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Abstract

We consider a multi-stage game of fund-raising for a public project
with a random number of potential contributors. The fund-raiser, who
observes this number, decides whether to reveal or suppress the infor-
mation before contributions are given. The fund-raiser’s objective is
to collect maximal contributions. We show that whether the pub-
lic project is convex or non-convex can be the key to the fund-raiser’s
announcement decision. If the technology is convex, this number is al-
ways revealed. In the non-convex case the number may not be revealed
at all or sometimes revealed only when it is in an intermediate range.
When the number is not revealed, the fund-raiser induces largest total
contributions by making a non-binding appeal that the contributors
contribute a specified minimum amount. Journal of Economic Liter-
ature Classification Numbers: D73, H41.
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1 Introduction

Organizing potential beneficiaries of any public project and persuading them
to make voluntary contributions can be a challenging task. Important in-
formation about prospective contributors must be taken into consideration
in designing fund-raising schemes that are reasonably simple. While in the
direct contribution models of public goods the planner has practically no role
to play, in the mechanism design approaches the planner often employs quite
sophisticated rules. We present a model of fund-raising and public good con-
tributions intermediate between these two dominant approaches and address
some new issues.

A standard working assumption by many researchers in the public goods
literature is that of complete information by the players (or contributors)
about the different characteristics of the contribution/provision game. One
such characteristic, quite important for the contribution decisions of any
contributor, is the number of potential contributors.! However, it is more
likely that the fund-raising organizations, rather than the contributors, will
be better informed about such crucial data, and therefore have the option
of concealing or publicizing their information to the contributors: whether
a public good game is a complete or an incomplete information game is
determined endogenously.

We focus on the question of strategic information revelation by a fund-
raiser who wants to collect maximal contributions for a public project. The
number of potential contributors is random. In the early, preparations stage,
the fund-raiser learns the number of potential contributors and decides wheth-
er or not to announce this number. In addition, the fund-raiser may appeal
that each contributor contribute a specified minimum amount towards the
project. We ask whether such non-binding appeals can possibly play a strate-
gic role in influencing the contribution decisions. We address these questions
for two types of public good production technologies — a convex technology
that involves zero minimal production, and a non-convex technology that
requires a positive minimal production for the project to be viable. This
distinction, as we show, turns out to be crucial.

!Bergstrom et al. (1986), Andreoni (1988), Admati and Perry (1991), and Varian
(1994a) analyzing direct contribution games, and Bagnoli and Lipman (1989), Jackson and
Moulin (1992), Varian (1994b), and Bag and Winter (1999) proposing various mechanism
design solutions to the free-rider problem, all assume complete information environments
and, in particular, assume that the number of players is common knowledge.



Some opposing evidences and intuitions about information revelation is-
sues motivate our work. A fund-raiser may prefer concealing the presence of a
sizeable number of potential contributors to portray a less optimistic picture
and create sympathy in the minds of the contributors. On the other hand,
there is also the opposite view that sometimes the organizers want to assure
the prospective contributors of a critical mass of committed contributors so
that the public project is almost guaranteed to take off (Andreoni, 1998).
Intuitively, two countervailing scenarios may play on an individual donor’s
mind: if he knows there are too few potential contributors, the project may
not be successfully launched even with the maximum amount of contribu-
tion he is willing to make, thus discouraging him against contribution; on
the other hand, if he knows there are many potential contributors, the im-
portance of his individual contribution for the project’s viability as well as
his own marginal benefit become negligible, again discouraging contribution.
Thus, the fund-raiser’s strategy to inform or not to inform potential contrib-
utors should depend on the expected reaction of the contributors, which in
turn depends, as we will argue, on whether the public good technology is
convex Or nON-CONvex.

A number of recent contributions to the fund-raising literature addresses
important strategic issues affecting fund-raising arrangement: provision of
specialized public goods induces higher overall contributions (Bilodeau and
Slivinski (1997)), donations signal contributor’s wealth (Glazer and Konrad
(1996)) or the quality of charity (Vesterlund (1999), Andreoni (2000)), and
often bring prestige (Harbaugh (1998)), confer warm-glow and satisfy snob
appeals (Romano and Yildirirm (forthcoming)).? Our work is closer to An-
dreoni (1998), who studies a two-phase fund-raising arrangement where in
the first phase the fund-raiser’s principal objective is to secure the promises
of contributions from the government or “leaders” to remove any uncertainty
for the public that the project might not take off, which then jump-start the
main contributions phase from the public. We complement Andreoni’s work
by shifting attention to another important phenomenon, though somewhat
of a contrasting flavor than the one pointed out by Andreoni, that of appeals
to the public by fund-raising organizations that without their help some pro-

2While all of these papers are in pure public good setting, Teoh (1997) and Hermalin
(1998) respectively analyze, in team environments with public good like features where
the overall productivity of joint efforts depends on an underlying ‘state’, how mandatory
disclosure rules to announce the state, and the signaling of the state through own action
by an informed leader, influence the team members’ efforts.



posed project(s) might not take off.3 Implicit in such appeals is the message
that the number of potential contributors is not large and therefore each
contributor must offer generously to rescue the project. Thus, the worry
that the project might not take off may guide a fund-raiser to choose differ-
ent strategies: Andreoni highlights the need for early assurances about the
project’s success to the yet untapped contributors, whereas we consider the
possibility of a failed project to motivate potential contributors for generous
contributions; there are no “leaders” in our model. Specifically, we focus
on the fund-raiser’s strategic use of the private information about the num-
ber of potential contributors. For large number of potential contributors a
rough intuition gained from Andreoni (1998) suggests that the fund-raiser
should announce this information, whereas the intuition for free-riding ex-
emplified in another paper by Andreoni (1988) suggests that the fund-raiser
should hide the information. For small number of potential contributors,
again symmetrically opposite intuitions appear puzzling.

