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AN ADAPTIVE, RATE-OPTIMAL TEST OF A PARAMETRIC MODEL AGAINST A
NONPARAMETRIC ALTERNATIVE

1.  INTRODUCTION

This paper is concerned with testing a parametric model of a conditional mean function

against a nonparametric alternative.  We develop a test that is consistent against alternative

models whose distance from the parametric model converges to zero as rapidly as possible as the

sample size, n, increases.  The test does not require a priori knowledge of the smoothness of the

alternative model, and it has desirable power properties that are not shared by existing tests.

We consider the model

(1.1) Y f X ii i i= + =( ) ; , , ,...ε 1 2 3 ,

where Yi is a scalar random variable; {Xi} ∈ ℜd is a sequence of distinct, non-stochastic, design

points; f is an unknown function; and {εi} is a sequence of unobserved, independent, random

variables with means of zero.  We test the null hypothesis, H0, that f belongs to the parametric

family ℑ ≡{ ( , ), }F ⋅ ∈θ θ Θ , where F is a known function and Θ is a subset of a finite-dimensional

space.  More precisely, the null hypothesis is that there is a θ ∈ Θ such that f(Xi) = F(Xi, θ) for all

i.  The alternative hypothesis, H1, is that there is no θ ∈ Θ such that f(Xi) = F(Xi, θ) for all i.1

There is a large literature on testing a parametric model of a conditional mean function

against a nonparametric alternative.  Many tests compare a nonparametric estimator of f(⋅) with a

parametric estimator, F(⋅, θn), where θn is an estimator of θ that is consistent under H0 (e.g., a

least-squares estimator).  See, for example, Aït-Sahalia, et al. (1994), Eubank and Spiegelman

(1990), Fan and Li (1996), Gozalo (1993), Härdle and Mammen (1993), Hart (1997), Hong and

White (1995), Li and Wang (1998), Whang and Andrews (1993), Wooldridge (1992), Yatchew

(1992), and Zheng (1996).  Other tests do not require nonparametric estimation of f.  Bierens

(1982, 1990), Bierens and Ploberger (1997), and De Jong (1996) test orthogonality conditions

that are implied by (1.1).  Andrews (1997) develops a conditional Kolmogorov test.2

The asymptotic power of a test of H0 is often investigated by deriving the asymptotic

probability that the test rejects H0 against a sequence of local alternative models. This approach is

well known but, as is explained in the next paragraph, restricts attention to a class of alternative

models that is too small.  The form of the local alternative models is

(1.2) f x F x g xn n( ) ( , ) ( )= +θ ρ1

for some function g, where θ1 ∈ Θ and {ρn} is a sequence of real numbers that converges to 0 as

n → ∞.  See, for example, Andrews (1997), Bierens and Ploberger (1997), Eubank and

Spiegelman (1990), Hong and White (1995), and Zheng (1996).  Many tests that compare a
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nonparametric estimator of f with a parametric estimator have non-trivial power (that is, power

exceeding the probability that a correct H0 is rejected) only against sequences of local alternatives

for which ρn → 0 at a rate that is slower than n-1/2.  The tests of Aït-Sahalia, et al. (1994), Eubank

and Spiegelman (1990), Fan and Li (1996), Gozalo (1993), Härdle and Mammen (1993), Hong

and White (1995), Whang and Andrews (1993), Wooldridge (1992), Zheng (1996), and Yatchew

(1992) have non-trivial power only if ρn converges more slowly than n-1/2.

Andrews (1997), Bierens (1982), Bierens and Ploberger (1997), and Hart (1997) describe

tests that have non-trivial power against local alternatives for which ρn ∝ n-1/2.  Thus, at least in

terms of asymptotic local power, these tests appear to dominate tests that require slower

convergence of ρn.  It turns out, however, that if ρn ∝ n-1/2, then no test can have non-trivial power

uniformly over reasonable classes of functions g in (1.2) (e.g., functions that have derivatives of

order s for some integer s).  See Burnashev (1979), Ibragimov and Khasminskii (1977), and

Ingster (1982).  In other words, the power of any test of H0 against the sequence of local

alternatives f x F x n g xn n( ) ( , ) ( )/= + −θ1
1 2  equals the probability that the test rejects a correct H0

for some sequence {gn} of (say) twice differentiable functions.  The practical consequence of this

result is that any test of H0 for which ρn ∝ n-1/2 has low finite-sample power against certain classes

of smooth alternatives.  Section 4.2 presents numerical examples of this phenomenon.  Hong and

White (1995) and Fan and Li (1999) also present examples.  Because the class (1.2) excludes

models of the form f x F x g xn n n( ) ( , ) ( )= +θ ρ1 , it cannot be used to develop tests that have good

power against all smooth alternatives.  This is the sense in which the class (1.2) is too small.

Another way to investigate the asymptotic power properties of tests of H0 is the minimax

approach of Ingster (1982, 1993a, 1993b, 1993c).  This approach, which is not widely known in

econometrics, permits the set of alternatives to consist of an entire smoothness class.  The

minimax approach forms the basis of the test that is developed here.  In this approach, it is

assumed that f belongs to a class of one-or-more-times-differentiable functions on ℜd, such as a

Hölder, Sobolev, or Besov ball, B.3  B is separated from the null-hypothesis set ℑ by some

distance rn that converges to zero as n → ∞.  The aim of the minimax approach is to find the

fastest rate at which rn can approach zero while permitting consistent testing uniformly over B.

This rate is called the optimal rate of testing.  A test is consistent uniformly over B if

(1.3) lim inf ( )
n f B

H f
→∞ ∈

=P 0 1 is rejected against .

Thus, the optimal rate of testing is the fastest rate at which rn can approach zero while

maintaining (1.3).  The optimal rate of testing for Hölder, Sobolev, or Besov classes of functions
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that have bounded derivatives of order s ≥ d/4 is n-2s/(4s + d) (Ingster 1982, 1993a, 1993b, 1993c;

Guerre and Lavergne 1999).  This rate assumes that s is known a priori.  If s is unknown, then the

optimal rate of testing is n n
s s d− +1 2 4

loglog
/( )e j , which differs from the rate that is achievable

with known s by the very slowly increasing factor (loglog ) /( )n s s d4 +  (Spokoiny 1996).  If s < d/4,

then the optimal rate of testing is n-1/4 (see, e.g., Guerre and Lavergne 1999).

A test that achieves the optimal rate of testing has the advantage of being sensitive to

alternatives uniformly over a Hölder, Sobolev, or Besov class whose distance from the null

hypothesis ℑ converges to zero at the fastest possible rate.  These classes contain sequences of

alternative models against which the tests of Andrews (1997), Bierens (1982), Bierens and

Ploberger (1997), and Hart (1997) are inconsistent.  In practice, this means that there are smooth

alternatives against which these tests have much lower finite-sample power than does a test that

achieves the optimal rate of testing.  Section 4.2 presents numerical illustrations.

In this paper, we construct a test of H0 that has the optimal rate of testing uniformly over

Hölder classes and does not require a priori knowledge of s, the order of differentiability of f.

The test satisfies (1.3) with r n nn

s s d
∝ − +1 2 4

log log
/( )e j  when s ≥ d/4.  The test is called adaptive

and rate-optimal because it adapts to the unknown s and has the optimal rate of testing for the

case of an unknown s.4

A test that achieves the optimal rate of testing uniformly over a smoothness class B is

necessarily oriented toward the alternatives in B that are most extreme and hardest to detect.

These functions have narrow peaks or valleys whose widths decrease with increasing n.  See

Section 4.1 for an example.  A test that is oriented toward such alternatives may have low power

against functions that are less extreme.  To provide some protection against this possibility, we

investigate the consistency of our test against alternatives of the form (1.2).  These alternatives

cannot have the extreme behavior just described because g in (1.2) is a fixed function.  We show

that our test is consistent against alternatives of the form (1.2) whenever ρn Cn n≥ −1 2/ log log

for some finite C > 0.  The tests of Andrews (1997), Bierens (1982), Bierens and Ploberger

(1997), and Hart (1997) are consistent against alternatives of the form (1.2) whenever ρn → 0

more slowly than n-1/2.  Thus, our adaptive, rate-optimal test and the other tests (which are not

rate-optimal) are consistent against virtually the same alternatives of the form (1.2).  In terms of

consistency against alternatives of the form (1.2), there is essentially no penalty paid for the

adaptiveness and rate optimality of our test.5
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Throughout this paper, our concern is with the rate at which the distance between the null

and alternative hypotheses can decrease to zero while permitting consistent testing by some

procedure.  We do not investigate other properties of the power functions of tests, and we do not

derive the asymptotic local power function of our test.  Nor do we attempt analytic comparisons

of the powers of our test and others apart from noting conditions under which our test is

consistent and others are not.  More extensive power comparisons are left for future research.

The contribution of this paper is to provide a test that (1) adapts to the unknown smoothness of

the alternative model, (2) is consistent at the optimal rate uniformly over Hölder classes of

alternatives, and (3) is consistent against alternatives of the form (1.2) when ρn has nearly a n-1/2

rate of convergence.  The first two properties of our test guarantee that there are alternatives

against which our test has high power and tests such as those of Andrews (1997), Bierens (1982),

Bierens and Ploberger (1997), and Hart (1997) have low power.  The third property provides

some protection against the occurrence of the opposite situation.

The test statistic is described in Section 2 of this paper.  Theorems giving properties of

the test under H0 and various forms of H1 are presented in Section 3.  Section 4 presents the

results of some Monte Carlo experiments that illustrate the numerical performance of the test.

Concluding comments are presented in Section 5.  The proofs of theorems are in the Appendix.

2.  THE TEST STATISTIC

This section describes our test statistic and presents a bootstrap method for obtaining

critical values of the test.  The test is closely related to that of Härdle and Mammen (1993).  Like

Härdle and Mammen, we base the test on the distance between a kernel nonparametric estimator

of f and a kernel-smoothed parametric estimator.  The main difference between our test and that

of Härdle and Mammen is that we compute the distance with many different values of the

bandwidth parameter of the kernel smoother.  We reject H0 if the distance obtained with any of

the bandwidths is too large.  The rate-optimal and adaptive properties of our test arise from its use

of many different bandwidths.

The remainder of this section is divided into five parts.  Section 2.1 describes the

parametric estimator of f.  Section 2.2 describes the kernel smoothing procedure and the metric

that is used to measure the distance between the nonparametric and smoothed parametric

estimators of f.  Section 2.3 explains how the distance between the nonparametric and smoothed

parametric estimators is centered and Studentized.  The test procedure is presented in Section 2.4.

