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Abstract

In this paper the asymptotic properties of ARMA processes with
complex-conjugate unit roots in the AR lag polynomial are stud-
ied. These processes behave quite di¤erently from regular unit root
processes (with a single root equal to 1). In particular, the asymp-
totic properties of a standardized version of the periodogram for such
processes are analyzed, and a nonparametric test of the complex unit
root hypothesis against the stationarity hypothesis is derived. This
test is applied to the annual change of the monthly number of unem-
ployed in the US, in order to see whether this time series has complex
unit roots in the business cycle frequencies.

1 Introduction
The current literature on non-seasonal unit root processes focuses almost en-
tirely on the case of real unit roots (all equal to 1). A notable exception is
the recent work by Gregoir (1999a,b,c). In the …rst two papers, Gregoir stud-
ies covariance stationary vector moving average (VMA) processes where the
determinant of the lag polynomial matrix involved has multiple real and/or
complex unit roots. In the third paper, Gregoir derives a parametric test for
a pair of complex conjugate unit roots in an AR(2) process with white noise
errors. In this paper, however, we will take a di¤erent route.

As is well known, AR processes with roots on the complex unit circle are
non-stationary, and are actually more interesting than AR processes with a
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real valued unit root, because these processes display a persistent cyclical
behavior. Thus, if there exist persistent business cycles, it seems that the
data generating process involved is more compatible with an AR(MA) process
with complex conjugate unit roots than with a real unit root and/or roots
outside the complex unit circle.

In this paper we analyze the asymptotic properties of a standardized
version of the periodogram for ARMA processes with complex unit roots in
the AR lag polynomial, and derive a nonparametric test of the complex unit
root hypothesis against the stationarity hypothesis. This test will be applied
to US unemployment time series data1 in order to see whether this series has
complex unit roots in the business cycle frequencies.

2 AR(2) Processes with Complex Unit Roots

2.1 Introduction

Consider the AR(2) process

yt = 2 cos(Á)yt¡1 ¡ yt¡2 + ¹ + ut; (1)

where ut is i.i.d. (0; ¾2) with E jutj2+± < 1 for some ± > 0; ¹ is a constant,
and Á 2 (0; ¼). Throughout this paper we assume that yt is observable for
t = 1; :::; n: The AR lag polynomial ©(L) = 1¡2 cos(Á)L+L2 can be written
as ©(L) = (1¡ exp(iÁ)L)(1¡ exp(¡iÁ)L), hence ©(L) has two roots on the
complex unit circle, exp(iÁ) = cos(Á) + i sin(Á); and its complex conjugate
exp(¡iÁ) = cos(Á)¡ i sin(Á); provided that sin(Á) 6= 0: The latter condition
will be assumed throughout the paper, because otherwise either cos(Á) = 1;
which implies that yt is I(2), or cos(Á) = ¡1; which implies that yt + yt¡1 is
I(1): .

Note that (1) generates a persistent cycle of 2¼=Á periods. If Á 2 (¼; 2¼);
the cycle length is less than two periods. Such short cycles are unlikely to
occur in macroeconomic time series, and if they occur, they are di¢cult, if
not impossible, to distinguish from random variation. This is the reason for
only considering the case Á 2 (0; ¼):

1The empirical application involved has been conducted with the author’s free software
package EasyReg (Version 1.28), which is downloadable from web page:

http://econ.la.psu.edu/~hbierens/EASYREG.HTM
The monthly unemployment time series involved is included in the EasyReg database.
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As is well known, the general solution of the di¤erence equation (1) is
a linear combination of a particular solution, which can be obtained by
backwards substitution, and the solution of the homogenous equation zt =
2 cos(Á)zt¡1 ¡ zt¡2: As has been shown by Gregoir (1999a,b,c), using the
operator

St(Á)ut =
tX

j=1

sin (Á(t+ 1¡ j))uj (2)

for t ¸ 1; the general solution is of the form:

LEMMA 1: Under data generating process (1), yt = St(Á)ut + dt;where
and dt is a deterministic process of the form

dt = a cos(Át) + b sin(Át); (3)

with a and b real valued time invariant random variables depending on initial
conditions.

It is a standard calculus exercise to show that

St(Á)ut = sin (Á(t+ 1))
tX

j=1

cos(Áj)uj ¡ cos (Á(t+ 1))
tX

j=1

sin(Áj)uj

= (cos(Át); sin(Át))

µ
cos(Á) sin(Á)
¡ sin(Á) cos(Á)

¶

£
µ ¡Pt

j=1 uj sin(Áj)Pt
j=1 uj cos(Áj)

¶
:

Moreover, it follows from the easy equalities

tX

j=1

sin(2Áj) =
cos(Á)

2 sin(Á)
(1¡ cos(2Á(t+ 1)))¡ 1

2
sin(2Á(t+ 1)) (4)

tX

j=1

cos(2Áj) =
cos(Á)

2 sin(Á)
sin(2Á(t+ 1))¡ 1

2
(1 + cos(2Á(t+ 1)) (5)

that for Á 2 (0; ¼);

