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AN ADAPTIVE, RATE-OPTIMAL TEST OF A PARAMETRIC MODEL AGAINST A
NONPARAMETRIC ALTERNATIVE
1. INTRODUCTION

This paper is concerned with testing a parametric model of a conditional mean function
against a nonparametric aternative. We develop a test that is consistent against alternative
models whose distance from the parametric model converges to zero as rapidly as possible as the
sample size, n, increases. The test does not require a priori knowledge of the smoothness of the
alternative model, and it has desirable power properties that are not shared by existing tests.

We consider the model
(L1) Y =f(X)+e; i=123..,
where Y] is a scalar random variable; { X} T Avis a sequence of distinct, non-stochastic, design
points; f is an unknown function; and {e} is a sequence of unobserved, independent, random
variables with means of zero. We test the null hypothesis, Ho, that f belongs to the parametric

family A°{F(xq),qT Q}, where F isaknown function and Q is a subset of a finite-dimensional

space. More precisaly, the null hypothesisis that thereisaq 1 Q such that f(X;) = F(X;, q) for all
i. The alternative hypothesis, Hy, isthat thereisno g1 Q such that f(X;) = F(X;, q) for all i.*

There is a large literature on testing a parametric model of a conditional mean function
against a nonparametric aternative. Many tests compare a nonparametric estimator of f(¥ with a
parametric estimator, F(% q,), where q, is an estimator of g that is consistent under Hy (e.g., a
least-squares estimator). See, for example, Ait-Sahalia, et al. (1994), Eubank and Spiegelman
(1990), Fan and Li (1996), Gozalo (1993), Hardle and Mammen (1993), Hart (1997), Hong and
White (1995), Li and Wang (1998), Whang and Andrews (1993), Wooldridge (1992), Y atchew
(1992), and Zheng (1996). Other tests do not require nonparametric estimation of f. Bierens
(1982, 1990), Bierens and Ploberger (1997), and De Jong (1996) test orthogonality conditions
that are implied by (1.1). Andrews (1997) develops a conditional Kolmogorov test.”

The asymptotic power of a test of Hy is often investigated by deriving the asymptotic
praobability that the test rejects Hy against a sequence of local aternative models. This approach is
well known but, as is explained in the next paragraph, restricts attention to a class of aternative
models that istoo small. The form of the local alternative modelsis
(12 f,() =F(xa1) +1 ,9(x)
for some function g, wherequ T Q and {r .} is a sequence of real numbers that convergesto 0 as
n® ¥. See for example, Andrews (1997), Bierens and Ploberger (1997), Eubank and
Spiegelman (1990), Hong and White (1995), and Zheng (1996). Many tests that compare a



nonparametric estimator of f with a parametric estimator have non-trivial power (that is, power
exceeding the probability that a correct Hy is rejected) only against sequences of local alternatives
for whichr, ® 0 at arate that is dower than n¥2. The tests of Ait-Sahalia, et al. (1994), Eubank
and Spiegelman (1990), Fan and Li (1996), Gozalo (1993), Hardle and Mammen (1993), Hong
and White (1995), Whang and Andrews (1993), Wooldridge (1992), Zheng (1996), and Y atchew
(1992) have non-trivial power only if r , converges more slowly than n2

Andrews (1997), Bierens (1982), Bierens and Ploberger (1997), and Hart (1997) describe
tests that have non-trivial power against local aternatives for which r, p n¥2 Thus, at least in
terms of asymptotic local power, these tests appear to dominate tests that require slower
convergence of r . It turns out, however, that if r , 1 nY2, then no test can have non-trivia power
uniformly over reasonable classes of functions g in (1.2) (e.g., functions that have derivatives of
order s for some integer s). See Burnashev (1979), lbragimov and Khasminskii (1977), and
Ingster (1982). In other words, the power of any test of Hy against the sequence of local
dternatives f,(x) =F(x,q;) +n ﬂzgn(x) equals the probability that the test rejects a correct Hy
for some sequence {g,} of (say) twice differentiable functions. The practical consequence of this
result is that any test of Ho for which r, u n™ has low finite-sample power against certain classes
of smooth alternatives. Section 4.2 presents numerical examples of this phenomenon. Hong and
White (1995) and Fan and Li (1999) also present examples. Because the class (1.2) excludes
models of the form f,(x) = F(x,q;) +r ,09,(X), it cannot be used to develop tests that have good
power against al smooth aternatives. Thisisthe sense in which the class (1.2) istoo small.

Another way to investigate the asymptotic power properties of tests of Hy is the minimax
approach of Ingster (1982, 1993a, 1993b, 1993c). This approach, which is not widely known in
econometrics, permits the set of aternatives to consist of an entire smoothness class. The
minimax approach forms the basis of the test that is developed here. In this approach, it is
assumed that f belongs to a class of one-or-more-times-differentiable functions on A% such as a
Holder, Sobolev, or Besov ball, B> B is separated from the null-hypothesis set A by some
distance r, that converges to zero asn ® ¥. The aim of the minimax approach is to find the
fastest rate at which r,, can approach zero while permitting consistent testing uniformly over B.
Thisrateis caled the optimal rate of testing. A test is consistent uniformly over B if
(1.3 r!g@n; fiTnfB P(Hgisrgected against f) =1.

Thus, the optimal rate of testing is the fastest rate at which r, can approach zero while

maintaining (1.3). The optimal rate of testing for Holder, Sobolev, or Besov classes of functions



that have bounded derivatives of order s3 d/4 is n®** 9 (Ingster 1982, 1993a, 1993b, 1993c;

Guerre and Lavergne 1999). Thisrate assumes that sisknown a priori. If sis unknown, then the

2s/(4s+d
optimal rate of testing is(n' lq/loglogn) (der ), which differs from the rate that is achievable

with known s by the very slowly increasing factor (loglogn)¥“s*® (Spokoiny 1996). If s< d/4,

then the optimal rate of testing is ™ (see, e.g., Guerre and Lavergne 1999).

A test that achieves the optimal rate of testing has the advantage of being sensitive to
aternatives uniformly over a Holder, Sobolev, or Besov class whose distance from the null
hypothesis A converges to zero at the fastest possible rate. These classes contain sequences of
aternative models against which the tests of Andrews (1997), Bierens (1982), Bierens and
Ploberger (1997), and Hart (1997) are inconsistent. In practice, this means that there are smooth
aternatives against which these tests have much lower finite-sample power than does a test that
achieves the optimal rate of testing. Section 4.2 presents numerical illustrations.

In this paper, we construct atest of Hy that has the optimal rate of testing uniformly over

Holder classes and does not require a priori knowledge of s, the order of differentiability of f.
2s/(4s+d
The test satisfies (1.3) with r, p (n"*floglogn) “ whens® d/4. Thetest is called adaptive

and rate-optimal because it adapts to the unknown s and has the optimal rate of testing for the
case of an unknown s.*

A test that achieves the optimal rate of testing uniformly over a smoothness class B is
necessarily oriented toward the alternatives in B that are most extreme and hardest to detect.
These functions have narrow peaks or valleys whose widths decrease with increasing n. See
Section 4.1 for an example. A test that is oriented toward such alternatives may have low power
againgt functions that are less extreme. To provide some protection against this possibility, we
investigate the consistency of our test against alternatives of the form (1.2). These alternatives

cannot have the extreme behavior just described because g in (1.2) is afixed function. We show
that our test is consistent against alternatives of the form (1.2) whenever r , 3 Cn'”quloglogn

for some finite C > 0. The tests of Andrews (1997), Bierens (1982), Bierens and Ploberger
(1997), and Hart (1997) are consistent against alternatives of the form (1.2) whenever r, ® 0O
more slowly than n”2. Thus, our adaptive, rate-optimal test and the other tests (which are not
rate-optimal) are consistent against virtually the same aternatives of the form (1.2). In terms of
consistency against alternatives of the form (1.2), there is essentially no penalty paid for the

adaptiveness and rate optimality of our test.



Throughout this paper, our concern is with the rate at which the distance between the null
and alternative hypotheses can decrease to zero while permitting consistent testing by some
procedure. We do not investigate other properties of the power functions of tests, and we do not
derive the asymptotic local power function of our test. Nor do we attempt analytic comparisons
of the powers of our test and others apart from noting conditions under which our test is
consistent and others are not. More extensive power comparisons are left for future research.
The contribution of this paper is to provide a test that (1) adapts to the unknown smoothness of
the aternative model, (2) is consistent at the optima rate uniformly over Holder classes of
aternatives, and (3) is consistent against alternatives of the form (1.2) when r , has nearly a n'?
rate of convergence. The first two properties of our test guarantee that there are alternatives
against which our test has high power and tests such as those of Andrews (1997), Bierens (1982),
Bierens and Ploberger (1997), and Hart (1997) have low power. The third property provides
some protection against the occurrence of the opposite situation.