Section 2.5 explains how to estimate unknown population parameters that enter the test statistic.
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2.1  The Parametric Estimator

We consider the model (1.1).  The hypothesis to be tested is H0:  f ∈ ℑ ={ ( , ), }F ⋅ ∈θ θ Θ ,

where F is a known function and Θ is an open subset of a finite-dimensional Euclidean space.

We assume that there is an estimator of θ, denoted by θn, that is n1/2-consistent under H0.  Let θ0

∈ Θ denote the true value of θ if H0 is true.  That is, E(Yi) = F(Xi,θ0) for all i if H0 is true.  Then,

n1/2(θn - θ0) is bounded in probability under H0.

We assume that θn is stable if H0 is false.  By this we mean that there is a θ* ∈ Θ such

that n1/2(θn - θ*) is bounded in probability if H0 is false.  Under assumptions stated in Amemiya

(1985), for example, the least-squares estimator of θ has the required properties, as do many other

M estimators (Millar 1982).

2.2  The Kernel Smoother

We now explain the kernel smoothing procedure that is used in our test.  Let K denote the

kernel and h denote a bandwidth.  For x ∈ ℜd, let Kh(x) = K(x/h).  For each i, j = 1, 2, …, n define

w X X
K X X

K X X
h i j

h i j

h i k
k

n
( , )

( )

( )

=
−

−
=

∑
1

.

The kernel nonparametric estimator of f(Xi) is

f X w X X Yh i h i j j
j

n

( ) ( , )=
=

∑
1

.

The kernel-smoothed parametric estimator is

F X w X X F Xh i n h i j j n
j

n

( , ) ( , ) ( , )θ θ=
=

∑
1

.

The distance between the nonparametric and smoothed parametric estimators of f is defined to be

the sum of the squared differences fh(Xi) - Fh(Xi,θn).
6  Accordingly, for any θ ∈ Θ, define

S f X F Xh h i h i
i

n

( ) [ ( ) ( , )]θ θ= −
=
∑ 2

1

.

The test statistic is based on a centered, Studentized version of Sh(θn) whose asymptotic

distribution has a mean of zero and variance of one.

Some vector notation will be useful in the discussion that follows.  Define the n×1

vectors Y = (Y1, …, Yn)′ and F(θ) = [F(X1,θ), …, F(Xn,θ)]′.  Let Wh be the n×n matrix whose (i, j)

element is wh(Xi, Xj).  Let ⋅  denote the l2  norm.  That is, for any z ∈ ℜn,
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z zi
i

n
2 2

1

=
=
∑ .

Then

S W Y Fh h( ) [ ( )]θ θ= − 2

for any θ ∈ Θ.

2.3  Centering and Studentization

This section explains the method that is used to center and Studentize Sh(θn).  We begin

by defining further notation.  Suppose that H0 is true.  Then f(Xi) = F(Xi, θ0) for all i. Define the

n×1 vector ε = (ε1, …, εn)′.  For θ ∈ Θ, define the n×1 vector bh(θ) = Wh[F(θ0) - F(θ)].  Then

Y F F F− = − +( ) ( ) ( )θ θ θ ε0 ,

and

(2.1) S W b W b b Wh h h h h h h( ) ( ) ( ) ( )θ ε θ ε θ θ ε= + = + + ′2 2 2
2 .

Let aij,h denote the (i, j) element of the n×n matrix Ah = Wh′Wh.  Let s X i i4
4( ) ( )= E ε  and

σ ε2 2( ) ( )X i i= E .  Assume that these quantities exist.

To develop the method for centering and Studentizing Sh(θn), it is first necessary to

evaluate the mean and variance of Sh(θ0) under H0.  Observe that

S W ah h
i

n

ij h i j
j

n

( ) ,θ ε ε ε0
2

1 1

= =
= =
∑ ∑ .

Then

(2.2) E W N a Xh h ii h i
i

n

ε σ2 2

1

≡ =
=
∑ , ( ) .

In addition, Var W Vh h hε ν2 2= + ,  where

(2.3) V a X Xh
i

n

ij h i j
j

n
2

1

2 2 2

1

2=
= =
∑ ∑ , ( ) ( )σ σ

and

ν σh ii h i i
i

n

a s X X= −
=
∑ , [ ( ) ( )]2

4
4

1

3 .

It is not difficult to show that νh = o(Vh
2) as n → ∞, so νh is asymptotically negligible.  Therefore,

an asymptotically centered, normalized form of Sh(θ0) is
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T
S N

V

W N

Vh
h h

h

h h

h

0 0
2

≡
−

=
−( )θ ε

.

That is, the asymptotic distribution of Th
0 has a mean of zero and a variance of one.

To obtain the centered, Studentized form of Sh(θn), define

~ ( )
T

S N

V
Th

h n h

h
h h=

−
= +

θ
η0 ,

where

η
θ θ ε

h
h n h n h

h

b b W

V
=

+ ′( ) ( )
2

2
.

It follows from Lemmas 4.3 and 4.5 of the Appendix that ηh = op(1) as n → ∞.  Therefore, the

asymptotic distribution of 
~
Th  has mean zero and variance one.  However, 

~
Th  cannot be computed

in an application because it depends on the unknown quantities σ 2 ( )X i  (i = 1, …, n).  This

problem can be solved by replacing each σ 2 ( )X i  in (2.2) and (2.3) with an estimator.  Methods

for estimating σ 2 ( )X i  are described in Section 2.5.  For now, we assume that such methods exist

and denote the estimator of σ 2 ( )X i  by σ n iX2 ( ) .  The centered, Studentized form of Sh(θn) is

obtained from 
~
Th  by replacing σ 2 ( )X i  with σ n iX2 ( )  in Nh and Vh.  Specifically, define

(2.4) $ ( ),N a Xh ii h n i
i

n

=
=
∑ σ 2

1

,

(2.5) $ ( ) ( ),V a X Xh
i

n

ij h n i n j
j

n
2

1

2 2 2

1

2=
= =
∑ ∑ σ σ ,

and

(2.6) T
S N

V
h

h n h

h

=
−( ) $

$
θ

.

Then Th is a feasible statistic whose asymptotic distribution has mean zero and variance one.  It is

the centered, Studentized form of Sh(θn) that is used to construct our test statistic.

2.4  The Test Procedure

The idea of the test is to consider simultaneously a family of test statistics {Th, h ∈ Hn},

where Hn is a set of bandwidth values.  We assume that Hn is finite and denote the number of

elements of Hn by Jn.  A specific example is a geometric grid of the form

(2.7) H h h a h h kn
k= = ≥ ={ : , , , ...}max min 0 1 2 ,
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where 0 < hmin < hmax, and 0 < a < 1.  In this case, Jn ≤ log 1/a (hmax/hmin).  The proposed test

procedure rejects H0 if at least one of the statistics Th for h ∈ Hn is sufficiently large.  Thus, we

define

(2.8) T T
S N

Vh H
h

h H

h n h

hn n

* max max
( ) $

$
= =

−
∈ ∈

θ
.

We use T* as a test statistic.

We now discuss how to obtain critical values for T*.  The exact α-level critical value, tα*,

(0 < α < 1) is the 1 - α quantile of the exact finite-sample distribution of T*.  This critical value

cannot be evaluated in applications because θ0 and the distributions of the εi are unknown.

However, it is shown in Lemmas 8-10 of the Appendix that asymptotically (as n → ∞), tα* is

determined by the variances of the εi’s, σ 2 ( )X i .  The value of θ0 and other features of the

distributions of the εi’s do not affect the asymptotic critical value.  Therefore, an asymptotic α-

level critical value, tα, can be obtained as the 1 - α quantile of the distribution of T* that is

induced by the model Yi* = F(Xi, θn) + εi*, where εi* is sampled randomly from the normal

distribution N Xn i[ , ( )]0 2σ .  The test proposed here rejects H0 with asymptotic level α if T* > tα.

The asymptotic critical value tα can be estimated with any desired accuracy by using the

following simulation procedure:

1.  For each i = 1, …, n, generate Yi* = F(Xi, θn) + εi*, where εi* is sampled randomly

from the normal distribution N Xn i[ , ( )]0 2σ .

2.  Use the data set {Yi*, Xi:  i = 1, …, n} to estimate θ  and σ 2 ( )X i .  Denote the

resulting estimates by $θ n  and $ ( )σ n iX2 , respectively.  Compute the statistic $ *T  that is obtained

by replacing Yi, θn, and σ n iX2 ( )  with Yi*, $θ n , and $ ( )σ n iX2  on the right-hand side of (2.5).

3.  Estimate tα by the 1 - α quantile of the empirical distribution of $ *T  that is obtained

by repeating steps 1-2 many times.

2.5  Estimating σ 2 ( )X i

This section explains how σ 2 ( )X i  can be estimated.  We need an estimator that is

consistent regardless of whether H0 is true.  Thus, we cannot base the estimator on the residuals

of the parametric model Yi - F(Xi, θn).
7
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Recall that the εi’s are assumed to be independently distributed.  Assume for the moment

that they are also identically distributed so that σ 2 ( )X i  = σ 2  for some constant σ 2 0> .  If d = 1

(the Xi’s are scalars), then we can estimate σ 2  by using the method of Rice (1984), Gasser, et al.

(1986), and Buckley, et al. (1988).  Let X(1) < X(2) < … < X(n) be the ordered sequence of design

points, and let Y(i) and ε(i), respectively, be the similarly ordered values of the Yi’s and εi’s.  Then

Y(i + 1) - Y(i) = ε(i + 1) - ε(i) + f(X(i + 1)) - f(X(i)).  Now, E( )( ) ( )ε ε σi i+ − =1
2 22 .  Moreover, under the

assumptions of Section 3.1, |f(X(i + 1)) - f(X(i))| → 0 as n → ∞.  Therefore, we can estimate σ 2  by

(2.9) σ n i i
i

n

n
Y Y2

1
2

1

11

2 1
=

−
−+

=

−

∑( )
( )( ) ( ) .

This estimator is n1/2-consistent under the assumptions of Section 3.1, regardless of whether H0 is

true (Rice 1984).