We show the following results. If the public good production technology
is convez, the fund-raiser will always reveal his information about the num-
ber of potential contributors, because failing disclosure the contributors tend
to associate positive beliefs to outcomes favorable for free-riding which the
fund-raiser wants to avoid. The results and their intuitions in the non-convex
case are strikingly different. When the technology is non-convez, there can
be multiple equilibria with different symmetric contributions. First, there al-
ways exists a revealing equilibrium in which the fund-raiser announces if the
number of potential contributors (weakly) exceeds a threshold number and
suppresses otherwise; total contributions following announcement are just
enough to make the project viable, but collapse to zero following suppres-
sion. In addition, there may exist partially revealing and/or non-revealing
equilibria. In a partially revealing equilibrium, the fund-raiser suppresses
small turnouts to avoid the zero contributions outcome and suppresses large
turnouts to avoid too much free-riding, but announces intermediate turnouts
inducing just enough contributions making the project viable. In a non-
revealing equilibrium, the number of potential contributors is always sup-
pressed so that contributors with the expectation of a viable level turnouts

3Instances of such appeals are quite common: public radio and television broadcast-
ing stations appeal to the public for support subscriptions to maintain key items on the
program list; schools and universities appeal to their alumni for contributions towards
further development of important units that may potentially benefit the alumni’s children
or relatives; etc.



would make positive contributions and the fund-raiser gets to collect high
overall contributions in the case of large turnouts. Total contributions are
largest in a non-revealing equilibrium, followed by a partially revealing equi-
librium, and lowest in a revealing equilibrium. Hence, the fund-raiser prefers
the non-revealing equilibrium most, while the contributors prefer the reveal-
ing equilibrium most. Because these equilibria involve suppression of different
sets of number of contributors, it is not clear how the contributors can infer
which equilibrium is being played when they receive no information about
the number of contributors. In such situations, the suggestion of a mini-
mum per-head contribution by the fund-raiser can signal his strategic intent,
provided the contribution game also has a symmetric equilibrium with the
contribution recommended by the fund-raiser. Thus, non-binding appeals
requesting a minimum per-head contribution can serve the purpose of select-
ing the fund-raiser’s most preferred equilibrium. Our results suggest that
such appeals are effective only when the technology is non-conver and the
fund-raiser finds it optimal to conceal the number of contributors.*

The suggestion of a minimum contribution is a simple enough proce-
dure and a salient feature of many real life fund-raising campaigns. Thus,
if announcement of the number of potential contributors is perhaps less ob-
served in practice than the revealing equilibrium of our model suggests should
happen, the equilibrium selection motive we highlight explains why the fund-
raising organizations might be reluctant to announce the number of potential
contributors and the non-revealing equilibrium is the more likely outcome in
practice.

The paper is organized as follows. Section 2 presents the fund-raising
games. In Section 3, we analyze these games for the case of a convex tech-
nology. Section 4 introduces non-convexity and reviews its implications for
information revelation and contribution decisions. Section 5 concludes. An
appendix contains the proofs of propositions 1 and 2.

2 The Fund-Raising Games

A public good project will have to be financed through private contributions.
The number of potential contributors, hereafter called players, is random:

4The fund-raiser’s per-head contribution suggestion will have no impact in the convex
case because the contribution game has a unique symmetric equilibrium in which the
fund-raiser reveals the number of potential contributors.



p(k) is the probability that there are k € {1,..., N} players chosen by Na-
ture, >~ p(k) = 1, and p(-) is common knowledge. Given any number of
players k drawn by Nature, each of the potential N players will be assumed
to have an equal chance, k/N, to be included among the k-players, so that
potential players’ names do not matter for the players’ or the fund-raiser’s
decisions.®

As in the fund-raising literature, we assume that the fund-raiser, here-
after referred as the “planner”, maximizes total contributions.® The players
maximize (net) expected utilities and have identical quasi-linear preferences:”

u(m; — g;,G) = v(G) + m; — g;, with () >0, and v"(:) <0,

where m; is player ¢’s endowment of a single private good, g; is ¢’s contri-
bution, and G is the level of public good. The level, G, depends on an
underlying technology, thus total contributions and the level of public good
provided may differ.

Below we consider a basic, simpler fund-raising game in which the planner
may choose to announce or conceal the number of players. In the extended
version we allow the planner to also announce a suggested per-head contri-
bution. We assume zero cost of information announcements; similar results
obtain in the presence of an operational cost.

2.1 The game I

The basic fund-raising game, denoted I', consists of two stages. Stage 1 can
be called the preparations stage, while Stage 2 is the contributions stage
when the fund drive is launched.

Stage 1. The planner observes k and then decides whether to announce
or suppress k.

Stage 2. Having observed the planner’s announcement or no announce-
ment, the players update their beliefs p(k) and simultaneously decide on their
contributions.

The strategy to learn and accordingly decide whether to announce cru-
cial information about the contributors is an important part of campaign

5See Andreoni (1998) where players’ names do matter — there contribution from the
leader is the key to a project’s survival.

6Strictly speaking, the fund-raiser is different from a traditional planner whose primary
objective happens to be either efficiency or equity.

"Quasi-linearity simplifies the analysis. Our results hold under weaker assumptions.



management. Fund-raisers gather information about potential donors in the
preparations stage and they have the option of disclosing or not the informa-
tion collected to the prospective donors. In our model, because the prospec-
tive contributors are identical, the only relevant information to be disclosed
is their number.®

The strategies in T' are defined as follows. The announcement strat-
egy of the planner is a map a : {1,...,N} — {1,..., N} U {0} such that
a(k) = {k,0}. We have a(k) = k if k is announced and a(k) = 0 if k is
suppressed. Announcement of & is assumed to be always truthful, as non-
truthful announcements are illegal and/or seriously undermines the planner’s
authority. Given an announcement strategy a(-), the set of announced k’s is
denoted by A and the complementary set is denoted C. Players’ (common)
beliefs following planner’s announcement decision is a probability distribu-
tion () over the set {1,..., N}, derived from the priors using Bayes’ rule,
whenever possible. Thus, given an announcement strategy a(-), if the plan-
ner announces k, then u(k) = 1 and p(n) = 0,n # k. If the planner makes
no announcement, each player revises the probability that & players are in
the game conditional on his own presence, as®

(k) pr({n =k}|{n € C} N {I’'m in the game}), for k€ C #0
a 0, for k € A.
pr({n=k}n{nec}n{I’'m in the game})
= pr({nec}n{'m in the game}) fo;‘ork ke ecjlé@

0,

Finally, the contribution strategies of the players depend on the planner’s
announcement a(-) and beliefs u(-), that is, g; : {1,..., NJu{0} x [0, 1]V —
R..

