedded in d1 coincides with {Ft} and any F1 ×
· · · × Ft ∈ Ft,

V (F1 × · · · × Ft, dt+1(ωt)) = min


EP


 T∑

s=t+1

βsu(cs)


 : P ∈ Pt(ωt)


 (22)

= min
p∈Pt(ωt)

Ep


u(ct+1(ωt+1) + min

P∈Pt+1(ωt+1)
EP


 T∑

s=t+2

βsu(cs)




 .

This theorem is the foundation of the generalized Bayesian updating rule. In plain English,

it says that if a family of conditional preferences satisfies the conditions of the theorem, then the

conditional preferences evolve as if there is an initial set of probability measures on (Ω∞,F∞) that

represents the belief component of the preferences, and over time that belief is updated according

to the generalized Bayesian rule.

From application’s perspective, it is sometimes more convenient to begin with the specification

of the initial set of priors. For example, to study the effect of learning on asset price/return dynamics

in an environment with Knightian uncertainty, one may wish specify a multi-prior expected utility

type of preference,

min
P∈P

EP

[ ∞∑
t=0

βsu(ct)

]
,

and examine how the set of priors, P, evolves over time and its effect on the pricing kernel. The
following theorem is complementary to Theorem 5.8 in that respect.

Let P be a closed and convex set of probability measures on a measurable space (X,G). P is

said to be strongly super-additive if the set function,

γ(A) = min{P (A) : P ∈ P}, A ∈ G

is convex, i.e., γ(A) + γ(B) ≤ γ(A ∪B) + γ(A ∩B), for any A and B ∈ G.

Theorem 5.9 Let P̂ be a closed, convex and strongly supper-additive set of probability measures

on (Ω∞,F∞). For each F1×· · ·×Ft ∈ Ft, denote by P̂t(F1×· · ·×Ft) the set of probability measures

on (Ω∞,F∞) obtained by conditioning the probability measures in P̂ on the event F1 ×· · ·×Ft. Let
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P(F1 × · · · × Ft) be the set of probability measures on Ω given by

P(F1 × · · · × Ft) =
{
P : P (A) = P̂ (A× Ω∞), P̂ ∈ P̂t(F1 × · · · × Ft)

}
.

Then both P̂t(F1 × · · · × Ft) and P(F1 × · · · × Ft) are closed, convex and strongly supper-additive.

Construct Pt(F1 × · · · × Ft) via equations (18) and (19). Then

min
P∈Pt(ωt)

EP


 T∑

s=t+1

βsu(cs)


 = min

p∈Pt(ωt)
Ep


u(ct+1(ωt+1)) + β min

P∈Pt+1(ωt+1)
EP


 T∑

s=t+2

βsu(cs)




 .

Two implications of Theorems 5.8 and 5.9 are worth highlighting. (a) These two theorems can

be viewed as a generalization of the law of iterated expectation in probability theory. They establish

a equivalence between the static and recursive formulation of multi-prior expected utility when the

set of priors is chosen appropriately, resembling that for intertemporally additive expected utility

mentioned in Section 2. (b) They also point to a potential non-equivalence for general multi-prior

expected utility functions: if we start with an initial set of priors, update with the generalized

Bayesian rule to construct P̂t(F1 × · · · × Ft) and P(F1 × · · · × Ft) as in Theorem 5.9, and then

use either P̂t(F1 × · · · × Ft) or P(F1 × · · · × Ft) formulate a recursive multi-prior expected utility,

it may not be the same as the static formulation of multi-prior expected utility with the initial

set of priors. If the equivalence of static and recursive is considered desirable, then such potential

non-equivalence should raise the caution about the applicability of the generalized Bayesian rule

to the broader class of multi-prior expected utility.

6 Potential Applications

While the main objective of our paper is to explore updating rules for non-Bayesian preferences,

the results of this paper have wider applications beyond updating. In this section we will list a few

such potential applications.

The immediate ones are the axiomatization of preferences used asset pricing models.