We now explain how this method can be extended to multivariate settings.  We restrict

the discussion to the case of d ≤ 4.  Let j(i) (i = 1, …, n) be a set of indices that is defined through

the following recursion:

j X X
j n

j( ) arg min
,...,

1
2

1= −
=

and

j i X X i n
j i j j i

j i( ) arg min ; ,..., .
, (1),... ( )

= − =
≠ −1

2

The number j(i) is the index of the design point that is nearest to Xi among those whose indices

are not j(1), …, j(i - 1).  Then σ 2  can be estimated by

(2.10) σ n i j i
i

n

n
Y Y2 2

1

1

2
= −

=
∑( )( ) .

Under the assumptions of Section 3.1, (2.10) is a n1/2-consistent estimator of σ 2 , regardless of

whether H0 is true.

The estimator σ n
2  can be extended to εi’s that have heteroskedasticity of unknown form

by replacing the global sums in (2.9) and (2.10) by sums over shrinking neighborhoods of the

design points Xi.
8  Let σ 2 ( )⋅  satisfy the Lipschitz condition | ( ) ( )| || ||σ σ2 2X X L X Xi j i j− ≤ −

for some finite L > 0.  Let bn be a bandwidth that converges to 0 as n → ∞, and let I(⋅) be the

indicator function.  Define j(i) as before.  Then under the assumptions of Section 3.1, σ 2 ( )X i

can be estimated by
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σ n i

k j k k i n
k

n

k i n
k

n
X

Y Y I X X b

I X X b

2

2

1

1

( )

( ) (| | )

(| | )

( )

=

− − ≤

− ≤

=

=

∑

∑
.

If bn → 0 and nhminbn
d → ∞ as n → ∞, then σ σn i i pX X o h2 2 1 2( ) ( ) ( )min

/− =  as n → ∞.

It is shown Lemma 8 of the Appendix that if σ σn i i pX X o h2 2 1 2( ) ( ) ( )min
/− = , then

T T oh H h pn
* ( )= +∈max 0 1 , where T S N Vh h h h0 = −[ ( *) ] /θ  and θ* = θ0 if H0 is true.  Thus, the

asymptotic distribution of T* is the same as it would be if θ* and σ 2 ( )X i  were known,

regardless of whether H0 is true.

3.  THE MAIN RESULTS

This section presents theorems that give the asymptotic behavior of the proposed test.

Section 3.1 states our assumptions.  The behavior of the test under H0 is given in Section 3.2.

Sections 3.3-3.5, respectively, give the test’s behavior under a fixed alternative hypothesis, under

the sequence of local alternative hypotheses (1.2), and under smooth alternatives that are

contained in a Hölder ball whose distance from the null hypothesis converges to zero at the

optimal rate of testing n n
s s d− +1 2 4

loglog
/( )e j .  The adaptive, rate-optimal property of the test is

established in Section 3.5.

3.1  Assumptions

Our results are obtained under the assumptions stated in this section.  Define

∇ = ∂ ∂θ θ θ θF x F x( , ) ( , ) / , ∇ = ∂ ∂ ∂ ′θ θ θ θ θ2 2F x F x( , ) ( , ) / , ∇ = ∂ ∂xF x F x x( , ) ( , ) /θ θ , and

∇ = ∂ ∂ ∂ ′x F x F x x x2 2( , ) ( , ) /θ θ  whenever these derivatives exist.  For any q×q matrix D, define

D
Dv

vv q∞
∈ℜ

= sup ,

where ⋅  is the l2  norm.  Let ∇θ θF( )  be the n×q matrix whose (i,j) element is

∂ ∂F X i j( , ) /θ θ .

Assumption 1 (Parametric family):  The parameter set Θ is an open subset of ℜq for some

q ≥ 1.  The parametric family ℑ = {F(⋅, θ), θ ∈ Θ} satisfies:
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(i)  Differentiability in θ: For each x ∈ [-1,1] d, F(x, θ) is twice differentiable with respect

to θ.  For finite constants C11 and C12, each i = 1, …, n, and each θ ∈ Θ, ∇ ≤θ θF X Ci( , ) 11 ,

and ∇ ≤
∞θ θ2

12F X Ci( , ) .

(ii)  Differentiability in x:  For each θ ∈ Θ, F(x, θ) is twice differentiable with respect to

x ∈ [-1,1]d.  Moreover, ∇ ≤
∞x F x C2

13( , )θ  for some finite constant C13.

(iii)  Identifiability:  There is a finite CI > 0 such that

sup [ ( ) ( )]
θ

θ θθ θ
∈

− −
∞

−∇ ′∇ ≤
Θ

n F F CI
1 1 1

and for every δ > 0

inf ( ) ( )
, : | |θ θ θ θ δ

θ θ δ
′ ∈ − ′′ ≥

− ′ ≥
Θ

F F C nI
2 2 .

Assumption 2 (Parametric estimator):  (i)  Let H0 be true.  Then θ0 ∈ Θ and

lim /

n
nn z

→ ∞
− > <P 1 2

0θ θ δe j
for any δ > 0 and all sufficiently large z.  (ii)  Let H0 be false.  Then there is a θ* ∈ Θ such that

lim */

n
nn z

→ ∞
− > <P 1 2 θ θ δe j

for any δ > 0 and all sufficiently large z.  (iii)  Let {θn0  n = 1, 2, …} be a sequence in Θ whose

limit points, if any, are all in Θ.  Let {σni:  i = 1, …, n; n = 1,2, …} be a triangular array of real

numbers that is bounded away from 0 and ∞.  Define Y F Xi i n ni i* ( , )= +θ σ ω0 , where

{ : ,..., }ω i i n= 1  are independently distributed as N(0,1).  Let $θ n  be the estimator of θn0 that is

obtained from the data set {Yi*, Xi:  i = 1, ..., n}.  Then

lim $/

n
n nn z

→ ∞
− > <P 1 2

0θ θ δe j
for any δ > 0 and all sufficiently large z.

Assumption 2(iii) establishes a stability property of the parametric estimator that is used to justify

the simulation procedure for obtaining the critical value of the test statistic.

For every x ∈ ℜd and every h > 0, define Mh(x) as the number of elements in the set

{ : }X X x hi i − ≤ .

Assumption 3 (Design):  (i) The design points Xi ∈ ℜd (i = 1, …, n) are non-stochastic

and scaled so that X i ≤ 1  for all i.  (ii) There are positive constants C1 and C2 such that for all

h ∈ Hn and all i = 1, …, n, C1nhd ≤ Mh(Xi) ≤ C2nhd.
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Assumption 3(i) restricts the Xi to a bounded subset of ℜd.  Given boundedness of the Xi,

there is no loss of generality in the scaling assumption.  Assumption 3(ii) is satisfied with

probability approaching 1 as n → ∞ if Hn satisfies Assumption 6 below and {Xi} is sampled

randomly from a distribution that is absolutely continuous with respect to Lebesgue measure, has

bounded support, and whose density is bounded away from zero on its support.  Therefore, our

results hold conditional on {Xi} that are generated this way.  However, we do not require {Xi} to

be sampled from a distribution.

Assumption 4 (Kernel):  K is non-negative, supported on [-1,1]d, and symmetrical about

the origin.  Moreover, K(u) ≤ 1 for all u, and K(u) ≥ κ for u ≤ 1 2/  and some κ > 0.

Assumption 5 (Moments of εi):  (i) The random variables εi are independent with means

of zero and uniformly bounded moments of order 4 + δ  for some δ > 0.  E|εi|
4 + δ ≤ CE for some

constant CE < ∞ and all i = 1, …, n.  (ii) σ ε2 2( ) ( )X i i= E  and s X i i4
4( ) ( )= E ε  satisfy

| ( ) ( )|σ σ2 2X X L X Xi j i j− ≤ −  and | ( ) ( )|s X s X L X Xi j i j4 4− ≤ −  for some constant L <

∞ and all i, j, = 1, …, n.  (iii) σ 2
2( )X mi ≥  for some constant m2 > 0 and all i.

Assumption 6:  (Bandwidths):  The set Hn of bandwidths has the structure (2.7) with hmax

> hmin ≥ n-γ for some constant γ  such that 0 < γ < min(1/3, 1/d), and hmax = C nH (log log )−1  for

some finite constant CH > 0 .

Under Assumption 6, J O nn ≤ (log )  as n → ∞.

3.2  Behavior of the Test Statistic under the Null Hypothesis

Recall from Section 2.4 that tα is the 1 - α quantile of the distribution of T* that is

induced by the model Yi* = F(Xi, θn) + εi*, where εi* is sampled randomly from the normal

distribution N Xn i[ , ( )]0 2σ .  The main result on the behavior of the test statistic T* under H0 is

that tα is an asymptotically correct α-level critical value under any model in H0.  This result is

established by the following theorem.

Theorem 1:  Let Assumptions 1-6 hold.  Let H0 be true.  Then

lim ( * )
n

T t
→ ∞

> =P α α .
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3.3  Consistency Against a Fixed Alternative

We now show that our test is consistent against a fixed alternative model.  Let (1.1) hold.

Define the n×1 vector f  =[f(X1), …, f(Xn)]′.  Measure the distance between f and the parametric

family ℑ by the normalized l2  distance

(3.1) ρ θ
θ

( , ) inf ( )
/

f n f Fℑ = −FH IK
L
NM

O
QP∈

−

Θ

1 2
1 2

.

If H0 is false, then ρ(f, ℑ) ≥ cρ for all sufficiently large n and some cρ > 0.  A consistent test will

reject a false H0 with probability approaching one as n → ∞.  Theorem 2 establishes the

consistency of our test.

Theorem 2:  Let Assumptions 1-6 hold.  If there is an n0 such that ρ(f, ℑ) ≥ cρ for all n >

n0 and some cρ > 0, then

lim ( * )
n

T t
→ ∞

> =P α 1.

3.4  Consistency Against a Sequence of Local Alternatives

This section establishes the consistency of our test under local alternatives of the form

(1.2) with ρn Cn n≥ −1 2/ log log  for some constant C > 0.

Define the n×1 vectors g g X g Xn= ′[ ( ),..., ( )]1  and f f X f Xn n n n= ′[ ( ),..., ( )]1 .  We

assume that g is a continuous function that is normalized so that

(3.2)
1 1

12 2

1n
g

n
g X i

i

n

= ≥
=
∑ | ( )| .

We also assume that g  is not an element of the space spanned by the columns of ∇θ θF ( )1 .

That is,

(3.3) g g g− ≥Π1 δ

for some δ > 0, where

Π1 1 1 1
1

1= ∇ ∇ ′∇ ∇ ′−
θ θ θ θθ θ θ θF F F F( )[ ( ) ( )] ( )

is the projection operator into the column space of ∇θ θF ( )1 .  Conditions (3.2) and (3.3) exclude

functions g for which f F on n n− =( ) ( ),θ ρ0  for some non-stochastic sequence {θn,0} ∈ Θ.