We require the strategies and the belief system (a*(-), {g;(-, )}, u(+)) to
form a perfect Bayesian equilibrium. The analysis will make use of the fol-
lowing assumptions about the equilibrium strategies.

8With heterogeneous preferences, the planner will announce the number as well as the
identities (or preferences) of the participants, but this will complicate the analysis without
altering the main message of our paper.

9To give an example how to calculate the posterior, for N = 4, C = {1,4}, A = {2, 3},

(1) = pr({n =1} N{Tm in the game}) _ (1/4) - p(1)
pr({n € {1,4}} N {I’'m in the game})  (1/4)-p(1) + (4/4) - p(4)




Assumption 1 (Symmetry) Whenever there are both a symmetric contri-
butions equilibrium and an asymmetric contributions equilibrium yielding the
same total contributions, players always play the symmetric equilibrium, so
that g7 = g5, 1,5 € {1,2,...,N}.

Assumption 2 (Tie-breaking) If announcing and suppressing k yield the
same payoff for the planner, then he suppresses k.

Assumption 2 is a working assumption; even a slight cost of making an an-
nouncement would break the tie in favor of not making an announcement.!®
Assumption 1, which can be justified by the focal point argument, simpli-
fies the analysis. Hereafter we shall drop the subscript i from equilibrium
contribution strategies and refer to a perfect Bayesian equilibrium satisfying
assumptions 1 and 2 simply as “equilibrium”.

2.2 The game I'*

We shall also consider the following extension of the game I', denoted I't, to
investigate the potential role of contribution suggestions by the planner:

In Stage 1 of the game T, along with the announcement af(-)
of the number of players, the planner additionally announces a
suggested per-head contribution g°. All remaining aspects of T’
are preserved in I'".

The recommendation of per-head contribution in I'* cannot be binding on
the players.

3 The Convex Technology Case

In this section, we consider a convex technology for the public project. For
simplicity we assume that the level of public good is the sum total of indi-
vidual contributions.!!

10We could alternatively assume that the planner announces k whenever he is indif-
ferent and the equilibria of the game would essentially remain intact, except for the bad
equilibria in which each player contributes zero when no information is announced about
the potential number of contributors.

"This is much stronger than needed for our results. Letting f(> g;) = G denote the
public good production technology, a continuous production function f that preserves
strict concavity of v(f(z)) in z is sufficient.



To begin with the analysis of the game I', suppose that the planner an-
nounces the presence of k£ players. In the continuation game (stage 2), the
symmetric individual Nash equilibrium contribution g*(k) is determined by
the first-order condition v'(kg*(k)) = 1 which, defining G through v'(G) = 1,
can be written as

V'(kg'(k)) ='(G). (1)
Therefore, g*(k) = G/k and the aggregate Nash contribution equals G. The
equilibrium is immune to deviations to g; = 0 if

v(G) — g (k) > v((k —1)g" (k). (2)

Consider now a non-revelation policy. If the planner adopts the strategy
of never announcing the number of players, whatever be this number, then
in Stage 2 the symmetric Bayes’ Nash equilibrium contribution of a player,
g*(0), will satisfy

p(L)v'(g7(0)) + n(2)v'(2°(0)) + ... + w(N)'(Ng™(0)) = '(G).  (3)

Clearly, G/N < g*(0) < G. Therefore, there exists some kg < N such that
for all k > ko, g*(0) > G/k, and for all k < ko, g*(0) < G/k. The following
result is implied.

Lemma 1 Compared to the revelation policy, the policy of non-revelation
leads to lower public good level ex-post when less than ko number of players
turn up, but higher public good level ex-post when at least kg number of players
turn up.

The intuition behind Lemma 1 is simple. Non-revelation of the number of
players creates uncertainties for an individual player whether he is among a
“few” (that is, k < ko) or one among “many” (that is, k& > kq). The prospect
of many other contributions enhances free-riding incentives and results in a
lower public good level when the number of players turns out to be small.
On the other hand, the players also consider the possibility that there may
be only a few of them, which induces each player not to rely too much on
free-riding opportunities and hence insure himself by contributing more than
what he would contribute under perfect information of a large number of
players. This induces a higher public good level ex-post, when the number



of players turns out to be large.?

However, the non-revelation policy as stated in its extreme that the plan-
ner never announces k, or only a partial revelation policy in which the planner
suppresses a (non-singleton) proper subset of N potential numbers of players,
cannot be an equilibrium strategy. To see this, suppose that there is a set C
of numbers (containing at least two elements'®) such that the planner does
not announce k if k£ € C. Each player, on observing no announcement by the
planner, would determine his own contribution according to condition (3),
but modified to take into consideration only those k’s that belong to C. By
Lemma 1, the planner will prefer revealing small turnouts from the set C,
thus will deviate from the strategy of not revealing any k from the set C. We
have the following result.

Proposition 1 Suppose that the public good production technology is convexz.
Then in equilibrium in the game I', the number of players is always fully
revealed.

The revealing equilibrium is the unique symmetric equilibrium in which
each player contributes G /k, where k is the revealed number of players. The
equilibrium unraveling result in Proposition 1 falls into the category of sim-
ilar results on persuasion games mostly involving disclosures of a product’s
quality by a seller, who is privately informed about the quality, to the buyers
(Milgrom (1981), Matthews and Postlewaite (1985), Milgrom and Roberts
(1986), Okuno-Fujiwara et al. (1990)). All of these papers commonly exploit
the idea that when multiple parties with opposed interests are asymmetrically
informed about the value of an important variable, the uninformed party, by
applying “due skepticism”,** induces full revelation of information. Like-
wise, in our setting failure by the planner to announce the number of players
is interpreted by the players as an evidence of high turnouts, inducing full
revelation.