(A): Epstein and Wang (1994, 1995) develop an intertemporal asset pricing model where the agent’s

utility function is given by

Vt(c) = u(ct) + βmin
{∫

Vt+1(c) dP : P ∈ P(ω)
}
,
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where P(ω) is a closed convex set of probability measures on Ω, given the current state ω. No
axiomatic basis for the utility function was given. Theorem 5.7 provides an axiomatization for such

multi-period multi-prior expected utility functions. Theorems 5.8, 5.9 and the discussion at the

end of the last subsection address the consistency issue raised in Epstein and Wang (1994, p.293).

(B): Chen and Epstein (1999) provide a continuous-time asset pricing model that incorporate

Knightian uncertainty. A special case of the utility function of the representative agent is given by

Vt(c) = essinfP∈PE
P

[∫ T

t
e−β(s−t)u(cs)ds

∣∣∣∣∣Ft

]
,

where P is a set of Brownian measures that are absolutely continuous with each other. Theorems

5.8 and 5.9 provide an axiomatic foundation for such utility functions, except perhaps for the fact

that Chen and Epstein model is in continuous time and allows for infinite states. Using Theorems

5.8 and 5.9, one can readily extend a version of Chen and Epstein (1999) to a model with learning

in which uncertainty prevail even in the presence of learning and Chen and Epstein (1999) appears

as the reduced form.

(C): More generally, Theorems 5.8 and 5.9 axiomatize the dynamic multi-prior expected utility

preferences.

(D): Theorem 5.1 can be viewed as an axiomatic treatment of a class of preference with time-

varying risk aversion, as in Barberis, Huang and Santos (1999) and Campbell and Cochrane (1999).

Barberis, Huang and Santos (1999) develop their preference alternatively from the prospect and

prior outcomes influence theories in psychology. Preference in Campbell and Cochrane (1999) is

based on habit formation.

A potentially interesting application of the theory of this paper is in the area of learning and

its impact on asset prices. The recent literature on the effect of learning on asset prices, such as

Brennan (1997), Brennan and Xia (1998), assumes a probability framework. It would be interesting

to study the same issue in the non-Bayesian framework as in this paper.
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A Proofs and Supporting Technical Details

Extraction of information filtration: Let (c0, d1) ∈ R+ ×DT be a T -period profile. To extract

the information filtration embedded in d1, fix a t ≤ T and (ω1, . . . , ωt). Let d1 = (d̃1,F1). Since

F1 = {F1, . . . , Fn1} is a partition, there is a unique j1 such that ω1 ∈ Fj1 . Then there exist a

(c1,j1 , d2,j1) ∈ R+ ×DT−1 such that

d̃1(ω1) = (c1,j1 , d2,j1) = (c1,j1, (d̃2,j1 ,F2
j1)), F2,j1 = {Fj1,1, . . . , Fj1,n(j1)}.

In turn, there is a unique j2 ≤ n(j1) such that ω2 ∈ Fj1,j2. Continue inductively, there exists a

unique sequence Fj1, . . . , Fj1,...,jt such that (ω1, . . . , ωt) ∈ Fj1 ×· · ·×Fj1,...,jt . The collection of such

sets Fj1 × · · ·×Fj1,...,jt as (ω1, . . . , ωt) runs through Ωt is a partition of Ωt, which naturally extends

to a unique partition of ΩT . Denote this partition by Ft. Then F1, . . . , FT is the information

filtration embedded in d.

Proof of Theorem 3.1: First we define mapping Θ from D to B(R+ ×D) × F. Let d ∈ D. By
definition

d = (d1, d2, . . .) ∈ Π∞
t=1Dt, with ft(dt+1) = dt.

Recall that for each t ≥ 1, dt = (d̃t,F) for some F ∈ F common to all t and d̃t ∈ B(R+ ×Dt−1).