Thus, (3.2) and (3.3) insure that the rate of convergence of fn to the parametric model F(⋅, θ1) is

the same as the rate of convergence of ρn to zero.  In particular, under (3.2) and (3.3),
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inf ( ) [ ( )]
/

θ
θ δρ

∈

− −FH IK
L
NM

O
QP ≥ −

Θ
n f F on n

1 2
1 2

1 1

as n → ∞.

Finally, we assume that θn is the least squares estimator of θ.  This assumption is made

for technical convenience only and is not essential to the consistency result, which is stated in the

following theorem.

Theorem 3:  Let Assumptions 1 and 3-6 hold with h C nHmax (loglog )= −1  for some finite

constant CH.  Let θn be the least-squares estimator of θ.  Let fn satisfy (1.2) with

ρn Cn n≥ −1 2/ log log  for some constant C > 0.  Let g satisfy (3.2) and (3.3).  Then

lim ( * )
n

T t
→ ∞

> =P α 1.

This result shows that the power of the adaptive, rate-optimal test approaches 1 as n → ∞

for any function g and sequence {ρn} that satisfy the assumptions of the theorem.  However, the

result is not uniform over all possible g’s.  Uniformity is addressed in the next section.

3.5  Consistency Against a Sequence of Smooth Alternatives

This section gives conditions under which our test is consistent uniformly over

alternatives in a Hölder smoothness class whose distance from the parametric model approaches

zero at the fastest possible rate. The results can be extended to Sobolev and Besov classes under

some additional technical conditions on the design {Xi}.

To specify the smoothness classes that we consider, let j = (j1, …, jd), where j1, …, jd ≥ 0

are integers, be a multi-index.  Define

| |j jk
k

d

=
=

∑
1

and

D f x
f x

x x
j

j

j
d
jd

( )
( )

...

| |

=
∂

∂ ∂1
1

whenever the derivative exists.  Define the Hölder norm

f D f x
H s

x

j

j s
d,

[ , ] | |

sup | ( )|=
∈ − ≤

∑
1 1

.

The smoothness classes that we consider consist of functions f ∈ S(H,s) ≡ { : }
,

f f C
H s F≤ for

some (unknown) s ≥ max(2, d/4) and CF < ∞.



15

Theorem 4 states that our test is consistent uniformly over the sets

(3.4) B f S H s f C n nH n a

s s d

,

/( )
( , ): ( , ) loglog≡ ∈ ℑ ≥RST

UVW
− +

ρ 1 2 4e j
for some s ≥ max(2, d/4) and all sufficiently large Ca < ∞.

Theorem 4:  Let Assumptions 1-6 hold.  Then for 0 < α < 1 and BH,n as defined in (3.4),

lim inf ( * )
,n f BH n

T t
→∞ ∈

> =P α 1

for all sufficiently large Ca < ∞.

4.  MONTE CARLO EXPERIMENTS

This section presents the results of Monte Carlo experiments that illustrate the numerical

performance of the adaptive, rate-optimal test.  The section has two parts.  Section 4.1 presents a

sequence of alternatives against which our test is consistent but the tests of Andrews (1997),

Bierens (1982), Bierens and Ploberger (1997), and Härdle and Mammen (1993) are not.  This

sequence motivates the design of the Monte Carlo experiments.  The experiments and their results

are described in Section 4.2.

4.1  An Example

This section presents a parametric model and a sequence of alternatives against which our

test is consistent but the tests of Andrews (1997), Bierens (1982), Bierens and Ploberger (1997),

and Härdle and Mammen (1993) are not.  All of these tests are consistent against each alternative

in the sequence, however.  The fact that the tests are not consistent against the sequence itself, as

opposed to its individual elements, illustrates their lack of uniform consistency.

The null hypothesis model (parametric family) in the example is

(4.1) Y Xi i i= + +β β ε0 1 ,

where β0 and β1 are constants, the Xi’s are scalars that are sampled from a distribution that is

symmetrical about 0, and εi ~ N ( , )0 2σ  for every i.  The distribution of εi is specified

parametrically because Andrews’ (1997) test requires a fully parametric model.  The other tests

do not require specification of the distribution of εi.  The sequence of alternative models is

(4.2) Y X Xi i n i n i= + +τ φ τ ε4 ( / ) ,

where εi ~ N(0,1), φ is the standard normal density function, and τ n C n n= − −1 1 9
loglog

/e j  for

some finite C > 0.  The function fn(x) = x + τn
4φ(x/τn) has a peak that is centered at x = 0 and that

becomes narrower as n increases.  The sequence of alternative models {fn} is contained in BH,n
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with s = 2.  The distance between fn and the parametric model (4.1)

satisfies ρ( , ) log log
/

f n nn ℑ ∝ − −1 4 9e j , so the distance converges to zero more slowly than n-1/2.

It is not difficult to show under that the sequence (4.2), the noncentral parameters of the

tests of Andrews (1997), Bierens (1982), Bierens and Ploberger (1997), and Härdle and Mammen

converge to zero as n → ∞.  Therefore, these tests are inconsistent against (4.2).  It follows from

Theorem 4, however, that the adaptive, rate optimal test is consistent against this sequence if C is

sufficiently large.

4.2  Monte Carlo Experiments

This section presents the results of Monte Carlo experiments that illustrate the numerical

performance of the adaptive, rate-optimal test.  In each experiment, a parametric null-hypothesis

model and two alternatives are specified.  Monte Carlo simulation is used to estimate the

probability that the adaptive, rate-optimal test rejects the parametric model when it is correct and

the test’s power against the alternatives.  To provide a basis for judging whether the test’s power

is high or low, the powers of the tests of Andrews (1997) and Härdle and Mammen (1993) are

also estimated by Monte Carlo simulation.  In all experiments, the nominal probability of

rejecting a correct null hypothesis is 0.05.  The computing time required for the experiments is

lengthy because all of the tests use of Monte Carlo or bootstrap methods to obtain critical values.

Accordingly, the designs of the experiments are simple so as to minimize the time required to

compute the test statistics.

The null-hypothesis model in the experiments is

(4.3) Y X ii i i= + + =β β ε0 1 1 2 250; , ,...,

where each Xi is a scalar that is sampled from the N(0,25) distribution truncated at its 5th and 95th

percentiles.  In experiments where (4.3) is correct (H0 is true), β0 = β1 = 1.  The εi’s were sampled

independently from three distributions, depending on the experiment.  These are N(0,4), a

variance mixture of normals in which εi is sampled from N(0,1.56) with probability 0.9 and from

N(0,25) with probability 0.1, and the Type I extreme value distribution scaled to have a variance

of 4.  The mixture distribution is leptokurtic with a variance of 3.9, and the Type I extreme value

distribution is asymmetrical.

The alternative models have the form

(4.4) Y X Xi i i i= + + +1 5( / ) ( / )τ φ τ ε ,

where the εi’s are sampled from one of the three distributions just described and τ = 1 or 0.25,

depending on the experiment.  Figure 1 plots the function f x x x( ) ( / ) ( / )= + +1 5 τ φ τ  for each
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value of τ.  The example of Section 4.1 suggests that the power of the adaptive, rate-optimal test

should be high compared to the powers of the tests of Andrews (1997) and Härdle and Mammen

(1993) in the case τ = 0.25, where the difference between the null and alternative models consists

of a narrow peak.  The power advantage of the adaptive, rate-optimal test is likely to be less or

even non-existent under the more moderate case τ = 1.  However, Theorem 3 suggests that the

power of the adaptive, rate optimal test should be satisfactory in comparison to the powers of the

other tests when τ = 1.

The Xi’s were sampled once from the specified distribution and held fixed in repeated

realizations of the Yi’s.  The values of β0 and β1 were estimated by ordinary least squares.

Equation (2.9) was used to estimate σ 2  in experiments with the adaptive, rate-optimal test.  The

Härdle-Mammen test does not require an estimator of σ 2 .  In experiments with Andrews’ test

and εi’s with the normal or extreme value distribution, the distribution of the εi’s was assumed to

be known up to σ 2 , which was estimated from (2.9).  In experiments with Andrews’ test and εi’s

with the mixture-of-normals distribution, the mixing probabilities, 0.9 and 0.1, were assumed to

be known a priori.  The variances of the normal components of the mixture were estimated from

estimates of the variance and fourth central moment of the εi’s.  The variance was estimated from

(2.9).  The fourth central moment was estimated by

s
n

Y Yn i i
i

n

n4 1
4

1

1
21

2 1
6=

−
− −+

=

−

∑( )
( )( ) ( ) σ .

The kernel used for the adaptive, rate-optimal test and the test of Härdle and Mammen (1993) is

K u u I u( ) ( / )( ) (| | )= − ≤15 16 1 12 2 .

Implementing the test of Härdle and Mammen (1993) requires selecting a bandwidth

parameter, h.  Existing theory provides no guidance on how this should be done in applications.

We found through preliminary simulations that in all of our experiments, the power of the test is

maximized near h = 3.5 and varies little over the range 3 ≤ h ≤ 4.  Accordingly, we used h = 3.5

for all experiments with the test of Härdle and Mammen (1993).  The set of bandwidths for the

adaptive, rate optimal test was {2.5, 3, 3.5, 4, 4.5} in all of the experiments.

The experiments were carried out in GAUSS using GAUSS pseudo-random number

generators.  There were 1000 Monte Carlo replications in the experiments in which H0 is true and

250 in the experiments in which H0 is false.  The larger number of replications for the

experiments with a true H0 insures that the probabilities of Type I errors are estimated reasonably

precisely.  The lower number of replications with a false H0 conserves computing time while
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providing sufficient precision to be informative about the relative powers of the tests.  Bootstrap

critical values for the tests of Andrews (1997) and Härdle and Mammen (1993) were computed

from 99 bootstrap resamples.  There were 99 replications in the Monte Carlo procedure that was

used to estimate the critical value of the adaptive, rate-optimal test.

The results of the experiments are presented in Table 1.  When H0 is true, all tests have

empirical rejection probabilities that are close to the nominal probability of 0.05.  None of the

empirical rejection probabilities differs from the nominal rejection probability at the 0.01 level.