The test statistic is described in Section 2 of this paper. Theorems giving properties of
the test under Ho and various forms of H; are presented in Section 3. Section 4 presents the
results of some Monte Carlo experiments that illustrate the numerical performance of the test.

Concluding comments are presented in Section 5. The proofs of theorems are in the Appendix.

2. THETEST STATISTIC

This section describes our test statistic and presents a bootstrap method for obtaining
critical values of the test. Thetest is closely related to that of Hardle and Mammen (1993). Like
Hérdle and Mammen, we base the test on the distance between a kernel nonparametric estimator
of f and a kernel-smoothed parametric estimator. The main difference between our test and that
of Hardle and Mammen is that we compute the distance with many different values of the
bandwidth parameter of the kernel smoother. We reject Hy if the distance obtained with any of
the bandwidthsistoo large. The rate-optimal and adaptive properties of our test arise from its use
of many different bandwidths.

The remainder of this section is divided into five parts. Section 2.1 describes the
parametric estimator of f. Section 2.2 describes the kernel smoothing procedure and the metric
that is used to measure the distance between the nonparametric and smoothed parametric
estimators of f. Section 2.3 explains how the distance between the nonparametric and smoothed
parametric estimators is centered and Studentized. The test procedure is presented in Section 2.4.
Section 2.5 explains how to estimate unknown popul ation parameters that enter the test statistic.



2.1 The Parametric Estimator
We consider the model (1.1). The hypothesisto betestedisHy: f1 A={F(xq),q1 Q},

where F is a known function and Q is an open subset of a finite-dimensional Euclidean space.
We assume that there is an estimator of g, denoted by g, that is nY2-consistent under H,. Let do
1 Q denote the true value of q if Hpistrue. That is, E(Y)) = F(X,qo) for al i if Hg istrue. Then,
n“4(gn - qo) is bounded in probability under Ho.

We assume that g, is stable if Ho is false. By this we mean that thereisag* 1 Q such
that n"?(q, - g*) is bounded in probability if Ho is false. Under assumptions stated in Amemiya
(1985), for example, the least-squares estimator of q has the required properties, as do many other
M estimators (Millar 1982).

2.2 The Kernel Smoother
We now explain the kernel smoothing procedure that is used in our test. Let K denote the
kernel and h denote abandwidth. For xT A¢ let Ki(x) = K(x/'h). For eachi,j=1,2, ..., n define
Kn(X; - X;)

Wh (X, X)) =—

a Kn(X; - Xy)
k=1

The kernel nonparametric estimator of f(X;) is
g
fr(Xi) =a Wa (X, X;)Y; -
=1
The kernel-smoothed parametric estimator is
n
R (Xi.0n) :é Wh (X, X5)F(X;,0,) -
=1
The distance between the nonparametric and smoothed parametric estimators of f is defined to be
the sum of the squared differences fi(X) - Fn(Xi,01).6 Accordingly, for any g1 Q, define
n
$i@=a [fn(X) - Fn(Xi.a)0% .
i=1
The test statistic is based on a centered, Studentized version of S,(g,) whose asymptotic
distribution has a mean of zero and variance of one.
Some vector notation will be useful in the discussion that follows. Define the n” 1
vectors Y = (Yy, ..., Yn)¢and F(q) = [F(X1,Q), ..., F(%.,q)]¢ Let W, be the n” n matrix whose (i, j)
dement iswn(X;, X). Let | ¥ denotethe ¢, norm. Thatis, forany zi A",



12" =& 7

i=1
Then
S (@) =MLY - F@?
forany g1 Q.

2.3 Centering and Sudentization
This section explains the method that is used to center and Studentize S,(g,). We begin
by defining further notation. Suppose that Hy is true. Then f(X;) = F(X;, qo) for al i. Define the
n 1vectore=(e, ..., &)¢ Forql Q, definethen” 1 vector by(q) = Wh[F(qp) - F(q)]. Then
Y- F@)=F(@o)- F@)+e,

and

2 2 2
(21)  $(@) =|Mhe+,@)]" =[Mhel” +[bn @) + 204 () W
Let & denote the (i, j) element of the n"n matrix A, = Wy, Let s,(X;) = E(ei“) and
s ?(X;) =E(e?). Assume that these quantities exist.
To develop the method for centering and Studentizing S\(qy), it is first necessary to
evaluate the mean and variance of $,(qo) under Hyo. Observe that
2 & o
S@)=Wel"=a aajnee;-
i=1 j=1
Then
2 C? 2
(22)  E[We["° Ny=a ains “(X)-
i=1
In addition, Var||\/\{1e||2 =V{? +n;,, where
g g
23) VZ=2q aafns’(X)s?(X))
i=1 j=1
and
CI;] 2 4
Ny =a aipls(X;)- 3 7(X)]-
i=1
It is not difficult to show that n, = o(ViY) asn® ¥, so ny, is asymptotically negligible. Therefore,
an asymptotically centered, normalized form of S,(qo) is



2
00 Si(00)- Ny _ Whel*- Ny
" Vh Vh
That is, the asymptotic distribution of T:2 has amean of zero and a variance of one.
To obtain the centered, Studentized form of S,(qy), define
'ﬁ] — Sn(qn) B Nh :ThO +hh ,
h
where

o @) + 2 () e
h — .
Vh

It follows from Lemmas 4.3 and 4.5 of the Appendix that hy, = 0,(1) asn ® ¥. Therefore, the
asymptotic distribution of 'ﬁl has mean zero and variance one. However, 'ﬁl cannot be computed
in an application because it depends on the unknown quantities s 2(Xi) (i=1,..,n. This
problem can be solved by replacing each s 2(Xi) in (2.2) and (2.3) with an estimator. Methods
for estimating s 2(Xi) are described in Section 2.5. For now, we assume that such methods exist
and denote the estimator of s 2(X;) by s2(X;). The centered, Studentized form of S,(qy) is

obtained from T;, by replacing s 2(X;) with s 2(X.) in N, and ;. Specifically, define

24 N,=3 a S 2(X)),
i=1

n n
(25) ViZ=2Q Q& ms2(X)s2(X)),
i=1 j=1
and
26) T, :M _
h
Then Ty, is afeasible statistic whose asymptotic distribution has mean zero and variance one. It is

the centered, Studentized form of $,(q,) that is used to construct our test statistic.

2.4 The Test Procedure
The idea of the test is to consider simultaneoudly a family of test statistics { Ty, h 1 H.},
where H, is a set of bandwidth values. We assume that H, is finite and denote the number of

elements of H, by J,. A specific exampleis ageometric grid of the form

27)  H,={h=ha" h3h,  k=012.},



where 0 < hyp < hype, ad 0 < a < 1. In this case, J, £ 109 1a (Nmax/hmin).  The proposed test
procedure rejects Hy if at least one of the statistics Ty, for h1 H,is sufficiently large. Thus, we
define

(28) T*=maxT, = maxw
H hiH, Vi

Weuse T* asatest statistic.

We now discuss how to obtain critical values for T*. The exact a-level critical value, t,*,
(0O<a<1l)isthel-a quantle of the exact finite-sample distribution of T*. This critical value
cannot be evaluated in applications because g, and the distributions of the ¢ are unknown.
However, it is shown in Lemmas 8-10 of the Appendix that asymptotically (asn ® ¥), t,* is
determined by the variances of the g’s, s 2(Xi) . The value of gy and other features of the
distributions of the e’s do not affect the asymptotic critical value. Therefore, an asymptotic a-
level critical value, t,, can be obtained as the 1 - a quantile of the distribution of T* that is
induced by the modd Y* = F(X, g, + e*, where g* is sampled randomly from the normal
distribution N[O,s ﬁ(xi )] . The test proposed here rejects Hy with asymptotic level a if T* > t,.
The asymptotic critical value t, can be estimated with any desired accuracy by using the
following simulation procedure:

1. Foreachi =1, ..., n generate Y* = F(X, g, + &*, where * is sampled randomly
from the normal distribution N[0,s 2(X;)].