Finally, to see whether the planner’s suggestion of a per-head contribu-
tion can play any role in the convex technology case, consider the extended

12Whether, by not revealing the number of players and raising aggregate contribution
in excess of G, the planner is likely to induce an aggregate level that even exceeds the
socially optimal level, is not relevant in our context: our planner, who is a fund-raiser, is
solely interested in maximizing contributions.

131f C is singleton, then the announcement strategy is fully revealing.

14By “due skepticism” the uninformed party assumes that unless the informed party
announces, the realized value of the variable must be at the level which the informed
party must be most reluctant to announce.



game I'". Note that any equilibrium outcome (total contributions) of I' can
be supported as an equilibrium outcome of I'". On the other hand, since the
suggestion cannot be binding, the players will not contribute the suggested
per-head contribution unless the game I' has an equilibrium with contribu-
tions equal to the suggested per-head contribution. Therefore the extension
of the planner’s strategy space to include suggestions of per-head contribu-
tions can have an equilibrium selection role only if the original game I" has
multiple symmetric equilibria. But since I' has a unique symmetric equilib-
rium, suggesting a per-head contribution amount cannot serve any purpose.'?

4 The Non-Convex Technology Case

In this section we consider the case of a non-convex technology: any pro-
duction of the public good must meet a minimum threshold quantity re-
quirement. This is due to an initial lumpiness in the production process, for
example, a minimal amount of capital investment is essential for the con-
struction of a local public school or hospital. This case has been the main
focus of Andreoni (1998).1¢ We assume the same non-convex technology,

G = ?:1 Gis if ?:1 gi Z Gmm )
07 if ?:1 9i < Gmin ;

and adopt the fixed costs interpretation of non-convexity.'”
The occurrence of zero contributions, a likely outcome in our model under
complete information while all potential contributors contribute simultane-

5Note, however, that per-head contribution suggestions can focus players’ attention
on the unique symmetric equilibrium in the presence of other asymmetric equilibria. For
convex technology, all asymmetric equilibria will result in the same total contribution as
the symmetric equilibrium.

16 Andreoni shows that the occurrence of a zero contributions outcome due to non-
convexity can be avoided by a two-phase fund-raising arrangement where the “leader”
contributors give early assurances by providing “seed grants”. Marx and Matthews (2000)
also consider a similar non-convexity where benefits jump discontinuously after a minimal
production. However, they are not concerned with the strategic issues of fund-raising;
they examine, in a direct contribution game setting, whether the opportunity to make
repeated contributions can eliminate inefficiencies.

17As Andreoni (1998) notes, non-convexity may be due to increasing returns to scale
over some range of total contributions. It can also stem from the players’ preferences,
instead of the technology. Our results would be similar in these cases.

10



ously, can be avoided through strategic “hiding” of information by the plan-
ner. In this context, we focus on the impact of non-convexity on three key
aspects of fund-raising: () the planner’s strategy of whether to announce or
conceal the number of potential contributors, (i) the planner’s solicitations
of a minimum per-head contribution amount, and (i77) the equilibrium level
of contributions. We investigate the relationship between components (7)
and (i7) of the planner’s strategy, and its effect on (7).

We need to specify what happens to players’ contributions if total con-
tributions fall short of G,,;,,. We assume, like Andreoni and as is the case
in most fund drives, that insufficient contributions will not be refunded and
the planner will use the funds for some other project that yields no benefits
to the players.®

4.1 Equilibria of the fund-raising game I'

Let us denote the equilibria of T' by (a(-),g(-,-),u(*)). If Gmin < G then
whenever the planner reveals k£ the threshold level will have no bite because
the players would voluntarily contribute in excess of the threshold level. So,
hereafter we consider the interesting case and assume:

Assumption 3 G, > G.

This implies that the equilibrium derived in Proposition 1 for the convex
technology, under which all k£ are revealed and the planner collects the ag-
gregate contribution G, is no longer an equilibrium of I" under the non-convex
technology. Now, when the planner reveals a k € {1,..., N}, the contribu-
tions stage of I" will have a symmetric equilibrium {g(k)} with kg(k) = Gmin
if and only if individual participation constraints,

0(Gmin) — (k) = 0(0), (4)

are satisfied. This is easy to check: No player has an incentive to deviate
to a lower contribution, 0 < g¢; < g(k), as each player is pivotal for the
supply of the threshold level; nor would any player contribute more than
G(k) because the marginal cost exceeds the marginal benefit: 1 > v'(Gpin).
Thus, announcing k& induces the equilibrium where each player contributes

18Similar results can be derived if we assume G =AY, g;, where 0 < A < 1,if >, g; <
Gmin. The parameter A would capture the diminished benefits of the players due to an
alternative use of the funds which fall short of G,

11



an equal share for a guaranteed supply of G,in. The following assumption
ensures that such a contributions equilibrium exists only if k& is sufficiently
large.

Assumption 4 G > v(Gpin) — v(0) > Gpin/N.

By ruling out the case v(Gmin) — Gmin/N < v(0), Assumption 4 rules out
the uninteresting case in which the planner is stuck in a zero-contributions
equilibrium for all k. Thus, we can define:

Definition 1 k is the minimum k such that v(Gupin) — Gmin/k > v(0).

Such a k£ > 1 exists by Assumption 4.

4.1.1 The result

The following proposition summarizes the different equilibria of I" in the case
of non-convex technology. (See the proof for the characterization.)

Proposition 2 Suppose the planner cannot (or does not) commit ex-ante
to reveal or suppress the number of players, and the public good production
technology is non-convex. Then the game I' always has a revealing equilibrium
and may have one or more of two other types of equilibria. The equilibria
are:

Revealing Equilibrium: The planner announces all k higher than or equal
to the threshold number of players, k, and suppresses all k < k. Fach player
makes the positive contribution §(k) = Guin/k if k > k is announced, a zero
contribution §(k) = 0 if either k < k is announced or if no announcement is
made.