The power of the adaptive, rate-optimal test is much higher than the powers of the other tests

when H0 is false and τ = 0.25.  All of the differences between the powers of the adaptive, rate-

optimal test and the other tests are significant at the 0.01 level when τ = 0.25. The power of the

adaptive, rate-optimal test is similar to that of the Härdle-Mammen test but greater than that of

Andrews’ test (p < 0.01) when H0 is false and τ = 1.  Thus, the simulation results are consistent

with the expectation based on theory that the adaptive, rate-optimal test has higher power than the

other tests in the presence of a relatively extreme alternative and has satisfactory power in

comparison to the others in the presence of a more moderate alternative.

5.  CONCLUSIONS

This paper has developed a new test of a parametric model of a conditional mean

function against a nonparametric alternative.  The test adapts to the unknown smoothness of the

alternative model and is uniformly consistent against alternative models whose distance from the

parametric model converges to zero at the fastest possible rate.  This rate is slower than n-1/2.

Some existing tests have non-trivial power against local alternative models whose distance from

the null hypothesis decreases at the rate n-1/2.  However, this rate is not achievable uniformly over

reasonable classes of alternatives.  As a consequence, there are situations in which the new test

has much higher finite-sample power than do tests that have non-trivial power against n-1/2 local

alternatives.  The new test is consistent (though not uniformly) against local alternatives whose

distance from the null hypothesis decreases at a rate that is only slightly slower than n -1/2.  This

property provides some protection against the occurrence of situations in which the power of the

new test is much lower than that of existing tests.  The predictions of theory have been illustrated

numerically by the results of a small set of Monte Carlo experiments.

APPENDIX

Sections A.1-A.4 present technical lemmas that are used in the proofs of Theorems 1-4.

The proofs of the theorems are in Section A.5.  It is assumed throughout that Assumptions 1-6



19

hold.  To minimize the complexity of the notation, it is assumed that d = 1.  The generalization to

the case d > 1 is straightforward but requires more complicated vector notation.  The structure of

the proofs is as follows.  In Lemma 10, we show that under H0, T* has the same limiting

distribution as the version of T* that is obtained by sampling from the model

Y F X Xi i i i= +( , ) ( )θ σ ω0 , where the ω i ’s are independently distributed as N(0,1).  This result

forms the basis of the proof of Theorem 1.  Lemma 13 shows that P(T* > tα) → 1 as n → ∞

whenever the distance between the parametric family ℑ and f(⋅) exceeds a specified value. This

result forms the basis of the proofs of Theorems 2-4.

A.1  Moments of Sh(θ)

Lemma 1:  Let A be a n×n symmetrical matrix whose (i,j) element is aij.  Let {εi:  i = 1,

…, n} be independent random variables with Eεi
2 = 0, Eεi

2 = σ i
2 , and Eεi

4 = si.  Then

E
i

n

ij i j
j

n

ii i
i

n

a a
= = =
∑ ∑ ∑=

1 1

2

1

ε ε σ

and

Var
i

n

ij i j
j

n

i

n

ij i j
j

n

ii i i
i

n

a a a s
= = = = =
∑ ∑ ∑ ∑ ∑
F
HGG

I
KJJ

= + −
1 1 1

2 2 2

1

2 4

1

2 3ε ε σ σ σ( ) .

Proof:  Obvious.  Q.E.D.

Lemma 2:  There are positive constants CN1, CN2, CN, CV1, and CV2 that depend only on C1

and C2 in Assumption 3, on CE in Assumption 5, and on K such that for all h ∈ Hn: (i)

C h N C hN h N1
1

2
1− −≤ ≤ , (ii) C h V C hV h V1

1 2
2

1− −≤ ≤ , and (iii) ′ ≤∞W W Ch h N .

Proof:  Assumptions 3 and 4 imply that for all i

(A1) K
X X

h
M X C nhi j

j

n

h i

−F
HG

I
KJ ≤ ≤

=
∑

1
2( ) ,

(A2) K
X X

h
M X C nhi j

j

n

h i

−F
HG

I
KJ ≤ ≤

=
∑

1

2

2( ) ,

(A3) K
X X

h
M X C nhi j

j

n

h i

−F
HG

I
KJ ≥ ≥

=
∑

1
2 1 2κ κ/ ( ) / ,

and
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(A4) K
X X

h
M X C nhi j

j

n

h i

−F
HG

I
KJ ≥ ≥

=
∑

1

2
2

2
2

1 2κ κ/ ( ) / .

Therefore,

(A5)
K X X

C nh
w X X

K X X

C nh
h i j

h i j
h i j( )

( , )
( )

/

−
≤ ≤

−

2 1 2κ
,

κ
κ

2
1

2
2

1

2 2
2

1
2 2

2

2

C nh

C nh
w X X

C nh

C nhj

n

h i j
/

( )
( , )

( / )
≤ ≤

=
∑

and the first assertion follows.

Next, since all elements of the matrix Ah = Wh′Wh are non-negative,

A ah
i n

ij h
j

n

∞ ≤ ≤ =

≤ ∑max ,
1

1

.

Using (A1) and w X Xh k jj

n
( , ) =

=∑ 1
1

, we obtain for every i, k ≤ n,

a w X X w X X w X X
C nh

C nhij h
j

n

j

n

h k i h k j h k i
k

n

k

n

, ( , ) ( , ) ( , )
/= = ==

∑ ∑ ∑∑= = ≤
1 1

2

111 2κ
,

and the third assertion follows.

Now, the Cauchy-Schwarz inequality and (A2)-(A4) yield

(A6) a w X X w X X
C nh

C nh
C nhij h h k i

k

n

h k j
k

n

, ( , ) ( , )
( / )

( / )2 2

1

2

1

2

1
2

2
2

2
≤ ≤

L
NMM

O
QPP

≤
= =

∑ ∑ κ

for a suitable constant C.  These inequalities give the bound

V a X X n X a a

n X
CC

nh

h
i

n

ij h i j
i n

i
j

n

i j n
ij h

i n
ij h

j

n

i n
i

2

1

2 2 2

1

4

1
1 1

1

1

4 2

2 2

2
2

= ≤ L
NM

O
QP
F
HG

I
KJ

≤ L
NM

O
QP

=
≤ ≤

=
≤ ≤ ≤ ≤

=

≤ ≤

∑ ∑ ∑,
,

, ,( ) ( ) max ( ) max max

max ( ) .

σ σ σ

σ

A similar argument bounds Vh
2  from below, thereby yielding (ii).  Q.E.D.

A.2  Bounding bh(θ)

Lemma 3:  Let C11 be as in Assumption 1 and CN be as in Lemma 2.  For every δ > 0

max sup ( )
:h H

h N
n

b C C n
∈ ∈ − ≤

≤
θ θ θ δ

θ δ
Θ 0

2
11
2 2 .
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Proof:  By Assumption 1(i) and the mean value theorem,

F F C( ) ( ) .θ θ θ θ− ≤ −0
2

11
2

0
2

  Therefore,

b W F F

F F W W F F

W W F F

C C C C n

h h

h h

h h

N
i

n

N

( ) [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]

( ) ( )

.

θ θ θ

θ θ θ θ

θ θ

θ θ δ

2
0

2

0 0

0
2

11
2

0
2

1
11
2 2

= −

= − ′ ′ −

≤ ′ −

≤ − ≤

∞

=
∑

Q.E.D.

Lemma 4:  As n → ∞:

J V F W W On
h H

h h h p
n

−

∈

− ∇ ′ ′ =1 2 1 1/ max ( ) ( )θ θ ε

and

J V W On
h H

h h p
n

−

∈

− =1 2 1 1/ max ( )ε .

Proof:  To obtain the first result, it suffices to show that for some constant C < ∞

R J V F W W Cn n h h h
h Hn

, ( )1
1 2

0
2≡ ∇ ′ ′ ≤− −

∈
∑ E θ θ ε .

Using Assumption 1(i), we obtain

E E∇ ′ ′ = ∇ ′ ′ ′ ′ ∇

≤ L
NM

O
QP ∇ ′ ′ ∇

≤ L
NM

O
QP ′

≤ ≤

≤ ≤

θ θ θ

θ θ

θ ε θ εε θ

σ θ θ

σ

F W W tr F W W W W F

X tr F W W F

X C tr W W

h h h h h h

i n
i h h

i n
i h h

( ) [ ( ) ( )]

max ( ) [ ( ) ( ) ( )]

max ( ) ( ) .

0
2

0 0

1

2
0

2
0

1

2
11
2 2

Therefore,

R J V X C tr W W

X C tr W W

X tr W W

n n h
h H

i n
i h h

i n
i h h

i n
i h h

n

, max ( ) ( )

max ( ) ( )

min ( ) ( )
.

1
1 2

1

2
11
2 2

1

2
11
2 2

1

4 22

≤ L
NM

O
QP ′

≤

L
NM

O
QP ′

L
NM

O
QP ′

− −

∈
≤ ≤

≤ ≤

≤ ≤

∑ σ

σ

σ

The first result now follows from Assumption 5.
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To prove the second result, it suffices to show that

R J V W Cn n h h
h Hn

,2
1 2 2≡ ≤− −

∈
∑ E ε

for some C < ∞.  Using Lemma 2, we get

R J V N J C C C Cn n h h
h H

n N V
h H

N V

n n

,2
1 2 1

2 1
1

2 1
1= ≤ ≤− −

∈

− −

∈

−∑ ∑ ,

which proves the second result.  Q.E.D.

The following result is a corollary of Lemma 4.

Lemma 5:  Let H0 hold. Then for each u > 0

max sup ( ) ( )
:

/ /

/h H n u
h h h p n

n

V b W O J n
∈ ∈ − ≤

− −
−

′ =
θ θ θ

θ ε
Θ 0

1 2

1 1 2 1 2 .

The following result holds when H0 is false.

Lemma 6:  Given h ∈ Hn, let B W f Fh h= −[ ( )]θ 0 .  If Bh ≥ Vh, then for every u > 0 and

δ > 0,

P sup [ ( )] ( )
: /θ θ θ

θ ε δ
∈ − ≤ −

− ′ ≥
F
HG

I
KJ =

Θ 0
1 2

2 1
n u

h h hf F W W B o

as n → ∞.

Proof:  Assumption 1(i) and a Taylor series approximation to F F( ) ( )θ θ− 0  give

sup ( ) [ ( )]

( ) .