2. Usethedata set {Y*, X: i =1, ..., n} toestimate g and s2(Xi). Denote the
resulting estimates by dn and $ ﬁ(Xi) , respectively. Compute the statistic T* that is obtained
by replacing Y;, gn, and s ﬁ(Xi) with Yi*, dn, and S 7 (X;) on theright-hand side of (2.5).

3. Estimate t, by the 1 - a quantile of the empirical distribution of T* that is obtained
by repeating steps 1-2 many times.

2.5 Estimating s 2(X;)
This section explains how s 2(Xi) can be estimated. We need an estimator that is

consistent regardless of whether Hy is true. Thus, we cannot base the estimator on the residuals

of the parametric modd Y; - F(X, ).’



Recall that the e’s are assumed to be independently distributed. Assume for the moment

that they are also identically distributed so that s 2(X;) = s 2 for some constant s 2>0. Ifd=1

(the Xi’s are scalars), then we can estimate s 2 by using the method of Rice (1984), Gasser, et al.
(1986), and Buckley, et al. (1988). Let X1y < X < ... < Xy be the ordered sequence of design
points, and let Y and g;), respectively, be the similarly ordered values of the Y'sand &’s. Then

Y(i +1) " Y(i) =Qi+y-€pt f(X<| + 1)) - f()((,)) Now, E(e(i +1) ~ e(i))z =2s 2. Moreover, under the
assumptions of Section 3.1, [f(X+1) - f(Xy»)|® Oasn® ¥. Therefore, we can estimate s 2 by

1
2(n-1

nc;l )
a i+ - Yoy~
i=1

(29) s2=

This estimator is n?-consistent under the assumptions of Section 3.1, regardless of whether Hq is
true (Rice 1984).

We now explain how this method can be extended to multivariate settings. We restrict
thediscussiontothecaseof d£ 4. Letj(i) (i =1, ..., n) beaset of indices that is defined through

the following recursion:

and

The number (i) is the index of the design point that is nearest to X; among those whose indices

arenot j(1), ..., j(i - 1). Then s ? can be estimated by
2_132 2
(210) sy —%a (¥ - Yii)© -
i=1

Under the assumptions of Section 3.1, (2.10) is a n“?consistent estimator of s 2 regardless of

whether Hp istrue.

The estimator s ﬁ can be extended to ’s that have heteroskedasticity of unknown form
by replacing the global sums in (2.9) and (2.10) by sums over shrinking neighborhoods of the
design points X.° Let s ?(y satisfy the Lipschitz condition |s *(X;)- s *(X;)| £ LIIX; - X;l|
for some finite L > 0. Let b, be a bandwidth that convergesto 0 asn ® ¥, and let [(¥ be the
indicator function. Define j(i) as before. Then under the assumptions of Section 3.1, s 2(Xi)

can be estimated by



a M= Yiao) 211X, - Xl £ by)
SHOGEES

a 10X - X| £ by)

k=1
If by® 0and nhimgb' ® ¥ asn® ¥, then s 3(X;)- s %(X;) =0, () aSN® ¥.

It is shown Lemma 8 of the Appendix that if s3(X;)-s?(X)=0,(hh5), then
T* =maXpi y Tho +0p (D), where Tpo =[S,(9%) - NL]/V, and g* = qo if Ho is true. Thus, the
asymptotic distribution of T* is the same as it would be if g* and s 2(Xi) were known,

regardless of whether Hy istrue.

3. THE MAIN RESULTS
This section presents theorems that give the asymptotic behavior of the proposed test.
Section 3.1 states our assumptions. The behavior of the test under Hy is given in Section 3.2.
Sections 3.3-3.5, respectively, give the test’s behavior under a fixed alternative hypothesis, under
the sequence of local aternative hypotheses (1.2), and under smooth alternatives that are

contained in a Holder ball whose distance from the null hypothesis converges to zero at the
2s/(4s+d
optimal rate of testing (n' l,/loglogn) (aer ). The adaptive, rate-optimal property of the test is

established in Section 3.5.

3.1 Assumptions

Our results are obtained under the assumptions stated in this section. Define
NaF(xa)=IF(xa)/Ta, NGF(xa)=T°F(xa)/fafae, N,F(xq)=TF(xa)/x, and
N2F(x,q) = 1°F (x,q) / 1Xx¢ whenever these derivatives exist. For any g’ q matrix D, define

Dy
o], = sup 1P

viar M
where ||¥ is the ¢, norm. Let N,F(q) be the n"q matrix whose (ij) element is
TFCXi,9) /g -
Assumption 1 (Parametric family): The parameter set Q is an open subset of A for some
q3 1. The parametric family A ={F(xq),q1 Q} satisfies:

10



(i) Differentiability in q: For each x1 [-1,1] ¢ F(x, q) is twice differentiable with respect
to g. For finite constants Cy; and Cyp, eachi = 1, ..., n,andeachq1 Q, ||KIq F(X.9)| £ Cpu.,
and ||NGF (X, ,q)||¥ £ Cp.

(i) Differentiability inx: For eachql Q, F(x, q) is twice differentiable with respect to

xT [-1,1]% Moreover,|

KI)Z(F(x,q)”¥ £ C,, for somefinite constant Cya.

(i) Identifiability: Thereisa finite C, > 0 such that

supl| [N F @) R, F@)1 Y, £ ¢
qlQ

and for everyd >0

inf F@)- F@@o’ 2 Cd?n.
wad o ealF@ - F@9 2 G

Assumption 2 (Parametric estimator): (i) Let Hobetrue. Theng,1 Q and

Jim, P(n*?f, - qo] >2) <d

for any d > 0 and all sufficiently largez. (i) Let Ho befalse. Thenthereisag* T Q such that
lim P(nY?[q,, - q*|>z)<d
lim P(n*?[q, - q*|>2)
for any d > 0 and all sufficiently large z. (iii) Let {go n=1, 2, ...} be a sequence in Q whose
limit points, if any, areall inQ. Let{s,: i=1,...,n;n=12, ...} beatriangular array of real
numbers that is bounded away from O and ¥. Define Y*=F(X,,q40)*+S W;, Where
{w;:i =1,...,n} are independently distributed as N(0,1). Let dn be the estimator of g that is
obtained fromthe data set { Yi*, Xi: i =1, ..., n}. Then

lim P(nY3|q. -
n® ¥ ( qn an

>a<d

for any d > 0 and all sufficiently large z
Assumption 2(iii) establishes a stability property of the parametric estimator that is used to justify
the simulation procedure for obtaining the critical value of the test statistic.

For every x 1 A% and every h > 0, define My(X) as the number of elements in the set
{X;:|Xi- ¥ £h.

Assumption 3 (Design): (i) The design points X; T A® (i = 1, ..., n) are non-stochastic
and scaled so that || X;|| £ 1 for all i. (ii) There are positive constants C; and C such that for all

h1 Hyandalli=1,...,n, Cinh® £ My(X) £ Cnh.

11



Assumption 3(i) restricts the X; to a bounded subset of A Given boundedness of the X;,
there is no loss of generality in the scaling assumption. Assumption 3(ii) is satisfied with
probability approaching 1 as n ® ¥ if H, satisfies Assumption 6 below and {X;} is sampled
randomly from a distribution that is absolutely continuous with respect to Lebesgue measure, has
bounded support, and whose density is bounded away from zero on its support. Therefore, our
results hold conditional on {X} that are generated this way. However, we do not require { Xj} to
be sampled from a distribution.

Assumption 4 (Kernel): K is non-negative, supported on [-1,1]%, and symmetrical about
the origin. Moreover, K(u) £ 1 for all u, and K(u) 3 k for |u| £1/2 and somek > 0.

Assumption 5 (Moments of g): (i) The random variables ¢ are independent with means
of zero and uniformly bounded moments of order 4 + d for somed > 0. Ele['*? £ Cg for some
constant Ce < ¥ and all i = 1, ..., n. (i) s?(X)=E(e®) and s,(X,)=E(e}) satisfy

s 2(Xi)- s 2(X)I £ L X - X and |s,(X;)- s4(X;)I £ L|X; - X;|| for some constant L <

¥andali,j,=1,...,n (iii) s 2(Xi)3 m, for some constant m, >0 and all i.

Assumption 6: (Bandwidths): The set H, of bandwidths has the structure (2.7) with hpg
> hmin 3 N for some constant g such that 0 < g< min(1/3, 1/d), and hy = Cy (loglogn)™* for
some finite constant C; > 0.

Under Assumption 6, J, £ O(logn) asn® ¥.