(D0 = ∅ by convention). Let

d̃t+1(ω) = (c(ω), d̄t(ω))

for ω ∈ Ω. Define
Θ(d) = d′ = (d̃′,F),

where d̃′ ∈ B(R+ ×D) is defined by

d̃′(ω) = (c(ω), d̄(ω)) =
(
c(ω), (d̄1(ω), d̄2(ω))

)
.

To ensure that Θ is well-defined, we need to show that d̄(ω) ∈ D for each ω ∈ Ω. That is, for each

ω ∈ Ω, ft(d̄t+1(ω)) = d̄t(ω). Fix ω ∈ Ω. By assumption,

ft(dt+1) = dt. (23)

The left hand side of this equation is

ft(d̃t+1,F) =
(
ft(d̃t+1),F

)
, and ft(d̃t+1)(ω) =

(
c(ω), ft−1(d̄t(ω))

)
.
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The right hand side of the equation is dt = (d̃t,F) and d̃t(ω) = (c(ω), d̄t−1(ω)). Thus we have

ft−1(d̄t(ω)) = d̄t−1(ω) as desired. Thus Θ is well-defined. Arguing in reverse order shows that Θ is

one-to-one and onto. For continuity, suppose that dn = (d̃n,Fn) → d = (d̃,F). Then dnt+1 → dt+1

for each t and Fn → F . This is equivalent to (cn(ω), d̄nt (ω)) → (c(ω), d̄t(ω)) for all ω ∈ Ω and

Fn → F . Thus (d̄n1 (ω), d̄n2 (ω), . . .)→ (d̄1(ω), d̄2(ω), . . .) and hence

(cn(ω), (d̄n1 (ω), d̄2(ω), . . .))→ (c(ω), (d̄1(ω), d̄2(ω), . . .)).

Therefore Θ is continuous. Arguing in reverse order establishes the continuity of Θ−1.

Proof of Theorem 4.1: By Debreu (1954), each conditional preference �F1×···×Ft on R+ × D
can be represented by a numerical function V (F1 × · · · × Ft, (c, d)) on R+ × D. Due to Axiom
3, the ranking of deterministic consumption profiles are independent of past information histories.

Thus we can normalize the numerical representation by monotonic transforms such that for any

deterministic consumption profile (c, d),

V (A1 × · · · ×At, (c, d)) = V (B1 × · · · ×Bt, (c, d)),

for any A1×· · ·×At and B1×· · ·×Bt. Without loss of generality, we also normalized Vt(F1×· · ·×Ft)

such that V (F1 × · · · × Ft, (c, 0)) = u(c) for a strictly increasing function u : R+ → R. By

stationarity, we further normalize the conditional utility functions such that V (F1×· · ·×Ft, (c, d)) =

V (F1 × · · · × Ft × Ωs, (c, d)).

Let t ≥ 0 and F1 × · · · × Ft ⊂ Ωt. Define µ(F1 × · · · × Ft) : B(Ω)→ R by

µ(F1 × · · · × Ft, x̃) = V (F1 × · · · × Ft, d),

for any d ∈ D such x̃ = Ṽ (F1 × · · · × Ft, d). We first show that µ(F1 × · · · × Ft) is well-defined.

Suppose that d = (d̃,F) and d′ = (d̃′,G), where F = {A1, . . . , An} and G = {B1, . . . , Bm}, are such
that

x̃ = Ṽ (F1 × · · · × Ft, d) = Ṽ (F1 × · · · × Ft, d
′).