:

/ / /

/θ θ θ

θ

θ ε θ ε

θ ε ε

∈ − ≤

− −

−
≤ − ′ ′

+ ∇ ′ ′ +

Θ 0
1 2

0

1 2
0

1 2
12
1 2 2

n u
h h h h

h h h

b W f F W W

n u F W W n C u W

By this result and Lemma 4, it suffices to prove that B f F W W oh h h
− − ′ ′ =4

0
2

1E [ ( )] ( )θ ε  as n →

∞.  Use Lemma 2 to obtain

B f F W W

X B f F W W f F

X B W W f F W W f F

h h h

i n
i h h h

i n
i h h h h h

−

≤ ≤

−

≤ ≤

−
∞

− ′ ′

≤ L
NM

O
QP − ′ ′ −

≤ L
NM

O
QP ′ − ′ ′ −

4
0

2

1

2 4
0

2
0

1

2 4
0 0

E [ ( )]

max ( ) [ ( )] ( ) [ ( )]

max ( ) [ ( )] ( )[ ( )]

θ ε

σ θ θ

σ θ θ
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= L
NM

O
QP ′ ′ −

= L
NM

O
QP

≤ ≤

−
∞

≤ ≤

−

max ( ) [ ( )

max ( ) .

1

2 4
0

2

1

2 2

i n
i h h h h

i n
i h N

X B W W W f F

X B C

σ θ

σ

Since B Vh h
2 2≥ , the result follows from Lemma 2 and hmax = o(1) as n → ∞.  Q.E.D.

A.3  Sequences of Local Alternative Models

Write the local alternative model (1.2) in the form f F gn n= +( )θ ρ1 , θ1 ∈ Θ, where fn

and g  are as defined in Section 3.4.  Define

θ θ
θ

0, arg inf ( )n nf F= −
∈Θ

.

This quantity exists for all sufficiently large n.  Let In denote the n×n identity matrix.

Lemma 7:  Define g I gn
⊥ = −( )Π1 , where Π1 is as defined in Section 3.4.  Then

f F g on n n− − =⊥( ) ( ),θ ρ0 1

as n → ∞.  Moreover, the least-squares estimator θn satisfies

F F On n p( ) ( ) ( ),θ θ− =0
2

1

as n → ∞.

Proof:  See Millar (1982, Theorem 3.6).  Q.E.D.

A.4  Gaussian Approximation of Quadratic Forms

This section presents properties of the centered, normalized quadratic forms

T V S Nh h h n h= −−$ [ ( ) $ ]1 θ  and T S N Vh h h h0 = −[ ( *) ] /θ .  Lemma 8 shows that T T oh h p= +0 1( )  for

all h.  Let ~ ( )ε σ ωi i iX=  (i = 1, …, n), where the ωi’s are independently distributed as N(0,1).

Define 
~

[ ~ ] /T W N Vh h h h0
2= −ε .  Lemmas 9-10 show that under H0, maxh H hn

T∈  and

max
~

h H hn
T∈ 0  have identical asymptotic distributions.  This result is used in the proof of Theorem

1 to justify the simulation method for estimating the critical value of T*.  Lemmas 11-14 provide

results that are used in the proofs of Theorems 2-3.

Define Y F Xi i n i* ( , ) ~= +θ ε  (i = 1, …, n).  Let $θ n  and $ ( )σ n iX2  be the estimators of θn

and σ 2 ( )X i  that are obtained from the data set { * , }Y Xi i .  Let $Th  be the version of Th  that is
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obtained by replacing θ n  with $θ n , and σ n iX2 ( )  with $ ( )σ n iX2 , and εi with $ ( )σ ωn i iX2  in (2.4)-

(2.6).

Lemma 8:  Let σ σn i i pX X o h2 2 1 2( ) ( ) ( )min
/− =  uniformly over i = 1, ..., n.  Then

T T oh h p= +0 1( )  and $
~

( )T T oh h p= +0 1  uniformly over h ∈ Hn.

Proof:  This result follows from Lemmas 1 and 2 and an application of the delta method.

Q.E.D.

Lemma 9:  As n .→ ∞,

max ( ) ( ),
h H

h ii h i p
i

n

n

V a o
∈

−

=

− =∑1 2 2

1

1ε σ .

Proof:  It suffices to show that

R V a on h ii h i
i

n

h Hn

≡ −
L
N
MM

O
Q
PP =−

=∈
∑∑ 2 2 2

1

2

1E , ( ) ( )ε σ

as n → ∞.  Taking the expected value gives

R V a sn h ii h
i

n

h Hn

= −
L
N
MM

O
Q
PP

−

=∈
∑∑ 2 2

4
4

1

2

, ( )σ .

By Assumption 5, s CE4
4 4≤ σ .  By Lemma 2, V C hh V

− −≤2
1
1  and a C nhii h N, ( )≤ −1 .  Therefore,

R C h C nh C

n C C C h

n C C C h a

n V N E
i

n

h H

V N E
h H

V N E

n

n

≤
L
N
MM

O
Q
PP

≤

≤ −

− −

=∈

− −

∈

− − −

∑∑

∑

1
1 2 2 4 4

1

1
1
1 2 4 4

1
1
1 2 4 4 11

( )

( )max

σ

σ

σ

The lemma now follows.  Q.E.D.

Lemma 10:  Let H0 be true.  Then maxh H hn
T∈ 0  and max

~
h H hn

T∈ 0  have identical

asymptotic distributions.

Proof:  By Lemmas 8 and 9, it suffices to show that the joint distributions of

V a h Hh ij h i j
i j

n
−

≠
∑ ∈1

, ( )ε ε  and V a h Hh ij h i j
i j

n
−

≠
∑ ∈1

,
~ ~ ( )ε ε  are asymptotically the same. For h ∈

Hn, and ξ εi i=  or ~ ( ,..., )εi i n= 1 , define
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B V ahn n h ij h i j
i j

( ,..., ) ,ξ ξ ξ ξ1
1= −

≠
∑ .

Let Bn n( ,..., )ξ ξ1  be the vector that is obtained by stacking B h Hhn n n( ,..., ) ( )ξ ξ1 ∈ .  Let gn be a

3-times continuously differentiable function on ℜ Jn .  Define

g
g v

v v vn
v i j k J

n

i j kJn n

3
1

3

=
∂

∂ ∂ ∂∈ℜ =
sup max

( )
, , ,...,

.

The proof takes place in two steps.  The first step is to show that

(A7) | [ ( ,..., )] [ (~ ,..., ~ )]|
/

min

E Eg B g B c g
J

n h
n n n n H n

nε ε ε ε1 1 3

3/2

1 2 3/2
− ≤

F
HG

I
KJ

for any 3-times differentiable g, some finite constant cH, and all sufficiently large n.  The second

step uses (A7) to prove that V a h Hh ij h i j
i j

n
−

≠
∑ ∈1

, ( )ε ε  and V a h Hh ij h i j
i j

n
−

≠
∑ ∈1

,
~ ~ ( )ε ε  have the

same asymptotic distribution.

Step 1:  Define b a Vij h ij h h, , /= .  Assume without loss of generality that σ ( )X i = 1 for all

i = 1, ..., n.  [If σ ( )X i ≠ 1, replace ε i  with ε σi iX/ ( ) , ~εi  with ~ / ( )ε σi iX , and bij h,  with

b X Xij h i j, ( ) ( )σ σ .]  It is easily shown that

( [ ( ,..., )] [ (~ ,...,~ )]

[ ( ,..., ,~ ,...~ )] [ ( ,... ,~ ,...,~ )] ,

A8)     E E

E E

g B g B

g B g B

n n n n

n i i n n i i n
i

n

ε ε ε ε

ε ε ε ε ε ε ε ε

1 1

1 1 1 1
1

−

≤ −+ −
=
∑

where B Bn n n n n( ,..., , ~ ) ( ,..., )ε ε ε ε ε1 1 1+ ≡  and B Bn n n n( ,~ ,~ ) (~ ,...,~ )ε ε ε ε ε0 1 1≡ .  We now derive an

upper bound on the last term of the sum on the right-hand side of (A8).  Similar bounds can be

derived for the other terms.  Let un n−1, ∆ , and 
~∆n , respectively, denote the vectors that are

obtained by stacking

u bh n
i

n

ij h i j
j
j i

n

, ,=
=

−

=
≠

−

∑ ∑
1

1

1

1

ε ε ,

∆h n n in h i
i

n

b, ,=
=

−

∑2
1

1

ε ε ,

and
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~ ~
, ,∆h n n in h i

i

n

b=
=

−

∑2
1

1

ε ε .

Then a Taylor-series expansion of the last term of the sum on the right-hand side of (A8) about

ε εn n= =~ 0  yields

E E E

E E E

g B g B g u

g u g u g

n n n n n n n n

n n n n n n n n n

[ ( ,..., )] [ ( ,..., ,~ )] | ( )(
~

)|

( / )| [ ( )
~

( )
~

]| ( / )(
~

),

ε ε ε ε ε1 1 1 1

1 1 3
3 3

1 2 6

− ≤ ′ −

+ ′ ′′ − ′ ′′ + +

− −

− −

∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

where ′g  and ′′g , respectively, denote the gradient and matrix of second derivatives of g.  Since

ε n  and ~εn  are independent of ε ε1 1,..., n− , E Eε εn n= =~ 0 , and E Eε εn n
2 2 1= =~ , we have

E E(
~

| ,..., ) [(
~ ~

)| ,..., ]∆ ∆ ∆ ∆ ∆ ∆n n n n n n n n− = ′ − ′ =− −ε ε ε ε1 1 1 1 0 .

Therefore,

(A9) | [ ( ,..., )] [ (~ ,..., ~ )]| ( / )(
~

).E E E Eg B g B gn n n n n n nε ε ε ε1 1 3
3 3

6− ≤ +∆ ∆

To find bounds on E ∆n
3

 and E
~∆n

3
, let bin  be the vector that is obtained by stacking bin h, (h

= 1,.   , Jn).  Then Hölder’s inequality gives

E E E

E E

E E

E E

∆n n in i
i

n

n
h H

in h i
i

n

n
h H s H

in h jn h kn s n s i j k
i j k

n

n
h H s H

in h jn s

b

b

b b b b

b b b
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n n
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3 3
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1 3
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KJJ
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, ,

ε ε

ε ε
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l l
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in h in s jn h jn s in h in s i
i

n

i j
i j

n

n

b b b b b

c
J

nh

, , , , , ,
,

min

) ( )+

L

N

MMMM

O

Q

PPPP

R
S||

T||

U
V||

W||
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F
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KJ

=

−

=
≠
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∑∑ 2 2 4
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1
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3/4
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for some finite c > 0, where the last line follows from Lemma 2 and (A6).  A similar result holds

for E
~∆n

3
.  Therefore

E E∆ ∆n n
nc

J

nh
3 3

3/2

2+ ≤
F
HG

I
KJ

~

min

,

and (A9) gives

E Eg B g B cg
J

nhn n n n n n
n[ ( ,..., )] [ ( ,..., ,~ )] ( / ) .

min

ε ε ε ε ε1 1 1 3

3/2

3− ≤
F
HG

I
KJ−

Similar bounds hold for the other terms of the sum on the right-hand side of (A8).  Summing the

bounds yields (A7).