3.2 Behavior of the Test Satistic under the Null Hypothesis
Recall from Section 2.4 that t, isthe 1 - a quantile of the distribution of T* that is
induced by the modd Y* = F(X, g, + e*, where g* is sampled randomly from the normal

distribution N[O,s ﬁ(xi )]. The main result on the behavior of the test statistic T* under Hg is

that t, is an asymptotically correct a-level critical value under any model in Ho. This result is
established by the following theorem.
Theorem 1: Let Assumptions 1-6 hold. Let Ho betrue. Then

lim P(T*>t,)=a .
ne ¥ ( a)

12



3.3 Consistency Against a Fixed Alternative
We now show that our test is consistent against a fixed alternative model. Let (1.1) hold.

Definethe n” 1 vector f =[f(Xy), ..., f(X,)]¢ Measure the distance between f and the parametric

family A by the normalized 7, distance

< _ A F 2\ T2
(3.1) r(f,A)=[q|TmZg(n |f- F@) )} .

If Hy isfase, thenr (f, A) 3 ¢ for al sufficiently large n and some ¢, > 0. A consistent test will
regject a false Hyo with probability approaching one as n ® ¥. Theorem 2 establishes the
consistency of our test.
Theorem 2: Let Assumptions 1-6 hold. If there is an ng such that r (f, A) 3 ¢ fordln>
ny and some ¢, > 0, then
lim P(T* >t ) =1.

n® ¥

3.4 Consistency Against a Sequence of Local Alternatives

This section establishes the consistency of our test under local alternatives of the form

2.2 withr, 3 CcnY? loglogn for some constant C > 0.

Define the n" 1 vectors g =[g(Xy),...,9(Xy)]¢ and fn =[ (X)), T (XR)]E. We

assume that g is a continuous function that is normalized so that
1,2 1o

32 Zlgl"==a lg(x)Fs 1.
n Nzt

We aso assume that g is not an element of the space spanned by the columns of NqF(ql) .
That is,
(33 |g- P4y 2 dg]
for somed > O, where
Py,= Nq F(ql)[Nq F(Ch)(Nq F(Ch)]-qu F(g.)¢
is the projection operator into the column space of Nq F(g,) . Conditions (3.2) and (3.3) exclude

functions g for which ||1En - F(qn‘0)||=o(r ,) for some non-stochastic sequence {q.o} 1 Q.

Thus, (3.2) and (3.3) insure that the rate of convergence of f, to the parametric model F(% Qi) is

the same as the rate of convergence of r , to zero. In particular, under (3.2) and (3.3),

13



. i T2
L‘?E(” |- F@) )} s dr o[1- o(1)]

asn® ¥,

Finally, we assume that g, is the least squares estimator of g. This assumption is made
for technical convenience only and is not essential to the consistency result, which is stated in the
following theorem.

Theorem 3: Let Assumptions 1 and 3-6 hold with h,,,, =C (loglog n)~! for some finite
constant Cy. Let g, be the least-squares estimator of . Let f, satisfy (1.2) with
r,:3 Cn'”zm for some constant C > 0. Let g satisfy (3.2) and (3.3). Then

lim P(T*>t,)=1.
ne ¥ ( a)

This result shows that the power of the adaptive, rate-optimal test approaches1asn® ¥
for any function g and sequence {r } that satisfy the assumptions of the theorem. However, the

result is not uniform over all possible g's. Uniformity is addressed in the next section.

3.5 Consistency Against a Sequence of Smooth Alternatives
This section gives conditions under which our test is consistent uniformly over
aternatives in a Holder smoothness class whose distance from the parametric model approaches
zero at the fastest possible rate. The results can be extended to Sobolev and Besov classes under
some additional technical conditions on the design { X} .
To specify the smoothness classes that we consider, let | = (jy, ..., ja), wherej, ..., ja2 O

are integers, be amulti-index. Define

&
liFa ik
k=1
and
) il
le(x):M
... Ix

whenever the derivative exists. Define the Holder norm

Il o= sup @ IDIf(x).
xT[-110° lilEs

The smoothness classes that we consider consist of functions f T S(H,s) © {f:||f|, £ C¢} for

some (unknown) s3 max(2, d/4) and Ce < ¥.
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Theorem 4 states that our test is consistent uniformly over the sets
- . 2s/(4s+d
(34) By, ° {f | S(H,9):r (f,A4)3 Cy(n"Lloglogn) (aer )}

for some s3 max(2, d/4) and al sufficiently large C, < ¥.
Theorem 4: Let Assumptions 1-6 hold. Then for 0 <a < 1 and By, as defined in (3.4),

lim inf P(T*>t,)=1
n®¥ f1B,, ( a)

for all sufficiently large C, < ¥.

4. MONTE CARLO EXPERIMENTS

This section presents the results of Monte Carlo experiments that illustrate the numerical
performance of the adaptive, rate-optimal test. The section has two parts. Section 4.1 presents a
sequence of alternatives against which our test is consistent but the tests of Andrews (1997),
Bierens (1982), Bierens and Ploberger (1997), and Héardle and Mammen (1993) are not. This
sequence motivates the design of the Monte Carlo experiments. The experiments and their results
are described in Section 4.2.

4.1 An Example

This section presents a parametric model and a sequence of aternatives against which our
test is consistent but the tests of Andrews (1997), Bierens (1982), Bierens and Ploberger (1997),
and Hardle and Mammen (1993) are not. All of these tests are consistent against each alternative
in the sequence, however. The fact that the tests are not consistent against the sequence itself, as
opposed to itsindividua elements, illustrates their lack of uniform consistency.

The null hypothesis model (parametric family) in the exampleis
(41) Y =bg+byX +e,
where by and b; are constants, the X's are scalars that are sampled from a distribution that is
symmetrical about 0, and & ~ N(O,s2) for every i. The distribution of g is specified
parametrically because Andrews (1997) test requires a fully parametric model. The other tests
do not require specification of the distribution of . The sequence of alternative modelsis

(42) Y =X+t (X /t,)+e,
-1/9
where g ~ N(0,1), f is the standard normal density function, and t , = C(n' 1,/Iog|og n) for

some finite C > 0. The function f(X) = x + t,'f (x/t ) has a peak that is centered at x = 0 and that

becomes narrower as n increases. The sequence of alternative models {f.} is contained in By,
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with s = 2 The distance between f, and the parametric model (4.1)
’ -419
satisfiesr (f,,A) 4 (n' l,/loglogn) , so the distance converges to zero more slowly than n2,

It is not difficult to show under that the sequence (4.2), the noncentral parameters of the
tests of Andrews (1997), Bierens (1982), Bierens and Ploberger (1997), and Hardle and Mammen
convergeto zero asn ® ¥. Therefore, these tests are inconsistent against (4.2). It follows from
Theorem 4, however, that the adaptive, rate optimal test is consistent against this sequence if C is

sufficiently large.

4.2 Monte Carlo Experiments

This section presents the results of Monte Carlo experiments that illustrate the numerical
performance of the adaptive, rate-optimal test. In each experiment, a parametric null-hypothesis
model and two alternatives are specified. Monte Carlo smulation is used to estimate the
probability that the adaptive, rate-optimal test rejects the parametric model when it is correct and
the test’s power against the aternatives. To provide a basis for judging whether the test’s power
is high or low, the powers of the tests of Andrews (1997) and Hardle and Mammen (1993) are
also estimated by Monte Carlo simulation. In al experiments, the nominal probability of
rejecting a correct null hypothesis is 0.05. The computing time required for the experiments is
lengthy because al of the tests use of Monte Carlo or bootstrap methods to obtain critical values.
Accordingly, the designs of the experiments are smple so as to minimize the time required to
compute the test statistics.

The null-hypothesis model in the experimentsis
(43) Y =by+tbX +e; i=12,...,250
where each X isa scalar that is sampled from the N(0,25) distribution truncated at its 5th and 95th
percentiles. In experiments where (4.3) is correct (Ho istrue), bo = b; = 1. The ’s were sampled
independently from three distributions, depending on the experiment. These are N(0,4), a
variance mixture of normals in which g is sampled from N(0,1.56) with probability 0.9 and from
N(0,25) with probability 0.1, and the Type | extreme value distribution scaled to have a variance
of 4. The mixture distribution is leptokurtic with a variance of 3.9, and the Type | extreme value
distribution is asymmetrical.