Then we have, for all i and j and ω ∈ Ai ∩Bj,

V [F1 × · · · × Ft ×Ai, (c(ω), d1(ω))] = V [F1 × · · · × Ft ×Bj, (c′(ω), d′1(ω))]. (24)

For each ω there exist deterministic consumption profiles y(ω) and z(ω) (we do not need to specify

the information profiles due to Axiom 3) such that

(c(ω), d1(ω)) ∼F1×···×Ft×Ai y(ω) and (c′(ω), d′1(ω)) ∼F1×···×Ft×Bj z(ω).
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Thus, by Axiom 3 and the normalization,

V [F1 × · · · × Ft ×Ai, (c(ω), d1(ω))] (25)

= V [F1 × · · · × Ft ×Ai, y(ω)] = V [F1 × · · · × Ft ×Bj , y(ω)] (26)

= V [F1 × · · · × Ft ×Bj, (c′(ω), d′1(ω))] (27)

= V [F1 × · · · × Ft ×Bj, z(ω)] = V [F1 × · · · × Ft ×Ai, z(ω)]. (28)

Using these equations, we claim that Consistency Axiom implies V (F1 ×· · ·×Ft, d) = V (F1 ×· · ·×
Ft, d

′). Suppose the contrary: V (F1 × · · · × Ft, d) > V (F1 × · · · × Ft, d
′). By Consistency Axiom,

(25)-(28) imply that

V (F1 × · · · × Ft, d) = V [F1 × · · · × Ft, ỹ] > V [F1 × · · · × Ft, z̃] = V (F1 × · · · × Ft, d
′),

which by Consistency again implies that for some i and ω ∈ Ai,

V [F1 × · · · × Ft ×Ai, y(ω)] > V [F1 × · · · × Ft ×Ai, z(ω)].

This contradicts (25)-(28).

An immediate implication of the above argument is:

Axiom 10 (Strong Consistency) For all (ci, di) and (c′i, d
′
i) ∈ R+ × D, i = 1, . . . , n, and all

partitions F = {A1, . . . , An} and G = {B1, . . . , Bm} of Ω, if

V [F1 × · · · × Ft ×Ai, (ci, di)] ≥ V [F1 × · · · × Ft ×Bj, (c′j , d
′
j)],

for all ω ∈ Ai ∩Bj, i = 1, . . . , n and j = 1, . . . , m, then

V

[
F1 × · · · × Ft,

([
n∑

i=1

(ci, di)1Ai

]
,F
)]

≥ V


F1 × · · · × Ft,




 m∑

j=1

(c′j , d
′
j)1Bj


 ,G




 .

What the above argument demonstrates is that Strong Consistency is implied by Consistency and

Deterministic Information Independence.

To show µ(F1 × · · · × Ft, x̃) is a certainty equivalent, let d = ((c, 0),F0), where F0 = {Ω} is
the trivial partition. Observe that

V (F1 × · · · × Ft, d) = µ(F1 × · · · × Ft, Ṽ (F1 × · · · × Ft, d))

= µ(F1 × · · · × Ft, V (F1 × · · · × Ft ×Ω, (c, 0)).
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On the other hand, by Stationarity and the normalization,

u(c) = f [V (F1 × · · · × Ft × Ω, (0, [(c, 0),F0 ])] = V (F1 × · · · × Ft, d)

u(c) = V (F1 × · · · × Ft × Ω, (c, 0)) = V (F1 × · · · × Ft, (c, 0)).

Since c is arbitrary, we have µ(F1×· · ·×Ft, c) = c, which is the property (a) of certainty equivalent.

For property (b), let

x̃ = Ṽ (F1 × · · · × Ft, d)

so that for ω ∈ Ai,

x̃(ω) = V (F1 × · · · × Ft ×Ai, (c(ω), d1(ω))).

Similarly, let ỹ be such that

ỹ(ω) = V (F1 × · · · × Ft ×Bi, (c′(ω), d′1(ω))).

If x̃ ≥ ỹ, then, by Strong Consistency,

µ(F1 × · · · × Ft, x̃) = µ(F1 × · · · × Ft, Ṽ (F1 × · · · × Ft, (d̃,F)))

= V (F1 × · · · × Ft, (d̃,F)) ≥ V (F1 × · · · × Ft, (d̃′,G))

= µ(F1 × · · · × Ft, Ṽ (F1 × · · · × Ft, (d̃′,G))) = µ(F1 × · · · × Ft, ỹ).