Step 2:  It suffices to show that for any real z

lim max ( ,..., ) max (~ ,...,~ )
n h H

hn n
h H

hn n
n n

B z B z
→∞ ∈ ∈

≤L
NM

O
QP − ≤L

NM
O
QP

RST
UVW =P Pε ε ε ε1 1 0

or, equivalently, that

lim [ ( ,..., ) ] [ (~ ,..., ~ ) ]
n

hn
h H

n hn
h H

nI B z I B z
n n

→∞ ∈ ∈
∏ ∏≤ − ≤ =E Eε ε ε ε1 1 0 .

Let g be a non-decreasing function that is 3 times continuously differentiable on the real line and

satisfies g(v) = 0 if v ≤ -1 and g(v) = 1 if v ≥ 0.  Let δ n nJ= −2 .  Some algebra shows that

( ) [ ( ,..., ) ] [ (~ ,...,~ ) ]

( ,..., ) (~ ,...,~ )

( ,..., )
[ ( ,..., ) ]

(~ ,..

A10 1 1

1 1

1
1

1

E E

E E

E

E

I B z I B z

g
B z

g
B z

g
B z

I B z

g
B

hn
h H

n hn
h H

n

hn n

nh H

hn n

nh H

hn n

n
hn n

h H

hn

n n

n n

n

∈ ∈

∈ ∈

∈

∏ ∏

∏ ∏

∑

≤ − ≤

≤
−L

NM
O
QP −

−L
NM

O
QP

+
−L

NM
O
QP − ≤

+

ε ε ε ε

ε ε
δ

ε ε
δ

ε ε
δ

ε ε

ε .,~ )
[ (~ ,...,~ ) ] .

ε
δ

ε εn

n
hn n

h H

z
I B z

n

−L
NM

O
QP − ≤

∈
∑ 1

Each term of the summands of the second two sums on the right-hand side of (A10) is bounded

from above by J Jn n nδ = −1 .  Therefore, using (A7) to bound the first term on the right-hand side

of (A10) yields
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(A11) P Pmax ( ,..., ) max (~ ,...,~ )
/

minh H
hn n

h H
hn n

n
n

n n

B z B z
cJ

n h
J

∈ ∈

−≤L
NM

O
QP − ≤L

NM
O
QP ≤ +ε ε ε ε1 1

15/2

1 2 3/2
12 .

The lemma follows by taking limits as n → ∞ on both sides of (A11).  Q.E.D.

Lemma 11: For any z ≥ 1, h ∈ Hn, and all sufficiently large n

P (
~

) exp( / )T z zh0
2 4> ≤ − .

Proof:  Write ~ ~′ ′ = ′ ′ε ε ω ωW W W Wh h h hΣ Σ , where Σ is the diagonal matrix whose (i, i)

element is σ ( )X i  and ω is a n×1 vector of independent N(0,1) variates.  Let Λ be the diagonal

matrix of eigenvalues of Σ Σ′W Wh h , {λi:  i = 1, ..., n} be the eigenvalues, and Π be the orthogonal

matrix such that Σ Σ Π ΛΠ′ = ′W Wh h .  Define Z = Πω.  Then the elements of Z are independent

N(0,1) variates,

~ ~′ ′ =
=
∑ε ε λW W Zh h i i
i

n
2

1

,

E(~ ~)′ ′ =
=
∑ε ε λW Wh h i
i

n

1

,

and

V Var W Wh h i
i

n
2 2

1

2≡ ′ ′ =
=
∑(~ ~)ε ε λ .

Therefore,

~
( )T V Zh i i

i

n

0
1 2

1

1= −−

=
∑λ .

It now follows from the Chebyshev exponential inequality (see, e.g., Loève 1977, p. 160) that for

every µ > 0,

Q T z e V Zn h
z

i
i

n

i≡ > ≤ −
L
NM

O
QP

− −

=
∑P E(

~
) exp ( )0

1

1

2 1µ µ λ .

Since the Zi are independent N(0,1) variates,

E exp ( ) exp ( / ) log( )µ λ µ λ µ λV Z V Vi i
i

n

i i
i

n
−

=

− −

=

−
L
NM

O
QP = − − −∑ ∏1 2

1

1 1

1

1 1 2 1 2

whenever µ λV i
− <1 1.  It follows from Lemma 2 and Assumption 5 that V-1λi < δ for any δ > 0

and all sufficiently large n.  Therefore, using the inequality –log(1 – u) ≤ u + u2 for all sufficiently

small u > 0, we have
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E exp ( ) exp exp( )µ λ µ λ µV Z Vi i
i

n

i
i

n
−

=

−

=

−
L
NM

O
QP ≤ = −∑ ∏1 2

1

2 1 2

1

21 2c h ,

and

Q zn ≤ − +exp( )µ µ 2

for all sufficiently large n.  The lemma follows by setting µ = z/2.  Q.E.D.

For 0 < α < 1, define ~tα  to be the 1 - α quantile of max
~

h H hn
T∈ 0 .

Lemma 12:  For all sufficiently large n, ~ log logt Jnα α≤ −2 .

Proof:  Let z ≥ 1.  By Lemma 11,

P Pmax
~

(
~

)

exp

exp .

h H
h h

h H

h H

n

n
n

n

T z T z

z

J
z

∈ ∈

∈

>F
HG

I
KJ ≤ >

≤ −
F
HG

I
KJ

= −
F
HG

I
KJ

∑

∑

0 0

2

2

4

4

Therefore,

α α≤
−F

HG
I
KJJ

t
n exp

~2

4
.

The Lemma follows by taking logarithms on both sides of this inequality.  Q.E.D.

Lemma 13:  Let ~* max ~ , log logt t J Jn nα α= +2 2e j . Suppose that

W f F V th h[ ( *)] ~ *− ≥θ α
2

4  for some h ∈ Hn.  Then

lim ( * )
n

T t
→ ∞

> =P α 1.

Proof:  By Lemma 8, T* can be replaced by maxh H hn
T∈ 0 .  By Lemmas 8 and 10, tα  can

be replaced by ~tα .  Thus, it suffices to prove that

lim ( max ~ )
n h H

h
n

T t
→ ∞ ∈

> =P 0 1α ,

which holds if

lim ( ~ )
n

hT t
→ ∞

> =P 0 1α
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for some h ∈ Hn.  For any h ∈ Hn,

T T
b b W

Vh h
h h h

h
0 0

2
2

= +
+ ′~ ( *) ( *)θ θ ε

.

Therefore, by Lemma 6,

T T
b

V
oh h

h

h
p0 0

2

1= + +~ ( *)
( )

θ
,

and

lim ( ~ ) lim (
~ ( *) ~ )

n
h

n
h

h

h

T t T
b

V
t

→ ∞ → ∞
> = + >P P0 0

2

α α
θ

.

But b W f Fh h( *) [ ( *)]θ θ2 2
= − .  Therefore, W f F V th h[ ( *)] ~ *− ≥θ α

2
4 ,

lim (
~ ( *) ~ ) lim (

~ ~ ~*)
n

h
h

h
n

hT
b

V
t T t t

→ ∞ → ∞
+ > ≥ > − →P P0

2

0 4 1
θ

α α α

as n → ∞ because 
~
Th0  is bounded in probability and ~ ~*t tα α− → −∞4  as n → ∞.  Q.E.D.

Lemma 14:  Let h ∈ Hn.  Let m be the largest integer that is less than s.  Let I be a

subinterval of [0,1] with length h2 = (m + 1)h.  Let x denote the center of I.  Let Vh,l  be the (m +

1)×(m + 1) matrix with elements

v
X x

hk
i

i X I

k

i

,
:

l

l

=
−F

HG
I
KJ

∈

+

∑ .

There exists a number R depending only on the constants C1 and C2 from Assumption 3 such that

V Rh,l ∞
≤

and

V Rh,l
−

∞
≤1 .

Proof:  This result is proved for the case of a regular design in Ingster (1993c) and for the

case of a design satisfying Assumption 3 in Härdle, et al. (1997, Lemma 6.6).  The idea is as

follows.  To obtain a non-degenerate, non-singular Vh,l , it suffices to have m + 1 distinct design

points inside the interval I.  Under Assumption 3, I contains O(nh) points, which is more than

sufficient.  Q.E.D.
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A.5  Proofs of Theorems

Proof of Theorem 1:  By Lemma 8, max max ( )h H h h H h pn n
T T o∈ ∈= +0 1 .  By Lemma 10,

max max
~

h H h
d

h H hn n
T T∈ ∈→0 0  as n → ∞.  A further application of Lemma 8 gives

max
~

max $ ( )h H h
d

h H h pn n
T T o∈ ∈→ +0 1 .  Therefore, max max $ ( )h H h

d
h H h pn n

T T o∈ ∈→ + 1 .

Q.E.D.

Proof of Theorem 2:  By Lemma 13, it suffices to show that W f F V th h[ ( *)] ~ *− ≥θ α
2

4

for some h ∈ Hn and all sufficiently large n, where

θ θ
θ

* arg inf ( )= −
∈Θ

f F
2

.

Because hmax → 0 as n → ∞ and W f Fh[ ( )]− θ  is the result of smoothing the continuous function

f(⋅) – F(⋅, θ) by the kernel method, W f F f Fh[ ( )] ( )− → −θ θ
2 2

 as n → ∞.  But under H1,

inf ( )
θ

ρθ
∈

− ≥
Θ

f F c n
2

 for some cρ > 0  and all sufficiently large n.  The result that

W f F V th h[ ( *)] ~ *− ≥θ α
2

4  now follows from Lemmas 2 and 11.  Q.E.D.

Proof of Theorem 3: By Lemma 13, it suffices to show that

B W f F V th h n h
2

0
2

4≡ − ≥[ ( )] ~ *,θ α  for some h ∈ Hn and all sufficiently large n, where

θ θ
θ

0
2

, arg inf ( )n nf F= −
∈Θ

.