The alternative models have the form
(44) Y =1+ X, +(B/t) (X, /t)+e,
where the 's are sampled from one of the three distributions just described and t = 1 or 0.25,

depending on the experiment. Figure 1 plots the function f (x) =1+ x+(5/t)f (x/t) for each
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value of t. The example of Section 4.1 suggests that the power of the adaptive, rate-optimal test
should be high compared to the powers of the tests of Andrews (1997) and Hardle and Mammen
(1993) in the case t = 0.25, where the difference between the null and alternative models consists
of a narrow peak. The power advantage of the adaptive, rate-optimal test is likely to be less or
even non-existent under the more moderate caset = 1. However, Theorem 3 suggests that the
power of the adaptive, rate optimal test should be satisfactory in comparison to the powers of the
other testswhent = 1.

The Xi’s were sampled once from the specified distribution and held fixed in repeated
realizations of the Y;'s. The values of by and b; were estimated by ordinary least squares.

Equation (2.9) was used to estimate s 2 in experiments with the adaptive, rate-optimal test. The

Hardle-Mammen test does not require an estimator of s 2 In experiments with Andrews’ test

and &’s with the normal or extreme value distribution, the distribution of the ¢'s was assumed to

be knownup to s 2 which was estimated from (2.9). In experiments with Andrews' test and e’'s
with the mixture-of-normals distribution, the mixing probabilities, 0.9 and 0.1, were assumed to
be known a priori. The variances of the normal components of the mixture were estimated from
estimates of the variance and fourth central moment of the e’'s. The variance was estimated from
(2.9). Thefourth central moment was estimated by

1 n 1
S Y
4n = 2n- 1)a (Yo+2) - (.))

The kernel used for the adaptive, rate-optimal test and the test of Hardle and Mammen (1993) is
K(u) = (15/16)(1- u?)?1(|u£ ).

Implementing the test of Hardle and Mammen (1993) requires selecting a bandwidth
parameter, h. Existing theory provides no guidance on how this should be done in applications.
We found through preliminary simulations that in all of our experiments, the power of the test is
maximized near h = 3.5 and varies little over the range 3 £ h £ 4. Accordingly, we used h = 3.5
for all experiments with the test of Hardle and Mammen (1993). The set of bandwidths for the
adaptive, rate optimal test was{2.5, 3, 3.5, 4, 4.5} in dl of the experiments.

The experiments were carried out in GAUSS using GAUSS pseudo-random number
generators. There were 1000 Monte Carlo replications in the experiments in which Hy is true and
250 in the experiments in which Hy is false. The larger number of replications for the
experiments with a true Ho insures that the probabilities of Type | errors are estimated reasonably

precisely. The lower number of replications with a false Hy conserves computing time while
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providing sufficient precision to be informative about the relative powers of the tests. Bootstrap
critical values for the tests of Andrews (1997) and Hardle and Mammen (1993) were computed
from 99 bootstrap resamples. There were 99 replications in the Monte Carlo procedure that was
used to estimate the critical value of the adaptive, rate-optimal test.

The results of the experiments are presented in Table 1. When Hy is true, al tests have
empirical reection probabilities that are close to the nominal probability of 0.05. None of the
empirical rejection probabilities differs from the nominal rejection probability at the 0.01 level.
The power of the adaptive, rate-optimal test is much higher than the powers of the other tests
when Hp isfaseand t = 0.25. All of the differences between the powers of the adaptive, rate-
optimal test and the other tests are significant at the 0.01 level whent = 0.25. The power of the
adaptive, rate-optimal test is similar to that of the Hardle-Mammen test but greater than that of
Andrews' test (p < 0.01) when Hpisfalseandt = 1. Thus, the simulation results are consistent
with the expectation based on theory that the adaptive, rate-optimal test has higher power than the
other tests in the presence of a relatively extreme aternative and has satisfactory power in

comparison to the others in the presence of a more moderate aternative.

5. CONCLUSIONS

This paper has developed a new test of a parametric model of a conditional mean
function against a nonparametric alternative. The test adapts to the unknown smoothness of the
aternative model and is uniformly consistent against aternative models whose distance from the
parametric model converges to zero at the fastest possible rate. This rate is slower than n2
Some existing tests have non-trivial power against local aternative models whose distance from
the null hypothesis decreases at the rate n™2. However, this rate is not achievable uniformly over
reasonable classes of aternatives. As a consequence, there are situations in which the new test
has much higher finite-sample power than do tests that have non-trivial power against n™? |ocal
aternatives. The new test is consistent (though not uniformly) against local alternatives whose
distance from the null hypothesis decreases at a rate that is only slightly slower than n ¥2. This
property provides some protection against the occurrence of situations in which the power of the
new test is much lower than that of existing tests. The predictions of theory have been illustrated

numerically by the results of a small set of Monte Carlo experiments.

APPENDI X
Sections A.1-A .4 present technical lemmas that are used in the proofs of Theorems 1-4.

The proofs of the theorems are in Section A.5. It is assumed throughout that Assumptions 1-6
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hold. To minimize the complexity of the notation, it is assumed that d = 1. The generaization to
the cased > 1 is straightforward but requires more complicated vector notation. The structure of
the proofs is as follows. In Lemma 10, we show that under Ho, T* has the same limiting

distribution as the verson of T* that is obtaned by sampling from the mode
Y, = F(X,00) +s (X;)w; , where the w; 's are independently distributed as N(0,1). This result
forms the basis of the proof of Theorem 1. Lemma 13 shows that P(T* >t,) ® 1asn ® ¥

whenever the distance between the parametric family A and f(3 exceeds a specified value. This

result forms the basis of the proofs of Theorems 2-4.

A.1 Moments of S,(q)
Lemmal: Let Abean” nsymmetrical matrix whose (i,j) elementisa;. Let{e: i=1,
..., N} beindependent random variables with Ee?=0, Ee?= s ?, and Eg* = 5. Then
n n n
o O _ 9 2
EQ A ajee;=a &si
i=1 ]:l i=1
and
g 4 IR Y T
Vala aaee;|=a a2asisjraails-3sy).
i=1 j=1 i=1 j=1 i=1
Proof: Obvious. Q.E.D.
Lemma?2: There are positive constants Cy;, Cnz, Cn, Cvi, and Cy, that depend only on Cy

and C, in Assumption 3, on Cg in Assumption 5, and on K such that for all h T H. ()
Cnih ™ £ Ny £Cyoh?, (i) Gysh  EVIZ £Cyoh7t, and (iii) Wi, £Cy -

Proof: Assumptions 3 and 4 imply that for al i

& (X=X,

(A) K - £ M (X,) £C,nh,
=1
& (X - X

(A2 aKkK - L1 £M,(X)£Conh,
=1
& (X=X,

(A3) K - 3 kMy,0(X;) 3 kCnh/ 2,
=1

and
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g [ Xi- X ’ 2 2
g K ==h | kM, (X)) kPGmh/2.
j=1

Therefore,
Kn(X - X; Kn (X - X;
(A5) h( i J)EWh(Xi,Xj)E h( i ]),
C,nh kCinh/2
k nh/2 C,nh
k*Cinh 2 Wh(Xi, X)) £
(Con h) i= 1 k“Ci(nh/2)

and the first assertion follows.

Next, since al elements of the matrix A, = W@\, are non-negative,

[ Al £ mex a 8 -

1£i£n
Using (A1) and é r;:lwh(xk,xj) =1, weobtainfor every i, k£ n,

C,nh

é & h =é é Wh(xk1xi)wh(xk’xj):é Wh(xk’xi)Ekcln—h/Z’

j=1 j=1 k=1 k=1
and the third assertion follows.
Now, the Cauchy-Schwarz inequality and (A2)-(A4) yield

2
g g C,nh
A6) a?, £ Xier X;)? X, X)2 £| —2——| £(C/nh)?
(AB) &y 9:1Wh( k )21Wh( ko Xj) [(kClnhIZ)z} ( )

for asuitable constant C. These inequalities give the bound

Ve =2a aa”hs 2(X;)s ? (X; )£2n[maxs (X)}[ max a”h) maxaa”h

1 je1 1£i,j£n LEiEn,
£2n[ maxs“(xi)}&.
1£i£n nh

A similar argument bounds Vh2 from below, thereby yielding (ii). Q.E.D.