Partially Revealing Equilibrium: The planner announces all k in an in-
termediate range A = {k, ..., k} and suppresses all other k’s. Each player
contributes G(k) = Gmin/k if k > k is announced, §(k) = 0 if k < k is
announced. If the planner makes no announcement, each player makes the
positive contribution §(0) = Gpmin/(k + 1).

Non-revealing Equilibrium: The planner suppresses all k € {1,...,N}.
If k > k is announced, each player contributes §(k) = Guin/k. If no an-
nouncement is made, each player contributes G(0) = Gmin/ k where k < k.

12



4.1.2 Intuitions

In all three types of equilibria, the supply of G,,;, through symmetric con-
tributions is guaranteed if at least a threshold number of players turn up.

In a revealing equilibrium the planner is not able to collect funds by sup-
pressing the number of players, because players interpret no announcement
as evidence of sufficiently small turnouts so that positive contributions by the
players to guarantee the threshold level G,,;, are no longer individually ra-
tional. Therefore only sufficiently large turnouts will be announced, leaving
small turnouts to be correctly inferred.®

In a partially revealing equilibrium the planner suppresses large turnouts
(k > k) to counter pessimistic beliefs arising from the suppression of small
turnouts (k < k), and each player makes a symmetric positive contribution
with total contributions matching, and often exceeding, the threshold level
Gmin for large turnouts, but failing to meet the threshold level for small
turnouts. Intermediate turnouts (k < k < k) are announced, inducing the
threshold level G-

In a non-revealing equilibrium, the planner never announces the number
of players. As stated in Proposition 2, corresponding individual contributions
must generate at least the required sum G,,;, whenever a minimum number
k of players turn up, where k < k (recall, k is the(minimum) number of
players which, under complete information, will induce each player to make
non-zero contributions equal to Gpi,/k). The number k cannot exceed k
because, if it were to exceed, the planner would announce observations of
numbers between k and k and increase total contributions to Gumin. This
would upset the non-revealing equilibrium. Given k< k, note that it is
optimal for the planner not to reveal any k < k for this would generate zero
contributions, nor is it optimal to reveal any £ > k for this can only reduce
total contributions (to zero if k< kandk € {;ic, ...,k — 1} is announced,
to Guin if & > k is announced). To see why k can be strictly lower than
k, suppose that the players put very high probability on the event k = k.
Anticipating with high probability a turnout of k, the players would rather
be cautious and be protective of a discrete drop in utility resulting from k
being close to, yet smaller than, k, as opposed to a small increase in utility
from k slightly exceeding k. Risk-aversion of the players (by strict concavity

19The fact that k values below k are suppressed stems from the tie-breaking Assumption
2. The planner would announce all k if we replace Assumption 2 by the opposite tie-
breaking rule, but the equilibrium contributions will be no different.
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of v(-)) would prompt each player to contribute the amount Gy, /k which
exceeds Guin/k, realizing the project for numbers of players even lower than
k, the minimum number required under complete information.

The planner’s payoffs or total contributions P7 in a type-j equilibrium of
I' are as follows:

Revealing: PR =0if k < k, PR = Gpn if k > E;

Partially Revealing: P¥ = (k/(k + 1))Gpin if k < k or k > k, and
PP = Gun itk €{k,... k};

Non-revealing: PN = (k/k)Gpnin where k < k.
Thus, total contributions are (weakly) largest in a non-revealing equilibrium,
(weakly) lowest in the revealing equilibrium.

4.1.3 The role of non-convexity

A comparison of the non-convex case with the convex case may help un-
derstand how non-convexity makes non-revealing equilibrium an attractive
outcome for the planner. In both cases, the complete information equilib-
rium resulting from revelation of £ has each player contributing some fixed
amount divided by the number of players (or else contributing zero). This
amount is G in the convex case, Gpin, in the non-convex case. The difference
in the results comes from the discontinuity induced by the threshold G,;y,.
In both cases, if a player cuts his contribution by €, he causes a discrete drop
in the probability that contributions sum to the respective amounts, G and
G min- In the convex case where the first-order conditions do apply and play-
ers’ contributions change continuously with the beliefs, this does not cause
a discrete payoff reduction. In particular, if the planner were to suppress in
equilibrium at least two different k£ values, then a player’s contribution under
incomplete information must lie between the smallest and largest complete
information contributions corresponding to these k values.

In contrast, in the non-convex case, nothing is provided if contributions
drop below G,in, causing a discrete drop in the players’ payoffs. As a result,
optimal contributions need not be continuous in beliefs. This can create
a situation where a player’s contribution under incomplete information lies
(weakly) above all possible complete information contributions. Thus, in the
non-conver case, the planner can only benefit from the players’ uncertainty
concerning their number. This feature has a nice parallel with the auctions
literature: McAfee and McMillan (1987) and Matthews (1987) show that the
seller of an indivisible (private) good holding a first-price sealed-bid auction
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will extract a higher expected price if the bidders are kept uninformed about
the number of their competitors. While for their results to hold the bidders’
absolute risk-aversion must be non-increasing, we do not impose any such
restriction.

4.1.4 Examples

The following examples illustrate the different equilibria in Proposition 2.
Example 1. (Partially Revealing Equilibrium) Let v(G) = 10(G)*?, N =5,
and p(1) = 0.1,p(2) = 0.2,p(3) = 0.1,p(4) = 0.3,p(5) = 0.3. In the case of
convex technology, equilibrium total contributions G equals 25. In the case
of non-convex technology, which is our concern, suppose G i, = 200. Check
that £ = 2 and the revealing equilibrium, as argued in Proposition 2, exists.
Below we verify the following partially revealing equilibrium:

The planner announces k € {2,3} and suppresses k € {1,4,5},
and the players contribute respectively 100 and 200/3 for an-
nouncement of k = 2 and k£ = 3 and contribute g*() = 50 when
there is no announcement.