1

n

nX

j=1

(cos(Áj))2 =
1

2
+
1

2n

nX

j=1

cos(2Áj) =
1

2
+O(1=n)
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1

n

nX

j=1

(sin(Áj))2 =
1

2
¡ 1

2n

nX

j=1

cos(2Áj) =
1

2
+O(1=n);

1

n

nX

j=1

sin(Áj) cos(Áj) =
1

2n

nX

j=1

sin(2Áj) = O(1=n):

Therefore, denoting2

W ¤
1;n(x) = ¡

p
2

¾
p
n

[xn]X

j=1

uj sin(Áj);W
¤
2;n(x) =

p
2

¾
p
n

[xn]X

j=1

uj cos(Áj); (6)

for x 2 [0; 1]; it follows from Herrndorf’s (1984) functional central limit
theorem for ®-mixing processes that jointly3

W ¤
1;n )W1 and W ¤

2;n ) W2;

whereW1 andW2 are independent standard Wiener processes. See Billingsley
(1968). The same applies to

µ
W1;n(x)
W2;n(x)

¶
=

µ
cos(Á) sin(Á)
¡ sin(Á) cos(Á)

¶µ
W ¤
1;n(x)

W ¤
2;n(x)

¶
; (7)

because the matrix involved is orthogonal. Consequently, we have

LEMMA 2: Under data-generating process (1),

yt=
p
n =

¾

sin(Á)
p
2
(cos(Át)W1;n(t=n) + sin(Át)W2;n(t=n)) (8)

+Op(1=
p
n);

where µ
W1;n

W2;n

¶
)

µ
W1

W2

¶

on [0; 1];with W1 and W2 independent standard Wiener processes. Moreover,
the Op(1=

p
n) remainder term is uniform in t = 1; :::; n:

2Thoughout this paper we adopt the convention that for t < 1 the sum
Pt

j=1 is zero.
3Following Billingsley (1968), throughtout this paper the double arrow ) indicates

weak convergence of random functions, or convergence in distribution in the case of random
variables. The single arrow ! indicates convergence in probability, unless otherwise stated.

4



Thus, yt=
p
n takes the form of a linear function of sin(Át) and cos(Át);

with random coe¢cientsW1;n(t=n) andW2;n(t=n); respectively, plus a vanish-
ing remainder term. Consequently, the series yt will display a rather smooth
cyclical pattern, with a cycle of 2¼=Á periods. A typical example is the ar-
ti…cial time series displayed in Figure 1. This time series is generated by
yt = 1:9960534yt¡1 ¡ yt¡2 + ut; with ut i.i.d. N (0; 1), for t = 1; ::; 500: This
series has a cycle of 100 periods.

Figure 1: AR(2) process with complex unit roots and a cycle of 100 periods

2.2 Relaxing the i.i.d. error assumption

The assumption that the errors ut in (1) are i.i.d. is not essential. We may
replace it by:

ASSUMPTION 1: Let (1) hold, with ut a zero-mean stationary ARMA

process: ut = ´(L)"t;where "t is i.i.d. (0; 1); E
³
j"tj2+±

´
<1 for some ± > 0;

´(L) =
P1

j=0 ´jL
j = µ1(L)=µ2(L) is a rational lag polynomial with all the
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roots of µ2(L) outside the complex unit circle, and µ1(eiÁ) 6= 0. 4

Then we can write

ut = ´(eiÁ)"t +
¡
eiÁ ¡ L

¢ ´(L)¡ ´(eiÁ)
eiÁ ¡ L "t (9)

= ´(eiÁ)"t + e
iÁwt ¡ wt¡1;

where

wt =
´(L)¡ ´(eiÁ)
eiÁ ¡ L "t = ½(L)"t;

say. Since ½(L) is a rational lag polynomial: ½(L) = ½1(L)=µ2(L); where
½1(L) is a …nite-order lag polynomial, it follows that wt is a (complex-valued)
stationary process.

Next, observe from (9) that

tX

j=1

exp(iÁj)uj = ´(eiÁ)
tX

j=1

exp(iÁj)"j + exp(iÁ(t+ 1))wt

¡ exp(iÁ)w0;

and consequently

tX

j=1

cos(Áj)uj = Re
¡
´(eiÁ)

¢ tX

j=1

cos(Áj)"j

¡ Im
¡
´(eiÁ)

¢ tX

j=1

sin(Áj)"j +Op(1);

tX

j=1

sin(Áj)uj = Re
¡
´(eiÁ)

¢ tX

j=1

sin(Áj)"j

+Im
¡
´(eiÁ)

¢ tX

j=1

cos(Áj)"j +Op(1);

where the Op(1) term is due to the stationarity of wt: Thus

4Since µ1(L) is real valued, all complex-valued roots come in conjugate pairs. Hence
µ1(eiÁ) 6= 0 implies µ1(e¡iÁ) 6= 0; and vice versa.
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LEMMA 3: Let Assumption 1 hold. Rede…ne ¾ as