A.2 Bounding bn(q)

Lemma3: Let Cy; beasin Assumption 1 and Cy beasin Lemma 2. For everyd >0

max Jon(@)]* £ CiCynd®.
hi H,qi QHq quE
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Proof: By Assumption 1() and the mean vaue
|F@)- F(ao)|® £Chfla- aof*. Therefore,

Iba@)[* =[MLLF (@) - Fao)]|®

=[F(Q)- F@o)I®MM[F(a) - F(ao)]

£ W, [ F @) - F@o)|®

n
£Cy é Cl21||q - %”2 £ CiiCynd?,

i=1
Q.ED.
Lemma4: Asn® ¥:
352 max iy 1R F (a) el = Op (D)
and

3n 2 max vy e = Oy ()

Proof: To obtain the first result, it suffices to show that for some constant C < ¥

R.1° 371 & Vi 2E|N, F(ao) aMpvel* £C.

h1 H,
Using Assumption 1(i), we obtain
E[N, F (@o) sMtve|” = Etr[Ri, F (a) sV, ee @\ R, F (o)]
£ Lrgagns (X )}tr[Nq F (do) @) *Ng F (@o)]

2 2 2
ELVET‘&X”S (Xi)}QﬂV(\AM) :
Therefore,

RuEd' @ Vﬁz[lrgl_ag s Z(Xi)}cfltr(vwmz

hT H,

[ max s *(X; )}Cﬂtrwwf

1£i£n

o4 2
Z[lgingns (Xi)}tr(\/\{w\m

The first result now follows from Assumption 5.
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To prove the second result, it suffices to show that
Riz® dit & Vi ElWeel“ £C
h1 H,

for some C <¥. Using Lemma 2, we get

- [¢] _ - o - -
Ri2=d" @V Nn €35 Q CnoGit £ CnaGits
hT H, hT H,

which proves the second result. Q.E.D.
The following result is a corollary of Lemma4.

Lemmab: Let Hy hold. Then for eachu >0

max  sup ViY@ e =0, (337 ?).
hl H,q1 Q:[g-ao| £n*2u

The following result holds when Hy isfalse.

Lemma6: Givenhl H,, let B, =|M[f - F(qo)]”. If By 3 V4, then for every u> 0 and

d>0,

P sup
al Qfa-qol|£n"?u

[f- Fa)Wdye|? dBﬁ] =o(1)

asn® ¥.
Proof: Assumption 1(i) and a Taylor series approximation to F(q) - F(q,) give

Cosp [ @Wel £]1F - Flao)anmyel
al Q:fa-gof£n*u
+n" V2N, F (o) MMl + n Y2 CEPu?Wel .
By this result and Lemma 4, it suffices to prove that B};“E” [f- F(qo)]¢l\41(17\41e||2 =0(1) asn®

¥. UseLemma?2to obtain
B, E| [f - F@olonmve]”

£| max s 2(X;) By [f - Fao)lWM)[f - Fao)]

£] max s ?(X;) By M|, [T - F@o)] QW)L T - F(go)]

|1£i£n
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= | max s 2(X,) (B My, Wi F - Fao)|”

|1£i£n

2 -2
=| max s “(X; Bh Cy-
|1£iEn ( I) N

Since B2 3 V2, the result follows from Lemma 2 and hys = 0(1) asn® ¥. Q.E.D.

A.3 Sequences of Local Alternative Models
Write the local aternative mode! (1.2) in the form f, =F(q,)+r ,g, ¢ 1 Q, where f,,
and g areasdefined in Section 3.4. Define
=ag inf |f, - F@Q)|.
Qon =arg i Q|| 2~ F@)|
This quantity exists for al sufficiently large n. Let I, denote the n” n identity matrix.

Lemma7: Define g~ =(l,- P,)g,whereP,isasdefined in Section 3.4. Then

fo - Fdon)- 148" | =00
asn® ¥. Moreover, the least-squares estimator ¢, satisfies
2
IF@n) - F@on)| = 0p(@)

asn® ¥.
Proof: See Millar (1982, Theorem 3.6). Q.E.D.

A.4 Gaussian Approximation of Quadratic Forms

This section presents properties of the centered, normalized quadratic forms
Ty =Vi 1S,@n) - Nil and T =[S,(a*) - Nyl/Vi,. Lemma 8 shows that T, =Ty +0, (1) for
al h. Let g =s(X;)w; (i =1, ..., n), where the w's are independently distributed as N(0,1).
Define Too =[[VWh&]* - Np]/Vh,. Lemmas 910 show that under Ho, maxy;y T, and
MaXpj y_ Tho have identical asymptotic distributions. This result is used in the proof of Theorem

1 to justify the smulation method for estimating the critical value of T*. Lemmas 11-14 provide

results that are used in the proofs of Theorems 2-3.
Define Y =F(X;,q,)+& (i =1, ..., n). Let q, and $2(X,) be the estimators of g,

and s 2(X;) that are obtained from the data set {¥*,X;}. Let T, be the version of T, that is
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obtained by replacing q,, with q,,, and s 2(X;) with $2(X;), and g with $ 2(X,)w; in (2.4)-
(2.6).

Lemma 8 Let s3(X)-s?%(X;)=0,(hy5) uniformly over i = 1, .., n. Then
Ty =Tho +0,(D) and T, = Tyo +0,(2) uniformly over h1 H.

Proof: This result follows from Lemmas 1 and 2 and an application of the delta method.
Q.E.D.

Lemma9: Asn.® ¥,

n

- [}
maxVy ' Q ain(e’ - s?)=0,(1).

hiH, 2

Proof: It sufficesto show that
. 2
R° a vh'ZE[é am,h(e?-s%} =o()
h1 H, i=1
asn® ¥. Taking the expected value gives
. 2
o - o
Ri=a Wi Zla 3 (S - 54)} :
h1 H, i=1
By Assumption 5, s, £5 “C¢ . By Lemma2, Vj;? £Gyih and a; , £ Cy (nh)*. Therefore,

R.E A qih[én C& (nh) %s “cé}

hT H, i=1

enlgicis“ct § h
hT H,
£n7'CyaCRs “Cehyac(1- @)
The lemmanow follows. Q.E.D.
Lemma 10: Let Ho be true. Then maxyjy Ty and maxuj Tho have identical

asymptotic distributions.
Proof: By Lemmas 8 and 9, it suffices to show that the joint distributions of

Vi'd aneie; (h1H,) and V' a; .88, (hT H,) are asymptotically the same. For h 1

it it

Hn, and x; =€, or & (i =1,...,n), define
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Bon (Xp-%p) =Vi '& & XX -

it
Let B,(Xq,....X,) bethe vector that is obtained by stacking By, (Xy,....X,,) (h1 H,). Letg, bea

3-times continuously differentiable function on A J» . Define

g (v)
v; v TIvie

= su max
Gan o Aen i) k=1,.,3,

The proof takes place in two steps. Thefirst step is to show that
L 332
(A7) |EQ[B,(ey,....€n)] - EQ[B, (L., &€ ChUan| 50372
n hmin
for any 3-times differentiable g, some finite constant ¢y, and all sufficiently large n. The second

step uses (A7) to prove that V;'Q a;neie; (hT H,) and V'3 a; &8, (hT H,) have the

it it
same asymptotic distribution.

Step 1: Define by , =& /V,,. Assume without loss of generdity that s (X;) =1 for all
=1 .,n [If s(X;)t1, replace e; with e /s(X;), & with & /s(X;), and by, with
b rs (Xi)s (X;) ] Itiseasly shown that

(A8) ”Eg[ Bn (e11---1en)] - Eg[ Bn(§11---1§n)]||

Eé||Eg[Bn(el1---1ei1§i+11---§n)]' Eg[Bn(elv--ei-Léuv-wén)]”,
i=1

where B, (e4,...,61,6n41) © B,(€1,---,€,) and B, (eq,€;,€,)° B, (€y,-..,6,) . We now derive an
upper bound on the last term of the sum on the right-hand side of (A8). Similar bounds can be

derived for the other terms. Let u,.4,D,, and Bn, respectively, denote the vectors that are

obtained by stacking
n-1 n-1
_ o] o]
Un=a a bjnee;,
i=1

1
i

1|

nc;l
Dhn =2€na Bnn€i
i=1

and
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1

=}

" QYo

Dh,n :Zén k%n,hei .

1

|
Then a Taylor-series expansion of the last term of the sum on the right-hand side of (A8) about

e, =€,=0 yieds

|EQLBy (€101 - EQLBy (€118 1,80)]| £]EG&Un. 1)(Dy - Dy)|

+(1/ 2)|E[DRIHy 1)D;, - Dog®uy, 1)D,]11+ (gsn / 6XE]DA|* + E[B[ )
where g¢ and g@, respectively, denote the gradient and matrix of second derivatives of g. Since
e, and &, areindependent of e,...,e,, 1, Ee, =E&, =0, and Ee? = E&2 =1, we have
E(D, - Dyle;,....e,.1) = E[(D,Dg- D,D§)le,,....e, 1] =0.
Therefore,

(A9 |EGIBy (€1, €0)] - EGIBy(Brre Bn)lIE (03 / O)(EID, + E[B).