Define for any c ∈ R+ and any real number v,

Wt(F1 × · · · × Ft, (c, v)) = V (F1 × · · · × Ft, (c, d)),

for any d such that v = V (F1 × · · · ×Ft, d). We show that the function Wt is well-defined. If d and

d′ are such that v = V (F1×· · ·×Ft, d) = V (F1 ×· · ·×Ft, d
′), then it follows from Risk Separability

that

V (F1 × · · · × Ft, (c, d)) = V (F1 × · · · × Ft, (c, d′)).

Continuity and monotonicity of Wt are straightforward.

We now show that Wt(F1 × · · · × Ft, c, v) is independent of F1 × · · · × Ft and t. Let (c, d) and

(c′, d′) be two deterministic consumption profiles. By the normalization,

V (A1 × · · · ×At, (c, d)) = V (B1 × · · · ×Bt, (c, d)).
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Thus

Wt(A1 × · · · ×At, (c, v)) =Wt(B1 × · · · ×Bt, (c, v)).

That is, Wt(F1×· · ·×Ft, (c, d)) is independent of F1×· · ·×Ft. ThatWt is independent of t follows

from Stationarity.

Proof of Theorem 4.2: This theorem follows from Koopmans (1960) or Gorman (1968).

Proof of Theorem 5.1: The proof is exactly identical to that of Theorem 5.4 with only one

change: under Strong Timing Indifference, property (A6) is replaced by

(A6’) dA(mF (x1, . . . , xn),mF (y1, . . . , yn)) ∼F1×...×Ft dF (mA(x1, y1), . . . ,mA(xn, yn)).

Under (A6’), by Theorem 1 of Nakamura (1990), ν(F1 × · · · × Ft, ·) in the proof of Theorem 5.4 is

in fact a probability measure.

Proof of Theorem 5.4: Fix F1 × · · · × Ft. First we introduce some simplifying notations. Let

F = {A1, . . . , An} be a partition of Ω. Denote by

dF (x1, . . . , xn)

the (one-period) consumption profile whose current consumption is zero and whose consumption at

time 1 in state Ai is xi. Note that for one-period consumptions, updating in the forthcoming period

is irrelevant. So if d = (d̃,G) ∈ D and d̃ = dF (x1, . . . , xn), we will simply write d as dF (x1, . . . , xn).

Let A ⊂ Ω. For the partition F = {A,Ac} we will also write dF (x, y) simply as dA(x, y). For
partitions F = {A1, . . . , An} and Fi = {Bi1, . . . , Bim}, denote by

dF = (dF1(x11, . . . , x1m), . . . , dFn(xn1, . . . , xnm)) = [(dF1(x11, . . . , x1m), . . . , dFn(xn1, . . . , xnm)),F0]

the two-period consumption profiles whose current and time 1 consumptions are zero and there is

no updating at time 1 (because F0 is trivial). Consider the restriction of �F1×···×Ft on the space

B(R) of one-period consumption-information profiles. To simplify notations, write V [F1 × . . . ×
Ft, (0, dπ(x1, . . . , xn))] as V [F1 × . . .× Ft, dF (x1, . . . , xn)] when no confusion arises.

We shall first verify that if Axioms 1-6 hold, then the ordering has the following properties:

(A1) For each x̃ ∈ B(R), there are x and y ∈ R such that x �F1×...×Ft x̃ �F1×...×Ft y.
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(A2) If dA(y, z) �F1×...×Ft x̃ �F1×...×Ft dA(x, z), then x̃ ∼F1×...×Ft dA(a, z) for some a ∈ R.

(A3) If A is not null16 and {x, y} ≤ z, then x ≤ y if and only if dA(y, z) �F1×...×Ft dA(x, z); if A is

not universal17 and {x, y} ≥ z, then x ≤ y if and only if dA(z, y) �F1×...×Ft dA(z, x).

(A4) If x ≤ y and A ⊂ B, then dA(x, y) � dB(x, y).