¾ =
¯̄
´(eiÁ)

¯̄
; (10)

and rede…ne W1;n and W1;n as
µ
W1;n(x)
W2;n(x)

¶
=

1

¾

µ
cos(Á) sin(Á)
¡ sin(Á) cos(Á)

¶
(11)

£
µ

¡Re
¡
´(eiÁ)

¢
Im

¡
´(eiÁ)

¢

Im
¡
´(eiÁ)

¢
Re

¡
´(eiÁ)

¢
¶µ

W ¤¤
1;n(x)

W ¤¤
2;n(x)

¶
;

where

W ¤¤
1;n(x) = ¡

p
2p
n

[xn]X

j=1

"j sin(Áj);W
¤¤
2;n(x) =

p
2p
n

[xn]X

j=1

"j cos(Áj) (12)

Then the result of Lemma 2 goes through. Moreover, (10) is related to the
spectral density

±(») =
1

2¼

1X

s=¡1
cos(»s)

1X

j=0

´j´j+jsj (13)

of ut, as follows: ±(Á) = 1
2¼

j´ (exp(iÁ))j2 = ¾2

2¼
:

The proof of the latter is a standard exercise, and therefore left to the
reader.

2.3 Filtering

The argument in the previous subsection also implies that, for example, dif-
ferencing of yt does not eliminate the cycle, because the di¤erence operator
1¡L changes ´(L) to ´¤(L) = (1¡ L) ´(L); which still satis…es Assumption
1. The same applies to any other linear …lter ¿ (L) with ¿(eiÁ) 6= 0: In order
to show how (8) changes if yt is replaced by ¿ (L)yt, denote ´¤(L) = ¿ (L)´(L).
Then

´¤(e
iÁ) = Re

¡
´¤(e

iÁ)
¢
+ i Im

¡
´¤(e

iÁ)
¢

= Re
¡
¿ (eiÁ)

¢
Re

¡
´(eiÁ)

¢
¡ Im

¡
¿ (eiÁ)

¢
Im

¡
´(eiÁ)

¢

+i
¡
Re

¡
¿ (eiÁ)

¢
Im

¡
´(eiÁ)

¢
+ Im

¡
¿ (eiÁ)

¢
Re

¡
´(eiÁ)

¢¢
;
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hence, denoting

¾¤ =
¯̄
´¤(e

iÁ)
¯̄
=

¯̄
´(eiÁ)

¯̄ ¯̄
¿ (eiÁ)

¯̄
= ¾

¯̄
¿ (eiÁ)

¯̄
;

we have

1

¾¤

µ ¡Re
¡
´¤(eiÁ)

¢
Im

¡
´¤(eiÁ)

¢

Im
¡
´¤(eiÁ)

¢
Re

¡
´¤(eiÁ)

¢
¶

=
1

j¿ (eiÁ)j

µ
Re

¡
¿(eiÁ)

¢
Im

¡
¿ (eiÁ)

¢

¡ Im
¡
¿ (eiÁ)

¢
Re

¡
¿ (eiÁ)

¢
¶

£ 1
¾

µ ¡Re
¡
´(eiÁ)

¢
Im

¡
´(eiÁ)

¢

Im
¡
´(eiÁ)

¢
Re

¡
´(eiÁ)

¢
¶
;

Therefore, it follows from Lemma 3, with ´(L) replaced by ¿ (L)´(L):

LEMMA 4: Let ¿ (L) be a linear …lter satisfying ¿ (eiÁ) 6= 0: Under
Assumption 1,

¿ (L)yt=
p
n =

¾
¯̄
¿ (eiÁ)

¯̄

sin(Á)
p
2

³
cos(Át)fW1;n(t=n) + sin(Át)fW2;n(t=n)

´

+Op(1=
p
n);

where ¾ =
¯̄
´(eiÁ)

¯̄
, and

Ã
fW1;n

fW2;n

!
)

µ
W1

W2

¶
;

on [0; 1]; with W1 and W2 the same as before.

Strictly speaking, the result in Lemma 4 also applies to the double dif-
ference …lter ¿ (L) = (1¡ L)2 = 1¡ 2L+L2 = ¢2: However, in practice this
…lter would wipe out a complex unit root in ¢2yt if the complex unit root
involved corresponds to a business cycle frequency. For example, the AR(2)
lag polynomial of the process yt displayed in Figure 1 is 1¡1:9960534L+L2,
which is numerically too close to 1¡2L+L2 to be distinguishable, hence the
AR and MA lag polynomials of the resulting ARMA(2; 2) process ¢2yt will
approximately cancel out, causing ¢2yt to look like a white noise process.
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3 Frequency Analysis
The periodogram ½n(»); say, of a time series yt is de…ned by

½n(») =
2

n

2
4
Ã

nX

t=1

yt cos(»t)

!2

+

Ã
nX

t=1

yt sin(»t)