To find bounds on E|D,|* and E||5n||3, let y,, be the vector that is obtained by stacking by, , (h

=1,. ,J,). Then Holder sinequality gives

E”Dn” = Elenl E 2a k%nei
i=1
> 3/4
3 o nc;l 2
£8Ele ' El & | A bnnei
hi H, \i=1

. Sl H, L]

1 3/4

_ 3 ] ] nc;

_8E|en| Ea a a n,hbjn,hbkn,sbk‘n,seiejekek‘
hiH, d Kk, =1

3/4
3 2 2 n‘;l 2 12 n‘;l 2 K2 4
:8E|en| E a a (hn,hbjn,s +2hn,hhn,sbjn,hbjn,s) +a k%n,hhn,sE(ei )
hi H, sTH, |i,j=1 i=1
it
3/2
nhmin
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for some finite ¢ > 0, where the last line follows from Lemma 2 and (A6). A similar result holds
3

for E‘ Bn . Therefore
3 3 3/2
3 I~ n
E|Dy|* + E[D, EZC(nhmn) ,
and (A9) gives

3/2
G o) BB ey 1 B e /3 0 |

Similar bounds hold for the other terms of the sum on the right-hand side of (A8). Summing the
bounds yields (A7).
Step 2: It suffices to show that for any real z

lim<{ P| maxB,.(e,....,e.) £ z|- P| max €,..,e)Ez|t=0
n®¥{ |:hTHn hn( 1 n) i| |:hTHn Bhn( 1 n) :|}

or, equivaently, that

EQ By E1en)EZ- EO 1[ByEL....8,) £7]|=0.

lim
¥ hin, hi H,

Let g be a non-decreasing function that is 3 times continuoudly differentiable on the real line and

satisfiesg(v) =0if vE-landg(v) =1ifv3 0. Letd,, = Jr',z. Some a gebra shows that

A10) [EQ B, (r..en)£d- EQ I[By@,.8,) £
hi H, hi H,
£lE @) o Bnluanen)- 2] £ & g[ B (B1,--,80) - z}
hiH, L dn 4 niH, d,

+ § Elg| BmCrf)- 2 g 6 e yE7)

hi H, L dn i
+ & Elg Bin (61,1, €0) - 2 I[Byy (8L, 8,) £7] |-

hi H, L dn i

Each term of the summands of the second two sums on the right-hand side of (A10) is bounded
from above by J d, = Jr',l. Therefore, using (A7) to bound the first term on the right-hand side
of (A10) yields
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15/2
+2J31

n -

(A11) ‘P[H]ax B (€1,--.8n) £ z} - P[max B (€1,--,€,) £ z}

n

n
£ n2p32
min

The lemmafollows by taking limitsasn ® ¥ on both sides of (A11). Q.E.D.

Lemmall: For any z3 1, hi H,, and all sufficiently large n

P(T,>2) £Eexp(- 22/ 4).

Proof: Write eM\W e =wEBWW Sw, where S is the diagona matrix whose (i, i)
element is S (X;) and wisan” 1 vector of independent N(0,1) variates. Let L be the diagonal
matrix of eigenvaluesof SW®V S, {I: i = 1, ..., n} bethe eigenvalues, and P be the orthogonal
matrix such that SW¥{S=P &P . Define Z = Pw. Then the elements of Z are independent
N(0,1) variates,

SWWE=3 1,2,

EEWWE) =4 |,

i=1

and

V20 Var (EGWV,E) =28 12.

i=1

Therefore,

:|—;0 :V_lé I i(Ziz_ 1)-

i=1

It now follows from the Chebyshev exponential inequality (see, e.g., Loéve 1977, p. 160) that for
every m> 0,

Q.°P(To>2Ee r”Eem{rrv'lé’l |z - 1)]

i=1

Since the Z; are independent N(0,1) variates,
iy i
Eexp[m/'la | .(Z2- 1)} =Qexp[- V1 - (1/2)log(1- 20V )]
i=1 i=1

whenever mv 1 . <1. It follows from Lemma 2 and Assumption 5 that V1 ; < d for any d > 0

and all sufficiently large n. Therefore, using the inequality Hog(1 —u) £ u + u® for al sufficiently

small u > 0, we have

28



Eexp[rrv'lé’ln |, (Z2- 1)} £ 6 exp(2nfV 11 7) = exp(- nf),

and
Qn £ eXp(- nE+ mz)
for al sufficiently largen. The lemmafollows by setting m= /2. Q.E.D.

For 0<a <1, define t, tobethel - a quantile of max; H, Tho -

Lemma12: For all sufficiently largen, t. £ 2,/logJ, - loga .
Proof: Letz3 1. By Lemmall,

P[maXﬁo>Z)£ é P(Tho>2)
hi H, hi H

2
£ é exp[- ZZJ

hl H

n

Therefore,
-f2

afJ ex a_ |
n €XP| 2

The Lemma follows by taking logarithms on both sides of this inequality. Q.E.D.

Lemma 13 Let f;*:max(f;,\/Zloanh/ZIoan). Suppose  that

ML T - F@][ 2 A, * for somehT H,, Then

lim P(T*>t,)=1.
ne ¥ ( a)

Proof: By Lemma8, T* can be replaced by maxyj y Tyo. By Lemmas8and 10, t, can
be replaced by t, . Thus, it suffices to prove that

lim P(maxT,>t )=1,

ne ¥ (hT H, o > ta)

which holds if

lim P(T,,>t,)=1
n® ¥ (hO a)
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forsomehi H,. Foranyhl H,,

- * 2 2 *
Tho=Tho + ”bh(q )” t/hb'qq Whe .

Therefore, by Lemma6,
e
Tho = Tho +w +0,(1),

and

>t).

~ Nk
n”®nl P(To>t)= n|i®nl P(Tho +w

But [, @) = W[ - E(q*)]||2. Therefore, [W[ f - lf(q*)]||2 34V E*,

b, @)’
V

h

limP(T,, +

—~ ST ~ —~ } ™%
lim >T)2 limP (T, >T - 40 @ 1
asn® ¥ because T, isbounded in probability and T, - 4L* ® -¥ asn® ¥. QE.D.

Lemma 14: Let hT H, Let m be the largest integer that is less than s. Let | be a
subinterval of [0,1] with length h, = (m+ 1)h. Let x denote the center of |. Let V, , be the (m+

1)" (m+ 1) matrix with elements

_O Xi'Xk+€
Vive=a | .

i:XT1 h
There exists a number R depending only on the constants C; and C, from Assumption 3 such that

Mel, £R

“Vh”l";é ER.

Proof: Thisresult is proved for the case of aregular design in Ingster (1993c) and for the

and

case of a design satisfying Assumption 3 in Hardle, et al. (1997, Lemma 6.6). The idea is as

follows. To obtain a non-degenerate, non-singular V;, ,, it suffices to have m + 1 distinct design

points inside the interval 1. Under Assumption 3, | contains O(nh) points, which is more than
sufficient. Q.E.D.
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A.5 Proofs of Theorems

Proof of Theorem 1: By Lemma8, maxp; Ty =Mmaxy; y Thg +0,(1) . By Lemma 10,

maXp iy Tho ® d MmaXpj y_ 'ﬁ,o a n ® ¥. A further application of Lemma 8 gives
maxyi 1y Tho ® @ maxy; Ty +0,(2). Therefore,  maxyi y Ty ® ¢ maxy; Ty +0,(2) .
Q.E.D.

Proof of Theorem 2: By Lemma 13, it suffices to show that ||V\41[ f - If(q*)]”2 3 AL

forsomehi H,and all sufficiently large n, where
- 2
*=arginf |f - F .
q*=agir |f- Fa

Because hyax ® Oasn® ¥ and W[ f - F(q)] isthe result of smoothing the continuous function
() — F(s ) by the kernel method, [MA[ T - F@)| @ |- F@)| asn® ¥. But under H,
iian”f- F(q)”23 cn for some ¢, >0 and al sufficiently large n. The result that
q

||V\41[ f - If(q*)]”2 3 4V, t,* now follows from Lemmas 2 and 11. Q.E.D.