(A5) Every strictly bounded standard sequence is finite.18

(A6) If x1 ≤ · · · ≤ xn and y1 ≤ · · · yn with xi ≤ yi for all i, then

dA(mF (x1, . . . , xn),mF (y1, . . . , yn)) ∼F1×...×Ft dF (mA(x1, y1), . . . ,mA(xn, yn)),

where mF (x1, . . . , xn) is the constant risk that is ranked the same as dF (x1, . . . , xn). That is,

V [F1 × . . .× Ft, (0,mF (x1, . . . , xn))] = V [F1 × . . . × Ft, (0, dF (x1, . . . , xn))],

or

mF (x1, . . . , xn) = u−1 [V [F1 × . . .× Ft, (0, dF (x1, . . . , xn))]/β] . (29)

Note that mF (x1, . . . , xn) is the constant “loss” that is realized one period from now.

Properties (A1), (A2), (A3) and (A4) follow from consistency and continuity. Recall that

consistency implies the usual monotonicity.

For (A5), let {xn, n ∈ N} be a standard sequence. Then, without loss of generality, there exist
two real numbers p and q ∈ R such that

V [F1 × . . .× Ft, dA(xn, p)] = V [F1 × . . . × Ft, dA(xn+1, q)]. (30)

Assume first that p > q. Then by monotonicity, xn < xn+1 for all n. We wish to verify that if this

standard sequence is strictly bounded in the sense that a < xn < b for some a < b, then the sequence

must be finite. Suppose the contrary. Then xn converges to a real number x0 ≤ b. Taking limit in
(30) and applying the continuity of V , we have V [F1×. . .×Ft, dA(x0, p)] = V [F1×. . .×Ft, dA(x0, q)],

which contradicts the fact that A is not universal and hence Ac is not null. The case that p < q

can be verified similarly.
16An event A ⊂ Ω is null if for all x, y, z ∈ R, dA(x, z) ∼F1×...×Ft dA(y, z).
17An event A ⊂ Ω is universal if for all x, y, z ∈ R, dA(x, y) ∼ dA(x, z).
18Let N be any set of consecutive integers. Given an event A which is neither null nor universal, a standard

sequence is defined as a set {ai ∈ R : i ∈ N} for which there exist a and b ∈ R such that a �= b and either {a, b} ≤ ai

and dA(a, ai) ∼F1×...×Ft dA(b, ai+1) for all i ∈ N , or ai ≤ {a, b} and dA(ai, a) ∼F1×...×Ft dA(ai+1, b) for all i ∈ N .
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For (A6), we show first that the certainty equivalent operator, µ[F1 × . . .× Ft], satisfies

µ[F1 × . . . × Ft, βx̃] = βµ[F1 × . . .× Ft, x̃] (31)

for all x̃ ∈ B(R). In the following derivation, we make heavy use of the expressions

V [F1 × . . .× Ft, (c, d)] = u(c) + βµ
(
F1 × . . .× Ft, Ṽ [F1 × . . .× Ft, d]

)
, (32)

and

V [F1 × . . .× Ft, dF (x1, . . . , xn)] = βµ[F1 × . . .× Ft, u(x̃)]. (33)

Now let x̃ ∈ B(R) be an random variable that assumes values x1 < · · · < xn on A1, . . . , An

respectively. Let F = {A1, . . . , An}. Let

d1 = (d̃,F0), d̃(ω) = dF (u−1(xi), . . . , u−1(xi)), if ω ∈ Ai,

and

d2 = (d̃,F0), d̃(ω) = dF (u−1(x1), . . . , u−1(xn)), if ω ∈ Ai,

Observe that

V (F1 × . . . × Ft, dF (dF (u−1(x1), . . . , u−1(x1)), . . . , dF (u−1(xn), . . . , u−1(xn))))

= V (F1 × . . . × Ft, (0, d1)) = βµ(F1 × . . . × Ft, Ṽ (F1 × . . .× Ft, d1))

where in the second equality we have used (32), noting that the argument of V (F1 × . . .× Ft, ·) is
a two-period consumption-information profile. For ω ∈ Ai,