!2
3
5 :

for » 2 (0; ¼) and odd n: See Fuller (1976, Chapter 7).
If yt is a stationary linear process, say:

yt = ¹+ ´(L)"t; where ´(L) and "t are the same as in Assumption 1, (14)

then for …xed Á 2 (0; ¼);

½n(Á) ) 2¼±(Á)Â22; (15)

where ±(Á) is the spectral density of yt. See (13) and Fuller (1976, Theorem
7.1.2, p. 280). As is not hard to verify, this result is due to the fact that un-
der the stationarity hypothesis (14), ½n(») )

¯̄
´

¡
eiÁ

¢¯̄2
(W1;»(1)

2 +W2;»(1)
2)

pointwise in » 2 (0; ¼); whereW1;» andW2;» are independent standard Wiener
processes depending on », which are also independent across the »’s; and¯̄
´

¡
ei»

¢¯̄
= 2¼±(»): Moreover, for » = Á;W1;» and W2;» are the same as W1

and W2 in the complex unit root case. Furthermore, since

¯̄
´

¡
eiÁ

¢¯̄2
=

Ã 1X

j=0

´j cos(»j)

!2

+

Ã 1X

j=0

´j sin(»j)

!2

·
1X

j=0

´2j cos
2(»j) +

1X

j=0

´2j sin
2(»j) =

1X

j=0

´2j = var(yt);

it follows that under the stationarity hypothesis,

b½(») =
½n(»)

b¾2y
)

¯̄
´

¡
eiÁ

¢¯̄2

var(yt)

¡
W1;»(1)

2 +W2;»(1)
2
¢

(16)

· W1;»(1)
2 +W2;»(1)

2;

where

b¾2y =
1

n ¡ 1
nX

t=1

(yt ¡ y)2

9



is the sample variance, with y the sample mean.
The main idea in this paper is to use the standardized periodogram b½(»)

as the basis for a nonparametric test of the complex unit root hypothesis
against the stationarity hypothesis, because in the complex unit root case
the properties of b½(») are quite di¤erent from the stationary case. This is
illustrated in Figures 2 and 3. Figure 2 displays the periodogram of the com-
plex unit root process plotted in Figure 1. Figure 3 displays the periodogram
of the stationary Gaussian AR(2) process yt = 1:411423yt¡1 ¡ :5yt¡2 + ut;
t = 1; ::; 500; where the ut’s are i.i.d. N(0; 1). The lag polynomial of this
AR(2) process has complex roots outside the unit circle, corresponding to a
(vanishing) cycle of 100 periods.

Figure 2: Periodogram of the complex unit root process plotted in Figure 1

10



Figure 3: Periodogram of a stationary AR(2) process with complex roots
and a cycle of 100 periods

We see that the two periodograms are very distinct, in shape as well as
in scale. In particular, the periodogram of the stationary process has many
more, and more widely spread, peaks than the periodogram of the complex
unit root process, and the peaks are much lower than in the latter case.

The following lemma, which is proved in the appendix, explains the dif-
ferences between these two cases.

LEMMA 5: Under Assumption 1,

y =
1

n

nX

t=1

yt = Op(1); (17)

and
1

n2

nX

t=1

y2t ) ¾2

4 sin2(Á)

µZ 1

0

W1(x)
2dx+

Z 1

0

W2(x)
2dx

¶
: (18)

Moreover,

1

n
p
n

nX

t=1

yt

µ
cos(Át)
sin(Át)

¶
) ¾

2
p
2 sin(Á)

Ã R 1
0
W1(x)dxR 1

0
W2(x)dx

!
: (19)

Furthermore, for …xed » 2 (0; Á) [ (Á; ¼);

1

n
p
n

nX

t=1

yt

µ
cos(»t)
sin(»t)

¶
= Op(1=

p
n): (20)

Lemma 5 implies that in the complex unit root case b½(»)=n has a sharp
spike at » = Á; with height asymptotically distributed as

³R 1
0
W1(x)dx

´2
+

³R 1
0
W2(x)dx

´2

R 1
0
W1(x)2dx+

R 1
0
W2(x)2dx

;

and asymptotically zero elsewhere, whereas (15) implies that under the sta-
tionarity hypothesis, b½(») is bounded away from zero, and asymptotically
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bounded from above by independent Â22 random variables, pointwise in » 2
(0; ¼):

Summarizing, we have shown:

THEOREM 1: Consider the standardized periodogram

b½(») = 2

nb¾2y

0
@

Ã
nX

t=1

yt cos(»t)

!2

+

Ã
nX

t=1

yt sin(»t)

!2
1
A ; » 2 (0; ¼);

where b¾2y is the sample variance. Under Assumption 1,

b½(»)
n

)

³R 1
0
W1(x)dx

´2
+

³R 1
0
W2(x)dx

´2

R 1
0
W1(x)2dx+

R 1
0
W2(x)2dx

if » = Á;

b½(»)
n

= Op
¡
1=

p
n
¢
if » 6= Á;

pointwise in » 2 (0; ¼); where W1 and W2 are independent standard Wiener
processes.