Proof of Theorem 3. By Lemma 13, it suffices to show that

B2 © ||V\(1[f_ - If(qoln)]”2 3 4V, t,* forsomehl H,and al sufficiently large n, where

Gon =agnf |, - F@)".
To show this, use the inequality a®3 0.5b° — (b — a)” to write

BI% 3 05r ﬁ”\MQA ||2 - ||\N—|[ 1:_n - IE(QOn) -r ngA ]”2
By Lemmas 2 and 7,

||\N—|[ 1?n - E(QOn) -r ngA ]”2 £|W”¥

asn® ¥. Moreover, because hnox ® Oasn ® ¥ and MgA is the result of smoothing the

_ — A2
fo- Fldon)- 1ng" | =000

A A2 A2
continuous function g by the kernel method, ||V\419 ” ® ”g ” asn® ¥. Therefore, for

sufficiently large n,

A

B2 3 0.25r 2g" | = 0.25r %d?|g|f * 0.25nr %d?.
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Set h=h_, =C,(loglogn)?. Then theorem follows from the definition of r , and Lemma 2.
Q.E.D.
Proof of Theorem 4: Let g=f - F(g*). Then by Lemma 12, (3.4) and the definition of

SH,9),
(A12) n ]J2||g|| 3 Ca(n- li.;* )25/(4S+l)
and |g|,, . £C, for some Cy <¥ . By Lemma 13, it suffices to show that ||\/\41g||2 3 AV t* for

someh1 H, Thisisdone by approximating g by a piecewise polynomial function and proving

that each segment of the polynomial satisfies the required condition.

Set hy =(h'x )?“sD | Then nh?s =h; V2L *. Selecthi H,suchthat by £h<2h. It
will now be shown that ||\/\41g||2 3 AV, t,* for the selected h. First, observe that by Lemma 2(ii),
V,, £ G, ,h"Y2. Moreover, sinceh 3 hy,

v, t* £4Ch Y2Ex £4Ch Y2 =4C,nh?S £ 4C,nh?S.
Therefore, it suffices to show that
(A13) |Wg|® 2 4G, ,nh%.

Let m be the smallest integer lessthans. Set h, = (m+ 1)h. Let | be a subinterval of [0,1] with

length h,. Let x denote the center of 1. The smoothness assumption |g||,, . £C, implies that

there exists a polynomial

m
P(U)=bgo+b, ”;] X+...+bm[”'—hx)

such that |g(u) - P(u)|£ Ch® for al u with |u- x|E h, /2+h,, where C depends only on C, and

m. Define

WL(X) =  wh (X, X, a(X;) -
j=1

Define W,P(X;) similarly. Then, since wy(X;,X;)=0 for al X; with |X;- X;|[>h,

MLA(X;) - W, P(X{)IE Ch®. Moreover,
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A lgXDPE2 & IP(X)P+2 & 19(X) - P(X)P

X1 i:X11 X1

£2 4 IP(X)F +2N,C?h?,
i:X 11
where N, denotes the number of design pointsin . Similarly
2 251 2 2 2|25
aMa(X)F® = a PO - N C*h™s.

X X

Let V,,, bethe(m+ 1) (m+ 1) matrix with elements

_ [} XI - X ket
Vie = A h .

i:XT1

Let b =(bg,...,b,,)¢. Then

A IP(X)P=be/, b,
X

and, by Lemma 14, b/, ;b £ R|b|*. Equivalently, [b|* 3 R *bé4, b

Now define the numbers zy (i =1, ..., n; k=1, ..., m) asthe solutions to the equations

(5] —Elwh(x“x,)[—h j -

Define V, , to bethe (m+ 1)" (m + 1) matrix with elements

~ o (Zy - x\* Z, - X !
Vo= a ( ik ) ( L ) k,/=01,...,m
. X h h

Itiseasy to seethat X - Zy| £ hforal k=0, 1, ..., mand for al i with X1 1. Therefore, for

every k, the sequence {Zy: X1 1} satisfies Assumption 3, and Lemma 14 applies to \7}M This

yields [V, |, £R and ||, £ R. Next, by definition of Zy,

_ Zj - X Zim - X "
WhP(X;) b +by o= by ST

0 that
a W,P(X)P =baf,b .

X

Similarly, b&/,b3 R*Yb|. Therefore,
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a Mya(X)F 2 % & W,P(X,)P - N,C%h%

X1 X1
=(1/2)b&/, b - N,C?h?*
3 (/2R Yb|? - N,C2h%

3 (1/2)R b, b - N,C*h?

_ 1 2 2 21.2s
=— a lP(X)I - N;Ch
2R X1

L& 190x)R- §N|02h25-
iX11

X1

3

Now split [0,1] into N intervals, Iy, ..., Iy of length no greater than h,.

inequality to each interval yields

n N
(A4 & Ma(X)P=a & Mha(X)P

i=1 =1 i1,
18 o 3 )
‘—a a lg(X;)F - Ea N|jC2h25
4R j=1 X1, =1
1 & 2 2p,2s
= =2 & 1906)F - (3/ Inch?™
i=1

Applying the foregoing

Inequality (A14) combined with (A12) implies (A13) for sufficiently large C,in (3.4). Q.E.D.



FOOTNOTES
! The fixed design formulation used here includes as special cases random designs in which the

distribution of X is absolutely continuous with respect to Lebesgue measure. If (Y, X) is arandom
variable, then the null hypothesis is that f(X) = F(X, g) almost surely for some q 1 Q. The
alternative hypothesis is that P[f(X) = F(X, q)] < mfor every qT Q and somem< 1.

2 Andrews (1997) assumes that the distribution of g in (1.1) is known up to a finite-dimensional
parameter. Thus, Andrews tests a parametric model of the conditional distribution of Y not just
the conditional mean function. It is not difficult, however, to modify Andrews test so that it
becomes atest of a hypothesis about f alone. See Whang (1998).

® Triebel (1992) provides definitions of Holder, Sobolev, and Besov spaces.

*  The condition s 3 d/4 is unlikely to be restrictive in applications because the curse of
dimensionality makes nonparametric estimation and testing unattractive when d is large. Hart
(1997) discusses tests that have the optimal rate of testing when s < d/4.

®> Guerre and Lavergne (1999) describe a method for achieving the optimal rate of testing against
an dternative of known smoothness. Their test is not adaptive and its behavior against

alternatives of the form (1.2) is unknown.

® Hérdle and Mammen (1993) use the integrated squared difference between f, and F,. As they
note, the properties of their test are the same with summed or integrated squared differences
except, possibly, for the values of constants in the expressions for the mean and variance of the

test statistic’s asymptotic distribution.

" The variance estimators described in this section are not the only possible ones. For example,
Hart (1997, Section 5.3) describes an alternative estimator that is unbiased if X; is a scalar,

F(x,q) is a linear function of x, and the ¢’s are homoskedastic. The choice of variance

estimator does not affect the asymptotic properties, adaptiveness, or rate optimality of our test.
The choice may affect the small-sample performance of the test, but investigation of the small-

sample performances of aternative variance estimators is beyond the scope of this paper.

& If the form of the heteroskedasticity of the g’s is known, then this knowledge can be used to

form a variance estimator. For example, if Y is binary, then s 2(Xi) can be estimated by

fn(Xi)[l- fn(Xi)],where fn(x) is a nonparametric estimator of f (x) .
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TABLE 1: RESULTSOF MONTE CARLO EXPERIMENTS!

Probability of Rejecting Null Hypothesis
Di stribution Andr ews’ Har dl e- Manmren Rat e- Opt i mal
e t Test Test Test
Hul I Hypothesis Is True
Nor mal 0. 057 0. 060 0. 066
M xture 0. 053 0. 053 0. 054
Extremne
Val ue 0. 063 0. 057 0. 055
Hul | Hypothesis Is Fal se
Nor mal 1.0 0. 680 0. 752 0.792
M xture 1.0 0. 692 0.736 0. 796
Extremne
Val ue 1.0 0. 600 0. 760 0. 820
Nor mal 0. 25 0. 536 0.770 0.924
M xture 0. 25 0. 592 0. 704 0. 932
Extremne
Val ue 0. 25 0. 604 0. 696 0. 968

1

the 0.01 level whent = 0.25.
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The differences between empirica and nominal rejection probabilities under Hy are not
significant at the 0.01 level. Under Hy, the differences between the rejection probabilities of the
rate-optimal and Andrews test are significant at the 0.01 level. Under Hj, the differences
between the rejection probabilities of the rate-optimal and Hardle-Mammen tests are significant at
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