When k£ = 2 is announced, contributing 100 given that the other player
contributes 100 is clearly optimal, as it just ensures the threshold level and
yields a net utility of 41.42136, while deviating to zero contribution yields
zero net utility. Similarly, contributing 200/3 when k£ = 3 is announced
is optimal for the players. We next check that in the no-announcement
continuation game no player deviates to zero contribution. In the absence of
any announcement under the proposed equilibrium, calculate the posteriors.
We have,

(1/5)p(1)
(1/5)p(1) + (4/5)p(4) + (1)p(5)

(1) = —1/28.

Similarly,
n(2) = p3) =0, p(4)=3/7, u(d)=15/28.

Given these posteriors, the net expected utility of a player from contributing
50 is (3/7) - 10(200)°® + (15/28) - 10(250)°%°> — 50 = 145.313, whereas net ex-
pected utility by deviating to zero contribution equals (15/28) - 10(200)%° =
75.761. Thus, deviation to zero contribution will not occur. All other devia-
tions can similarly be ruled out.
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To check that the strategy of announcing if and only if k& € {2,3} is
optimal for the planner, consider the possible deviations. If the planner
suppresses k € {2,3}, each player contributes ¢g*()) = 50 and total con-
tributions fall short of 200 achieved by announcing k. If the planner an-
nounces k = 1, the only player contributes zero (contributing G, yields
V(Gmin) — Gmin = —58.578644) which is less than the contribution 50 under
no announcement. If K =4 or k = 5 is announced, total contributions equal
200, whereas total contributions under no announcement equal 200 when
k =4, and 250 when k =5. ||

Example 2. (Non-revealing Equilibrium) Again let v(G) = 10(G)*®, N =5,
Gmin = 200, but p(1) = 0.1,p(2) = 0.8,p(3) = 0.05,p(4) = 0.025,p(5) =
0.025 Recall, £ = 2 and the revealing equilibrium exists. Below we verify
that there is also a non-revealing equilibrium.

Suppose the players believe that they are playing a non-revealing equilib-
rium. With no announcement under the proposed equilibrium, the updated
beliefs need to be calculated. Given the priors,

(1/5)p(1) s
1/5)p(1) + (2/5)p(2) + (3/3)p(3) + A/3)p(D) + (Dp()

p(l) = (
Similarly,
n(2) =64/83, n(3)=6/83, u(4)=4/83, u(5)=>5/83.

We now check that the equilibrium symmetric contribution under no an-
nouncement is Gpi,/k = 100. The net expected utility from contributing
g(0) =100 is (64/83) - 10(200)°> + (6/83) - 10(300)%5 + (4/83) - 10(400)°° +
(5/83)-10(500)°°—100 = 44.677, whereas net expected utility from deviation
to zero contribution equals (6/83) - 10(200)%° + (4/83) - 10(300)%5 + (5/83) -
10(400)%° = 30.619. Thus, a deviation to zero contribution is not beneficial.
Similarly, it can be shown that other deviations are not beneficial either. For
the planner to deviate to announce k is not beneficial for any k. ||

4.2 The role of a per-head contribution suggestion

Because the fund-raising game I' always has a revealing equilibrium, any
multiplicity of equilibria in the presence of a partially revealing and/or a
non-revealing equilibrium raises the following question: Since in these equi-
libria the planner suppresses different sets of numbers of players, and since
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the players’ responses to no announcement depends on the equilibrium being
played, how should the players coordinate their contribution strategies and
what belief system should they hold when the planner makes no announce-
ment on k7 In what follows we address this question.

Consider the game I'* where the planner’s strategy space is extended
to include suggestions of per-head contributions, denoted g°. The planner’s
suggestion of a per-head contribution ¢° can have an impact on the players’
strategies only if the game I' has an equilibrium with symmetric contribu-
tions ¢°; the players will simply not adopt a non-equilibrium suggested con-
tribution strategy.2’ The interesting case is when the planner suppresses the
number of players and suggests ¢g°. Though there may be several equilibria,
in which the planner suppresses different sets of numbers of players, the sug-
gested contribution ¢° may reveal information about the set C of suppressed
k’s and the associated equilibrium that the planner wants to induce. If T’
has a continuation equilibrium in which each player contributes g° following
no announcement on k, the players can infer that this equilibrium is being
played and contribute ¢° accordingly.

We call (a(-), g°, u(+)) an induced equilibrium of T+ if (a(-), §(-,-) = ¢°, u(+))
is an equilibrium of I" and the planner’s payoff (total contributions) is (weakly)
higher than in any other equilibrium of I'. For example, if I' does not have a
non-revealing equilibrium but has partially revealing equilibria, the planner
would like to induce the partially revealing equilibrium with highest total
contributions. This would be the corresponding induced equilibrium of I'*
where the planner suggests the individual contribution g° = G, /k for each
announced k and g% = §(0) = Gmin/(k + 1) whenever he does not announce
k according to a(-). Then the players will contribute () = g° because these
contributions form a symmetric equilibrium, the one yielding highest total
contributions when no announcement is made about the number of players.
Proposition 3 follows from the definition of an induced equilibrium and the
ranking of the planner’s payoffs.