Under the stationarity hypothesis (14),

b½(») )
¯̄
´

¡
eiÁ

¢¯̄2

var(yt)

¡
W1;»(1)

2 +W2;»(1)
2
¢

·W1;»(1)
2 +W2;»(1)

2;

pointwise in » 2 (0; ¼); where f(W1;»;W2;»); » 2 (0; ¼)g is a collection of
independent bivariate standard Wiener processes. Moreover, for » = Á;
W1;» = W1 and W2;» =W2:

4 Multiple Cycles

4.1 The state space case

The periodograms of macroeconomic time series often display multiple peaks
in the business cycle frequencies. If k of these peaks are due to complex
unit roots, then one way of modelling the process involved is as an AR(2k)
process with all the roots of theAR lag polynomial on the complex unit circle.
However, as is already clear from Figure 1, the plots of such processes are
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very smooth; much smoother than for most economic time series. Therefore,
in …rst instance we propose to model these time series as a state space model
of aggregates of ARMA processes with di¤erent single pairs of complex-
conjugate unit roots, plus a stationary ARMA process representing the noise.
The AR(2k) case will be considered in the next subsection.

ASSUMPTION 2: The data-generating process is: yt =
Pk

j=0 yj;t;
where y0;t = ¹0+´0(L)"0;t satis…es the conditions in (14), and for j = 1; ::; k;
yj;t = 2 cos(Áj)yj;t¡1 ¡ yj;t¡2 + ¹j + ´j(L)"j;t; with 0 < Á1 < ::: < Ák < ¼:
The lag polynomials ´j(L) are rational: ´j(L) = ´1;jL)=´2;j(L); with ´2;j(L)
having all its roots outside the unit circle, and the ("1;t; :::; "k;t)’s are i.i.d.

(0; I), with E
³
j"j;tj2+±

´
< 1 for some ± > 0:

Admittedly, the assumption that the "j;t’s are uncorrelated across the j’s
is quite restrictive, but is needed in order to derive nuisance-free asymptotic
null distributions of the tests we are going to propose.

The process y0;t will only play a role under the alternative hypothesis of
stationarity, which corresponds to the case k = 0:

It follows straightforwardly from Lemma 3 that under Assumption 2,

yt=
p
n =

kX

j=1

¾jp
2 sin(Áj)

(cos(Ájt)W1;j;n(t=n) + sin(Ájt)W2;j;n(t=n))

+Op(1=
p
n);

hence (17) still holds, and (18) becomes

1

n2

nX

t=1

y2t ) 1

4

kX

j=1

¾2j
sin2(Áj)

µZ 1

0

W1;m(x)
2dx+

Z 1

0

W2;m(x)
2dx

¶
;

where
¾j = j´j (exp(iÁj))j ;

and
(W1;j;n;W2;j;n)

0 )Wj = (W1;j;W2;j)
0

jointly, with W1; ::;Wk independent bivariate standard Wiener processes.
Note that without the assumption that the "j;t’s are uncorrelated across the
j’s, the Wj ’s would be dependent, but that is the only di¤erence.
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Except for parts (22) and (23), the following results follow straightfor-
wardly from Lemma 5:

THEOREM 2: Let !j = (1=
p
2)¾j= sin(Áj): Under Assumption 2,

yt=
p
n =

kX

m=1

!m (cos(Ámt)W1;m;n(t=n) + sin(Ámt)W2;m;n(t=n)) (21)

+Op
¡
1=

p
n
¢
:

and consequently,

b½(Áj)
n

) Ãk(Áj) =

!2j

µ³R 1
0
W1;j(x)dx

´2
+

³R 1
0
W2;j(x)dx

´2¶

Pk
m=1 !

2
m

³R 1
0
W1;m(x)2dx+

R 1
0
W2;m(x)2dx

´ ;

jointly for j = 1; ::; k: Hence, maxj=1;::;k b½(Áj)=n ) maxj=1;::;k Ãk(Áj) and
minj=1;::;k b½(Áj)=n ) minj=1;::;k Ãk(Áj): Moreover,

max
j=1;::;k

Ãk(Áj) ¸ Bk; min
j=1;::;k

Ãk(Áj) · Bk; (22)

where

Bk =

0
B@

kX

m=1

R 1
0
W1;m(x)

2dx+
R 1
0
W2;m(x)

2dx
³R 1

0
W1;m(x)dx

´2
+

³R 1
0
W2;m(x)dx

´2

1
CA

¡1

: (23)

Furthermore,
b½(»)
n

= Op(1=
p
n);

pointwise in » 2 (0; ¼)nfÁ1; :::; Ákg:

Theorem 2 suggests to test the complex unit root hypothesis:

H0: Assumption 2 holds for given k and Á1 = Á0;1; :::; Ák = Á0;k; (24)

by using the test statistic

bBk = max
j=1;::;k

b½(Á0;j)=n (25)
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with ®£ 100% critical values ck(®); say, based on the lowerbound Bk of the
asymptotic null distribution of bBk:

P (Bk · ck(®)) = ®:

In Table 1 we present the critical values ck(®) for k = 1; ::; 10, and ® =
0:05, 0:10, which have been computed by Monte Carlo simulation.5

Table 1: Values of ck(®)
k ® = 0:05 ® = 0:10
1 0:1403 0:2411
2 0:0667 0:1146
3 0:0441 0:0732
4 0:0313 0:0519
5 0:0249 0:0409
6 0:0210 0:0337
7 0:0177 0:0287
8 0:0154 0:0250
9 0:0137 0:0222
10 0:0120 0:0196

Given that k and Á0;1; :::; Á0;k are speci…ed in advance, this test is consis-
tent against the stationarity hypothesis, as well as the hypothesis that none
of the given values of Á0;1; :::; Á0;k correspond to the ones in Assumption 2. In
particular, for the speci…ed frequencies Á0;1; :::; Á0;k under the null hypothe-
sis, we have under stationarity that for M > 0, and independent Â22 variates
Â22(1); ::::; Â

2
2(k);

P
³
n bBk ¸M

´
! P

µ
max
j=1;::;k

j´(exp(iÁ0;j))j
var(yt)

Â22(j) ¸M

¶
(26)

· P

µ
max
j=1;::;k

Â22(j) ¸M

¶

= 1¡ (1¡ exp(¡M=2))k ;
5The critical values ck(®); k = 1; ::; 20, have been computed by Monte Carlo simulation,

on the basis of 10; 100 replications of 20 independent Gaussian random walks zt; t =
1; ::; n = 5; 000, z0 = 0; and the well-known convergence results (1=n)

Pn
t=1 zt=

p
n )R 1

0
W (x)dx; (1=n2)

Pn
t=1 z2

t )
R 1

0
W (x)2dx; where W is a standard Wiener process.
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where the last step follows from the fact that the Â22 distribution is the same
as the exponential distribution with expected value 2. Setting

® = 1¡ (1¡ exp(¡ck(®)=2))k , ck(®) = ¡2 ln
³
1¡ (1¡ ®)1=k

´
(27)

then yields an upperbound ck(®) of the asymptotic ® £ 100% critical value
of a test of the stationarity hypothesis, with test statistic n bBk:

4.2 The AR(2k) case

Consider the AR(2k) model with k pairs of complex conjugate unit roots:

ASSUMPTION 3:
hQk

j=1 (1¡ 2 cos(Ák+1¡j)L+ L2)
i
yt = ¹ + ´(L)"t;

where ´(L) and "t are the same as in Assumption 1, and 0 < Á1 < ::: <
Ák < ¼:

Let ut = ´(L)"t: It follows similarly to Lemma 1 that

yt = St(Ák)St(Ák¡1):::::St(Á1)ut + dt;

where St(Á) is de…ned by (2), for each pair Á1; Á2,

St(Á2)St(Á1) =
tX

j=1

sin (Á2(t+ 1¡ j))Sj(Á1);

and dt is a deterministic process of the type (3).
Next, let

Ct(Á)ut =
tX

j=1

cos (Á1(t+ 1¡ j))ut;

and let for each pair Á1; Á2;

St(Á2)Ct(Á1) =
tX

j=1

sin (Á2(t+ 1¡ j))Cj(Á1):

Then we have:
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LEMMA 6:

St(Á2)St(Á1) = (°1(Á2; Á1)¡ ±1(Á2; Á1)) (Ct(Á2)¡ Ct(Á1))
¡°2(Á2; Á1) (St(Á2)¡ St(Á1))
+±2(Á2; Á1) (St(Á2) + St(Á1)) ;

St(Á2)Ct(Á1) = ¡ (°2(Á2; Á1) + ±2(Á2; Á1)) (Ct(Á2)¡ Ct(Á1))
¡°1(Á2; Á1) (St(Á2)¡ St(Á1))
¡±1(Á2; Á1) (St(Á2) + St(Á1)) ;

where

°1(Á2; Á1) =
1

2

cos(Á2)¡ cos(Á1)
(cos(Á2)¡ cos(Á1))2 + (sin(Á2)¡ sin(Á1))2

;

°2(Á2; Á1) =
1

2

sin(Á2)¡ sin(Á1)
(cos(Á2)¡ cos(Á1))2 + (sin(Á2)¡ sin(Á1))2

;

±1(Á2; Á1) =
1

2

cos(Á2)¡ cos(Á1)
(cos(Á2)¡ cos(Á1))2 + (sin(Á2) + sin(Á1))2

±2(Á2; Á1) =
1

2

sin(Á2) + sin(Á1)

(cos(Á2)¡ cos(Á1))2 + (sin(Á2) + sin(Á1))2
:

The proof of Lemma 6 is pretty tedious, but involves only elementary
trigonometric operations, and is therefore omitted.