To show this, use the inequality a2 ≥ 0.5b2 – (b – a)2 to write

B W g W f F gh n h h n n n
2 2 2

0

2
0 5≥ − − −⊥ ⊥. [ ( ) ],ρ θ ρ .

By Lemmas 2 and 7,

W f F g W W f F g oh n n n h h n n n[ ( ) ] ( ) ( ), ,− − ≤ ′ − − =⊥
∞

⊥θ ρ θ ρ0

2

0

2
1

as n → ∞.  Moreover, because hmax → 0 as n → ∞ and W gh
⊥  is the result of smoothing the

continuous function g⊥  by the kernel method, W g gh
⊥ ⊥→

2 2
 as n → ∞.  Therefore, for

sufficiently large n,

B g g nh n n n
2 2 2 2 2 2 2 20 25 0 25 0 25≥ ≥ ≥⊥. . .ρ ρ δ ρ δ .
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Set h h C nH= = −
max (log log ) 2 .  Then theorem follows from the definition of ρn and Lemma 2.

Q.E.D.

Proof of Theorem 4:  Let g f F= − ( *)θ .  Then by Lemma 12, (3.4) and the definition of

S(H,s),

(A12) n g C n ta
s s− − +≥1 2 1 2 4 1/ /( )( ~* )α

and g C
H s g,

≤  for some Cg < ∞ .  By Lemma 13, it suffices to show that W g V th h
2

4≥ ~ *α  for

some h ∈ Hn.  This is done by approximating g by a piecewise polynomial function and proving

that each segment of the polynomial satisfies the required condition.

Set h h t s
1

1 2 4 1= − +( ~* ) /( )
α .  Then nh h ts

1
2

1
1 2= − / ~ *α .  Select h ∈ Hn such that h h h1 12≤ < .  It

will now be shown that W g V th h
2

4≥ ~ *α  for the selected h.  First, observe that by Lemma 2(ii),

V C hh V≤ −
2

1 2/ .  Moreover, since h ≥ h1,

4 4 4 4 42
1 2

2 1
1 2

2 1
2

2
2V t C h t C h C nh C nhh

s s~* ~*/ /
α α≤ ≤ = ≤− − .

Therefore, it suffices to show that

(A13) W g C nhh V
s2

2
24≥ .

Let m be the smallest integer less than s.  Set h2 = (m + 1)h.  Let I be a subinterval of [0,1] with

length h2.  Let x denote the center of I.  The smoothness assumption g C
H s g,

≤  implies that

there exists a polynomial

P u
u x

h

u x

hm

m

( ) ...= +
−

+ +
−F

HG
I
KJβ β β0 1

such that | ( ) ( )|g u P u Chs− ≤  for all u with | | /u x h h− ≤ +2 12 , where C depends only on Cg and

m.  Define

W g X w X X g Xh i h i j j
j

n

( ) ( , ) ( )=
=

∑
1

.

Define W P Xh i( )  similarly.  Then, since w X Xh i j( , ) = 0  for all X j  with X X hi j− > ,

| ( ) ( )|W g X W P X Chh i h i
s− ≤ .  Moreover,
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| ( )| | ( )| | ( ) ( )|

| ( )| ,

: : :

:

g X P X g X P X

P X N C h

i
i X I

i
i X I

i i
i X I

i
i X I

I
s

i i i

i

2 2 2

2 2 2

2 2

2 2

∈ ∈ ∈

∈

∑ ∑ ∑

∑

≤ + −

≤ +

where NI denotes the number of design points in I.  Similarly

| ( )| | ( )|
: :

W g X W P X N C hh i
i X I

h i
i X I

I
s

i i

2 2 2 21

2∈ ∈
∑ ∑≥ − .

Let Vh,l  be the (m + 1)×(m + 1) matrix with elements

v
X x

hk
i

i X I

k

i

,
:

l

l

=
−F

HG
I
KJ

∈

+

∑ .

Let β β β= ′( ,..., )0 m .  Then

| ( )|
:

,P X Vi
i X I

h

i

2

∈
∑ = ′β βl ,

and, by Lemma 14, ′ ≤β β βV Rh,l
2

.  Equivalently, β β β2 1≥ ′−R Vh,l .

Now define the numbers Zik (i = 1, …, n; k = 1, …, m) as the solutions to the equations

Z x

h
w X X

X x

h
ik

k

h i j
j

k

j

n−F
HG

I
KJ =

−F
HG

I
KJ=

∑ ( , )
1

.

Define 
~

,Vh l  to be the (m + 1)×(m + 1) matrix with elements

~ , , ,..., .
:

v
Z x

h

Z x

h
k mk

ik
k

i

i X Ii

l
l

l

l=
−F

HG
I
KJ

−F
HG

I
KJ =

∈
∑ 0 1

It is easy to see that |Xi - Zik| ≤ h for all k = 0, 1, …, m and for all i with Xi∈ I.  Therefore,, for

every k, the sequence {Zik:  Xi ∈ I} satisfies Assumption 3, and Lemma 14 applies to 
~

,Vh l .  This

yields 
~

,V Rh l ∞
≤  and 

~
,V Rh l
−

∞
≤1 .  Next, by definition of Zik,

W P X
Z x

h

Z x

hh i
i

m
im

m

( ) ...= +
−

+ +
−F

HG
I
KJβ β β0 1

1 ,

so that

| ( )|
~

:

W P X Vh i
i X I

h

i

2

∈
∑ = ′β βl .

Similarly, ′ ≥ −β β β~
V Rhl

1 2
.  Therefore,
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| ( )| | ( )|

( / )
~

( / )

( / )

: :

,

,

W g X W P X N C h

V N C h

R N C h

R V N C h

h i
i X I

h i
i X I

I
s

h I
s

I
s

h I
s

i i

2 2 2 2

2 2

1 2 2 2

2 2 2

1

2

1 2

1 2

1 2

∈ ∈

−

−

∑ ∑≥ −

= ′ −

≥ −

≥ ′ −

β β

β

β β

l

l

= −

≥ −

∈

∈

∑

∑

1

2

1

4

3

2

2
2 2 2

2
2 2 2

R
P X N C h

R
g X N C h

i
i X I

I
s

i
i X I

I
s

i

i

| ( )|

| ( )| .

:

:

Now split [0,1] into N intervals, I1, …, IN of length no greater than h2.  Applying the foregoing

inequality to each interval yields

( | ( )| | ( )|

| ( )|

| ( )| ( / ) .

:

:

A14) W g X W g X

R
g X N C h

R
g X nC h

h i
i

n

j

N

h i
i X I

j

N

i
i X I

I
j

N
s

i
s

i

n

i j

i j

j

2

1 1

2

2
1

2

1

2 2

2
2 2 2

1

1

4

3

2

1

4
3 2

= = ∈

= ∈ =

=

∑ ∑ ∑

∑ ∑ ∑

∑

=

≥ −

= −

Inequality (A14) combined with (A12) implies (A13) for sufficiently large Ca in (3.4).  Q.E.D.
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FOOTNOTES
1  The fixed design formulation used here includes as special cases random designs in which the

distribution of X is absolutely continuous with respect to Lebesgue measure.  If (Y, X) is a random

variable, then the null hypothesis is that f(X) = F(X, θ) almost surely for some θ ∈ Θ.  The

alternative hypothesis is that P[f(X) = F(X, θ)] < m for every θ ∈ Θ and some m < 1.

2   Andrews (1997) assumes that the distribution of εi in (1.1) is known up to a finite-dimensional

parameter.  Thus, Andrews tests a parametric model of the conditional distribution of Y not just

the conditional mean function.  It is not difficult, however, to modify Andrews’ test so that it

becomes a test of a hypothesis about f alone.  See Whang (1998).

3   Triebel (1992) provides definitions of Hölder, Sobolev, and Besov spaces.

4   The condition s ≥ d/4 is unlikely to be restrictive in applications because the curse of

dimensionality makes nonparametric estimation and testing unattractive when d is large.  Hart

(1997) discusses tests that have the optimal rate of testing when s < d/4.

5  Guerre and Lavergne (1999) describe a method for achieving the optimal rate of testing against

an alternative of known smoothness.  Their test is not adaptive and its behavior against

alternatives of the form (1.2) is unknown.

6   Härdle and Mammen (1993) use the integrated squared difference between fh and Fh.  As they

note, the properties of their test are the same with summed or integrated squared differences

except, possibly, for the values of constants in the expressions for the mean and variance of the

test statistic’s asymptotic distribution.

7   The variance estimators described in this section are not the only possible ones.  For example,

Hart (1997, Section 5.3) describes an alternative estimator that is unbiased if Xi is a scalar,

F x( , )θ  is a linear function of x, and the εi’s are homoskedastic.  The choice of variance

estimator does not affect the asymptotic properties, adaptiveness, or rate optimality of our test.

The choice may affect the small-sample performance of the test, but investigation of the small-

sample performances of alternative variance estimators is beyond the scope of this paper.

8  If the form of the heteroskedasticity of the εi’s is known, then this knowledge can be used to

form a variance estimator.  For example, if Yi is binary, then σ 2 ( )X i  can be estimated by

$ ( )[ $ ( )]f X f Xn i n i1− , where $ ( )f xn  is a nonparametric estimator of f x( ) .
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TABLE 1:  RESULTS OF MONTE CARLO EXPERIMENTS1

   Probability of Rejecting Null Hypothesis

Distribution           Andrews’    Härdle-Mammen    Rate-Optimal
      ε          τ       Test            Test            Test____

Hull Hypothesis Is True

   Normal                0.057           0.060           0.066
   Mixture               0.053           0.053           0.054
   Extreme
     Value               0.063           0.057           0.055

Hull Hypothesis Is False

   Normal        1.0     0.680           0.752           0.792
   Mixture       1.0     0.692           0.736           0.796
   Extreme
     Value       1.0     0.600           0.760           0.820

   Normal        0.25    0.536           0.770           0.924
   Mixture       0.25    0.592           0.704           0.932
   Extreme
     Value       0.25    0.604           0.696           0.968
______________________________________________________________

1  The differences between empirical and nominal rejection probabilities under H0 are not
significant at the 0.01 level.  Under H1, the differences between the rejection probabilities of the
rate-optimal and Andrews’ test are significant at the 0.01 level.  Under H1, the differences
between the rejection probabilities of the rate-optimal and Härdle-Mammen tests are significant at
the 0.01 level when τ = 0.25.
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Figure 1:  Null and Alternative Models