Ṽ (F1 × . . .× Ft, d1)(ω) = V (F1 × . . .× Ft ×Ω, dF (u−1(xi), . . . , u−1(xi)))

= βµ(F1 × . . .× Ft × Ω, dF (u−1(xi), . . . , u−1(xi))) = βµ(F1 × . . .× Ft × Ω, xi) = βxi,

where the third equality is by (33). By a similar argument,

V (F1 × . . . × Ft, dF (dF (u−1(x1), . . . , u−1(xn)), . . . , dF (u−1(x1), . . . , u−1(xn))))

= V (F1 × . . . × Ft, (0, d2)) = βµ(F1 × . . . × Ft, Ṽ (F1 × . . .× Ft, d2))

and for ω ∈ Ai,

Ṽ (F1 × . . .× Ft, d2)(ω) = V (F1 × . . .× Ft × Ω, dF (u−1(x1), . . . , u−1(xn)))

= V (F1 × . . .× Ft, dF (u−1(x1), . . . , u−1(xn))) = βµ(F1 × . . .× Ft, x̃),
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where the second equality is by Stationarity. Now

βµ(F1 × . . .× Ft, βx̃)

= V (F1 × . . . × Ft, dF (dF (u−1(x1), . . . , u−1(x1)), . . . , dF (u−1(xn), . . . , u−1(xn))))

= V (F1 × . . . × Ft, dF (dF (u−1(x1), . . . , u−1(xn)), . . . , dF (u−1(x1), . . . , u−1(xn))))

= βµ(F1 × . . .× Ft, βµ(F1 × . . .× Ft, x̃)) = β2µ(F1 × . . . × Ft, x̃).

where the second equality is by Timing Indifference, and last equality from µ(F1 × . . .× Ft) being

a certainty equivalent. Thus (31) is shown.

Now, let

f̃(ω) =
{
V (F1 × . . .× Ft × Ω, dF (x1, . . . , xn)) if ω ∈ A,
V (F1 × . . .× Ft × Ω, dF (y1, . . . , yn)) otherwise.

Then

V (F1 × . . .× Ft, dA(mF (x1, . . . , xn),mF (y1, . . . , yn)))

= V
(
F1 × . . .× Ft, dA(u−1 [V (F1 × . . . × Ft × Ω, dF (x1, . . . , xn))/β] ,

u−1 [V (F1 × . . .× Ft × Ω, dF (y1, . . . , yn))/β]
)

= µ[F1 × . . .× Ft, f̃ ] =
1
β
[βµ(F1 × . . .× Ft, f̃)]

=
1
β
V (F1 × . . . × Ft, dA(dF (x1, . . . , xn), dF (y1, . . . , yn)))

=
1
β
V (F1 × . . . × Ft, dF (dA(x1, y1), . . . , dA(xn, yn)))

= V (F1 × . . .× Ft, dF (u−1[V (F1 × . . .× Ft × Ω, dA(x1, y1))/β],

. . . , u−1[V (F1 × . . .× Ft × Ω, dA(xn, yn))/β]))

= V (F1 × . . .× Ft, dF (mA(x1, y1)), . . . ,mA(xn, yn))))

where first equality is by (29), the second equality is by (33), the fourth equality is by (32), the

fifth equality is by Timing Indifference, the sixth equality is by (32), and the last equality is by

(29). Thus (A6) holds.

Now by Theorem 1 of Nakamura (1990), there exist a strictly monotonic function gF1×···×Ft

and a monotonic set function ν(F1×· · ·×Ft) such that dF (x1, . . . , xn) � dG(y1, . . . , ym) if and only
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if ∫
gF1×···×Ft[u(x̃)] dν(F1 × · · · × Ft) ≥

∫
gF1×···×Ft[u(ỹ)] dν(F1 × · · · × Ft).