Lemma 6 implies that yt can we written as

yt =
kX

j=1

°jSt(Áj)ut +
kX

j=1

±jCt(Áj)ut + dt;

where the °j’s and ±j’s are constants depending on the Áj ’s. Moreover, similar
to Lemma 2 it follows that there exist orthogonal 2 £ 2 matrices Q1; :::; Qk
and constants ·j such that

°mSt(Ám)ut + ±mCt(Ám)ut

= ·m (cos(Át); sin(Át))Qm

µ ¡Pt
j=1 uj sin(Ámj)Pt

j=1 uj cos(Ámj)

¶
:
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Furthermore, it follows from Lemma 3 that there exist orthogonal 2 £ 2
matrices R1; :::;Rk such that

µ ¡Pt
j=1 uj sin(Ámj)Pt

j=1 uj cos(Ámj)

¶
= j´ (exp(iÁm)jRm

µ ¡Pt
j=1 "j sin(Ámj)Pt

j=1 "j cos(Ámj)

¶
:

Therefore, de…ning

µ
W1;m(x)
W1;m(x)

¶
= QmRm

µ ¡
¡p
2=

p
n
¢Pt

j=1 "j sin(Ámj)¡p
2=

p
n
¢Pt

j=1 "j cos(Ámj)

¶
;

it follows that there exist constants !j such that (21) carries over. Conse-
quently,

THEOREM 3: Apart from the de…nition of the constants !j; Theorem
2 holds under Assumption 3 as well.

This result also holds if we combine Assumptions 2 and 3, i.e.

ASSUMPTION 4: Let yt =
PK

j=0 yj;t; where y0;t is the same as in

Assumption 2, and for j = 1; ::; K,
hQk

j=1 (1¡ 2 cos(Ák+1¡j)L + L2)
i
yj;t =

¹j + ´j(L)"j;t; where ´j(L) and "j;t are the same as in Assumption 2, and
0 < Á1 < ::: < Ák < ¼:

Thus, in this case the processes yj;t; j = 1; ::; K; have common complex-
conjugate unit roots. The condition in Assumption 2 that the "j;t’s are
uncorrelated across the j’s is now no longer needed, because if the variance
matrix of ("1;t; ::; "K;t)0 is §; say, we may without loss of generality replace
(y1;t; ::; yK;t)0 byQ0(y1;t; ::; yK;t)0; whereQ is theK£K¤ matrix of eigenvectors
of § corresponding to the K¤ positive eigenvalues. Thus, without loss of
generality we may assume that § = I:

Under Assumption 4 there exist constants !j;m such that (21) becomes

yt=
p
n =

KX

j=1

kX

m=1

!j;m (cos(Ámt)W1;j;m;n(t=n) + sin(Ámt)W2;j;m;n(t=n))

+Op
¡
1=

p
n
¢
:
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where jointly for i = 1; 2; j = 1; ::; K; m = 1; ::; k, the Wi;j;m;n’s converge
weakly to independent standard Wiener processes Wi;j;m: Denoting

Wi;m;n(x) =

PK
j=1 !j;mWi;j;m;n(x)

!m
;

where

!m =

vuut
KX

j=1

!2j;m;

we now have that

THEOREM 4: Theorem 3 carries over under Assumption 4.

5 Are Business Cycles Due to Complex Unit
Roots?

In conducting the test for complex unit roots, it is tempting to formulate
the null hypothesis (24) by looking at the periodogram of the time series
involved, and selecting the frequencies Á0;1; :::; Á0;k corresponding to the k
highest peaks. However, this is akin to pretesting, and will a¤ect the actual
size and power of the test. The correct way of conducting the test is to
formulate the null hypothesis prior to looking at the data. But all information
about business cycles is based on empirical investigations [see for example
Diebold and Rudebush 1999 and the references therein], so that even if we
would choose Á0;1; :::; Á0;k corresponding to the NBER business cycle dates
and durations listed in Diebold and Rudebush (1999, Table 2.1, p.39), prior
to looking at the periodogram, we would indirectly commit a pretesting-type
of sin as well. In testing for seasonal unit roots this problem does not occur,
of course, but is virtually impossible to avoid when testing for complex unit
roots in the business cycle frequencies. In our empirical application we will
therefore ignore this problem, and look at the periodogram …rst, in order to
determine potential complex unit root frequencies.

The time series we analyze is the monthly number of civilian unemployed
for 15 weeks or more in the US, times 1000, from 1948.01 to 1999.07. This
series is seasonally adjusted, but in order to be sure that there are no seasonal
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unit roots left, and to eliminate a possible unit root 1 as well, we have
transformed the series to annual changes. The plot of the transformed series
is displayed in Figure 4.

Figure 4: The data

The standardized periodogram b½(») is displayed in Figure 5. The dashed
lines are the 90% and 95% pointwise con…dence bands under the stationarity
hypothesis, based on (16).
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Figure 5: Standardized periodogram b½(») of the data

The …rst peak (with a little dip in the top) corresponds to a cycle duration
between 104 and 133 months. The second, and highest, peak corresponds to
a cycle of 65 months, and the four next highest peaks correspond to cycles
of 50, 43, 33 and 28 months, respectively. These cycle durations are pretty
close to the post-WW-II NBER business cycle (trough to trough) durations
listed in Diebold and Rudebush (1999, Table 2.1, p.39). The longest post-
war NBER cycle duration is 117 month, which corresponds to the little dip
in the top of the …rst peak.