Proposition 3 The game I'" has a unique induced equilibrium in which

(¢) the planner suppresses all k = {1,...,N} and suggests a per-head
contribution g° = Gpin/ k, if I' has a non-revealing equilibrium;

(ii) the planner announces k only when k € {k,..., k} and suggests a
per-head contribution g° = Gpin/(k + 1), if T does not have a non-revealing

20For instance, the players will contribute the suggested per-head contribution g% =
G nin/k if the planner announces the number of players k (weakly) exceeding k.
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equilibrium but has a partially revealing equilibrium,;
(iit) the planner announces k only when k > k and while announcing

k he also suggests a per-head contribution g° = Guin/k, if the revealing
equilibrium is the unique equilibrium of .21

Thus, the extension of I' to I'* by including a suggested per-head contri-
bution ¢° into the planner’s strategy selects the planner’s most preferred
equilibrium as the unique induced equilibrium of I'*.?22 In this induced
equilibrium, the two components of the planner’s strategy, the decision on
whether to announce the number of players and the decision on the level
of suggested per-head contributions, are interrelated in an interesting way:
The suggested per-head contribution is most instrumental when it is optimal
to suppress the number of players, more precisely, when the original game
I" has a non-revealing, or if not, partially revealing equilibria. Suggesting a
per-head contribution when the number of players is announced has no im-
pact, in the sense that the same (symmetric) equilibrium will result whether
or not the planner suggests what each player should contribute. This is
purely a consequence of uniqueness of the symmetric contributions equilib-
rium when k is announced. Thus, Proposition 3 implies that when potential
contributors are almost identical, credible planners should either announce
the number of players or suggest a per-head contribution but not both (for
announcing both does not give any extra payoff and yet may involve some
administrative costs), if their objective is to collect maximum funds for the
public project. Of course, with quite heterogeneous potential contributors,
the suggestion of a per-head contribution may induce the contributors to
focus on the symmetric equilibrium.

5 Concluding Remarks

The fund-raising literature has pointed out several important strategic as-
pects in direct contribution public good provision schemes. We further con-
firm this strategic view of fund-raising by showing how the decision by the
fund-raiser to suitably announce (or not announce) the number of players

2lIf k < k, any per-head contribution suggestion is as good as any other as all players
contribute zero.

22Uniqueness follows from the fact that I' has a finite number of potential equilibria
and completeness of the planner’s ranking of the corresponding outcomes according to the
level of total contributions.
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and request a minimal contribution from each participant can influence the
players’ contribution decisions and mitigate the free-rider problem. We chose
a non-altruistic model of donations for our analysis. The main intuitions be-
hind our results should remain valid for additional motivations of donations
as well, such as warm-glow (Andreoni, 1989) and prestige (Harbaugh, 1998).

We made several assumptions in our analysis. The assumptions of sym-
metry of contributions equilibria, tie-breaking for the planner’s announce-
ment strategy, quasi-linear preferences of potential contributors, all serve to
simplify the analysis with no qualitative impact on our results. Because we
assumed symmetric potential contributors, the announcement of the informa-
tion about their number makes the contributions game one of complete infor-
mation. In this context, the assumption that the fund-raiser’s announcement
is truthful though he can keep silent and conceal his private information is im-
portant. While the assumption is descriptive of the behavior of many major
charitable organizations, it can be called into question for newly established
fund-raising organizations who lack a history of successful achievements. If
we allow the fund-raiser to lie to the public and misrepresent the number of
potential contributors, then the non-revealing equilibrium outcome becomes
the most plausible equilibrium outcome of our game: the contributors deter-
mine their contributions without taking into consideration the fund-raiser’s
announcement, as if they received no information. However, there may exist
a host of other types of equilibria, depending on the beliefs of the contrib-
utors. We leave it for future research to investigate the case of nontruthful
announcements.

Appendix

Proof of Proposition 1. Suppose that I' has an equilibrium such that for
some A C {1,2,..., N}, with A containing at least two elements and at
most NV — 2 elements, the planner reveals k if & € A and suppresses k if
k € C. By construction, C is nonempty and has at least two elements.
Now order the elements of C from the lowest to the highest, ki, ko, ..., k.
Given the belief system p(-) consistent with this strategy of the planner, the
symmetric contribution of each player, g*((), is determined by the first-order
condition?:

p(k)v' (kag” (0)) + plka)v' (kag"(0) + ... + p(k)o' (kg™ (0)) = v'(G).

23The first-order principle applies because of the convexity of the production technology.
240Qur assumption 1 that players always play a symmetric equilibrium, whenever they
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Since k1 < ko < ... < I%, it must be that
kig*(0) < G, and kg*(0) > G.

But if £ = k1, the planner prefers revealing k, so that each player will increase
his contribution from ¢*(0) to ¢g*(k1) according to

V' (kg (k1)) = v'(G),

and aggregate contribution equals G > k;g*(0). This contradicts the hypoth-
esis that the planner will suppress any k£ € C.

Now suppose I' has an equilibrium in which C = () and let {(n)}Y_, > 0
be the players’ strictly positive belief system when they receive no announce-
ment (which would be off the proposed equilibrium path). By sequential
rationality, the symmetric equilibrium contributions ¢ will satisfy the first-
order condition

AV (G) + ..+ AN (Ng) =0'(G) = 1.

Then it must be that Ng > G, which implies that the planner will deviate
to not announcing £ = N. Thus, C # () in equilibrium.

We already proved that C cannot be empty, nor can it have two or more
elements, which imply that C is a singleton. We now claim that C = {N}.
To see this, suppose on the contrary that there is an equilibrium in which
C = {n} and n < N. Then, if no announcement is received, by Bayes’ rule
u(n) = 1 and p(k) = 0 for k& # n, and each player will contribute g*(n).
Given this, the planner will deviate to a(k) = 0 if &k > n which upsets the
equilibrium.

Thus, the only possibility left is a(k) = k if k € {1,...,N — 1} and
a(N) = 0, which we argue is the unique equilibrium strategy for the planner.
The non-announcement of k = N will, however, be correctly inferred by the
players. Although total contribution will be exactly the same whether the
planner announces k = N or not, by the (tie-breaking) Assumption 2 the
planner will not announce £k = N. Q.E.D.

need to make a choice between a symmetric equilibrium and any asymmetric equilibrium
with the same aggregate contributions, is rather harmless. Here, what is important is
that the ezpected marginal benefit (expectation taken over different levels of public goods
corresponding to different number of players) of a player equals his marginal benefit at
the public good level G, which, it can be checked, will also be true for any asymmetric
contribution equilibrium.
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Proof of Proposition 2. To show that a revealing equilibrium always exists is
straightforward: Given the players’ contribution strategies as specified, the
planner can do no better than revealing all £ > k£ and suppressing all £ < k.
Also, given the planner’s announcement strategy, the players’ contribution
strategies form a symmetric Bayesian Nash equilibrium. The players’ beliefs
about k following the announcements (or no announcement) by the planner
are correct in equilibrium.