Thus, for any x̃ and ỹ ∈ B(R),

V (F1 × · · · × Ft, dF (x1, . . . , xn)) ≥ V (F1 × · · · × Ft, dG(y1, . . . , ym))

if and only if
∫
gF1×···×Ft[u(x̃)] dν(F1 × · · · × Ft) ≥

∫
gF1×···×Ft[(ỹ)] dν(F1 × · · · × Ft),

which implies that there exists a strictly increasing function ψF1×···×Ft such that

ψF1×···×Ft(V (F1 × · · · × Ft, dF (x1, . . . , xn))/β) =
∫
gF1×···×Ft(u(x̃)) dν(F1 × · · · × Ft).

However, V (F1 × · · · × Ft, dF (x1, . . . , xn))/β = µ(F1 × · · · × Ft, u(x̃)] by (33). Thus

ψF1×···×Ft(µ(F1 × · · · × Ft, u(x̃))) =
∫
gF1×···×Ft(u(x̃)) dν(F1 × · · · × Ft).

Since µ(F1 × · · · × Ft, ·) is a certainty equivalent, the above equation implies that

ψF1×···×Ft[u(x)] = gF1×···×Ft(u(x)).

Returning to µ(F1 × · · · × Ft), we have

µ(F1 × · · · × Ft, ỹ) = ψ−1
F1×···×Ft

∫
ψF1×···×Ft(ỹ) dν(F1 × · · · × Ft).

Proof of Theorem 5.6: This theorem follows from Theorem 7.3 of Wakker (1999) and the

standard representation theorem for Choquet integration with respect to a convex capacity. See

for example Anger (1977).

Proof of Theorem 5.8: (i) The first expression follows from Theorems 5.4 and 5.6. The second

follows from the construction of P.

(ii) We prove the first equation for the case of T = 2. The more general case is the same, but

involves more notation. Let d1 = (d̃1,F1) with F1 = {F1, . . . ,Fn}. By Theorem 5.5,

V (d1) =
∫
Ṽ (d1)(ω1)ν(dω1)

Ṽ (d1)(ω1) = V (Fi, (c1(ω1), d2(ω1))) = u(c1(ω1)) + β
∫
c2(ω1, ω2)ν(F1, dω2), if ω1 ∈ Fi.
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By Theorem 5.7, these two expression can be written as

V (d1) = min
{∫

Ṽ (d1)(ω1)P (dω1) : P ∈ P0

}

Ṽ (d1)(ω1) = V (Fi, (c1(ω1), d2(ω1))) = u(c1(ω1)) + βmin
{∫

c2(ω1, ω2)P (dω2) : P ∈ P(Fi)
}
,

where P0 is the closed convex subset of probability measures that is associated with the conditional

non-additive probability ν at time zero. Since both P0 and P(Fi) are closed, there exist P ∗ ∈ P0

and P ∗(ω1) ∈ P(Fi) for ω1 ∈ Fi such that

V (d1) =
∫
Ṽ (d1)(ω1)P ∗(dω1)

Ṽ (d1)(ω1) = V (Fi, (c1(ω1), d2(ω1))) = u(c1(ω1)) + β
∫
c2(ω1, ω2)P ∗(ω1, dω2), if ω1 ∈ Fi.

Let P be the probability measure on Ω2 associated with P ∗ and P ∗(ω1) through equation (19).

Then P ∈ P. Thus, the LHS of (22) is greater than the RHS. But the LHS of (22) is always less

than the RHS. Therefore, the equality holds.

The second equation follows from the first and Theorem 5.7.

Proof of Theorem 5.9: By the remark in Wasserman and Kadane (1990) or note 11 of Walley

(1991, p.551), if P is closed, convex and strongly supper-additive, so is Pt(F1 × · · · × Ft) for any

F1×· · ·×Ft. The strong supper-additivity of P(F1×· · ·×Ft) follows from that of Pt(F1×· · ·×Ft).

The closedness and convexity of P(F1×· · ·×Ft) is straightforward. The rest follows from Theorem

5.8.
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