To derive plausible conditions under which a partially revealing equilib-
rium exists, we first establish the following claim.
Claim 1. In any (partially revealing) equilibrium with C # 0, A # ( and
G(@) > 0, the set of announced k’s is of the form A = {k,...,k} where
1<k<k<Nand (k+1)§(0) = Gmin-
Proof. Any partially revealing equilibrium will have two continuation games
according to whether £ is announced, or k is suppressed. In any continuation
equilibria following the announcement of k, the players’ optimal contribution
strategies are straightforward: g(k) =0 if k < k; (k) = Gmin/k if k > k.

We now show that in any equilibrium with C # 0, A # 0 and §(0) > 0,
there exists & < N such that (k+1)§(0) = Gumin. Note that k(D) < Gpin for
allk =1,..., N would imply §(@) = 0, contradicting the assumption (@) >
0. Thus, there exists k& such that k§(0) > Gumin. Let k + 1 be the smallest
such k. We claim that in any equilibrium with §(0) > 0, (k+1)3(0) = Gmin.
Suppose on the contrary that (kK + 1)§(0) > Guin, thus, 7§(0) < Gmin for
r < k+1. Given the strategy §(f) > 0, under no announcement the expected
payoff of a player is written as

N

V() = z (ko) + 3 u(k)(kg(9)) +m; — §(0),

k=k+1
where u(k)’s are derived using Bayes’ rule and kg(0) < G for k& <
kE + 1, thus, v(kg(0)) = v(0). Since Y-z, u(k)'(kg(0)) < 1(= v'(G))
and (k + 1)§(0) > Gmin, any player can unilaterally deviate to g(0) — ¢, €
arbitrarily small and positive, to increase his individual payoff above V' (().
This contradicts the assumption that §(() is an equilibrium strategy. Thus,
(k+1)§(0) = Gmin. We next show that in any partially revealing equilibrium
where A # (), the planner’s strategy must generate a set of announced k’s
of the form A = {k,...,k} where 1 <k < k < N. It is not optimal to an-
nounce k > k + 1 for this can only decrease total contributions from k() to
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G min- Suppressing any k € A = {k, ..., k} yields contributions kg(()) which
is strictly less than G,,;,, while announcing k < k yields zero contribution
instead of the positive amount £§(0) (< Gpnin). Claim 2 shows that k = N is
not compatible with §(()) > 0. Finally, k < k ensures that A is nonempty. ||

The following claim is easy to check.
Claim 2. In any equilibrium, §(0) = 0 if and only if a(k) = k for all k > k.

Armed with the result in Claim 1 concerning the structure of the set A
whenever A # (0, C # () and g(0) > 0, we focus below on the conditions for
a partially revealing equilibrium where symmetric contributions are positive
under no announcement. Consider first deviations to g; < g(0) by player
i, given the planner’s announcement strategy, the corresponding beliefs pu(-)
and the other players’ contributions §(0). If player ¢ deviates as above, it
will take at least k + 1 other players, each contributing §((), to meet the
threshold contributions G,,;,. Clearly the best deviation strategy among all
gi < g(0) is g; = 0, which yields the expected payoff

N-1

vﬂ:(2y4m+u@+¢0vm%fEjuw+¢W%ﬂ@f+m%

k=k+1

Thus
V() >V° (5)

must hold for the prescribed strategies to constitute an equilibrium. Consider
now a deviation to g; > g(0). Such a deviation, if not large enough, increases
the potential size of the public good without affecting the probability of its
positive supply. But this would not be a beneficial deviation, as shown by
the marginal evaluation in the proof of Claim 1. If the deviation to g; > g(()
is large enough, it can increase both the probability and the potential size
of a positive supply. For instance, deviating to g° = Gpin — (s — 1)g(0) for
s < k will ensure the supply of G,,;, with s players, including the deviator.
This deviation yields the expected payoff

WziwwwH-ZlMM@—W@+ﬂ+W_¢

In equilibrium, we require

V(D) > V?, forall s <k. (6)
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The planner’s strategy of announcing all k € {k,...,k} and suppressing k
otherwise is clearly optimal given the above strategy of the players. As for
the determination of k£ and the associated contribution level §(0), there are
only a finite number of choices for k. An exhaustive verification of conditions
(5) and (6) will establish whether a particular pair (k,§(0)), where §(0) =
Gmin/(k +1) and k < N, is compatible with (5) and (6).

Finally, we consider below a non-revealing equilibrium in which the plan-
ner suppresses all k’s.
Claim 3. In any equilibrium in which A = @ (thus, C = {1,...,N}), §(0) > 0
and there exists k < k such that I%g(@) = G min-
Proof. §(0) = 0 is clearly not compatible with A = (); the planner would
announce k > k and collect Gpin. Thus, g(@) > 0 in any equilibrium in
which A = (. The arguments in the proof of Claim 1 (that show the ex-
istence of k£ + 1) can be applied to show that there must exist k such that
k§(0) = Gmin. If k > k, which means k§(0) < Gpmin, the planner would
announce k and collect G, contradicting the assumption that A= 0. ||
Given the strategy a(k) = 0 for all k € {1,..., N} = C, we have u(k) =
p(k) for all k. Thus, §(@) > 0 will be part of a non-revealing equilibrium if

V() = > pk)v(0) + 3 u(k)o(kg(0)) + m: — (o)

> ; p(k)o(0) + > p(k)v((k —1)3(0)) + m; (7)

k=k+1

(which is the analogue of (5)), and, for all s < k,

V0)2 T e+ S u(be((E-130)+ ) +mi— g, (©)

where §° = Gpin — (s —1)§(0). Condition (8) is the analogue of (6) in a non-
revealing equilibrium: it states that an individual deviation to g° to meet
the threshold G,,;, for s < k players is not beneficial. The verification of the
conditions (7) and (8) to find if an equilibrium pair of (k,§(D)) exists, are
straightforward. Q.E.D.
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