We now test the null hypothesis that this series has 6 pairs of complex
conjugate unit roots, with frequencies corresponding to cycles of 117, 65, 50,
43, 33 and 28 months:

Tabel 2: Null hypothesis and test results
j Á0;j cycle b½(Á0;j)=n
1 0:05370 117 0:07238
2 0:09666 65 0:13934
3 0:12566 50 0:10855
4 0:14612 43 0:08387
5 0:19040 33 0:06667
6 0:22440 28 0:04361
Test statistic = maxj¡1;::;6 b½(Á0;j)=n = 0:13934
10% critical region = (0; 0:03366)
5% critical region = (0; 0:02095)
p¡ value ¼ 1

Clearly, the complex unit root hypothesis involved is not rejected.
If the time series is actually stationary, then given the speci…ed frequencies

Á0;1; :::; Á0;6; maxj¡1;::;6 b½(Á0;j) is asymptotically bounded from above by a
random variable which is distributed as the maximum of 6 independent Â22
variates. See (26). Dividing the corresponding critical values c6(®) [see
(27)] by n then yields the critical values of maxj¡1;::;6 b½(Á0;j)=n under the
stationarity hypothesis:

Table 3: Stationarity test results
Test statistic = maxj¡1;::;6 b½(Á0;j)=n = 0:13934
5% critical region = (0:01570;1)
10% critical region = (0:01335;1)
p¡ value ¼ 0
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Clearly, the stationarity hypothesis is …rmly rejected, given the ”a priori”
chosen frequencies Á0;j; j = 1; ::; 6; under the null hypothesis.

These results provide evidence that business cycles may indeed be due
to complex unit roots. Whether this evidence is compelling depends on how
one weighs the pretesting problem mentioned before.
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APPENDIX
Proof of (17): First, observe that there exist functions a(»); b(»); c(»);

and d(»); not depending on t, such that for t = 1; 2; :::;
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cos(»t) = a(»)

Z t+1

t

cos(»:x)dx+ b(»)

Z t+1

t

sin(»:x)dx; (28)

sin(»t) = c(»)

Z t+1

t

cos(»:x)dx+ d(»)

Z t+1

t

sin(»:x)dx:

Therefore, it follows from (8) that
p
2 sin(Á)

¾n
p
n

nX

t=1

yt (29)

=
1

n

nX

t=1

cos(Át)W1;n(t=n) +
1

n

nX

t=1

sin(Át)W2:n(t=n) +Op(1=
p
n)

= a(Á)

Z 1

0

cos(nÁ:x)W1;n(x)dx+ b(»)

Z 1

0

sin(nÁ:x)W1;n(x)dx

c(Á)

Z 1

0

cos(nÁ:x)W1;n(x)dx+ d(Á)

Z 1

0

sin(nÁ:x)W1;n(x)dx

+Op(1=
p
n):

Moreover, it is not hard to verify that

E [W1;n(x)W1;n(y)] = min(x; y) +O(1=n):

Therefore

E

µZ 1

0

cos(nÁx)W1;n(x)dx

¶2

=

Z 1

0

Z 1

0

cos(nÁx) cos(nÁy)min(x; y)dxdy +O(1=n)

= O(1=n);

where the last equality is an elementary calculus result. Thus,
Z 1

0

cos(nÁx)W1;n(x)dx = Op(1=
p
n):

Along the same lines it can be shown that the other terms in (29) are
Op(1=

p
n): Q.E.D.
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Proof of (18): It follows from (8) that

1

n2

nX

t=1

y2t =
¾2

2 sin2(Á)

1

n

nX

t=1

¡
cos2(Át)W1;n(t=n)

2 + sin2(Át)W2:n(t=n)
2

+2 cos(Át) sin(Át)W1;n(t=n)W2;n(t=n)) +Op(1=
p
n)

=
¾2

4 sin2(Á)

Ã
1

n

nX

t=1

W1;n(t=n)
2 +

1

n

nX

t=1

W2;n(t=n)
2

+
1

n

nX

t=1

cos(2Át)W1;n(t=n)
2 ¡ 1

n

nX

t=1

cos(2Át)W2;n(t=n)
2

+2
1

n

nX

t=1

sin(2Át)W1;n(t=n)W2;t(t=n)

!
:

It is easy to show that

1

n

nX

t=1

W1;n(t=n)
2 =

Z 1

0

W1;n(x)
2dx+Op(1=n);

1

n

nX

t=1

W2;n(t=n)
2 =

Z 1

0

W2;n(x)
2dx+Op(1=n);

hence by the continuous mapping theorem [see Billingsley (1968)],

1

n

nX

t=1

W1;n(t=n)
2 +

1

n

nX

t=1

W2;n(t=n)
2 )

Z 1

0

W1(x)
2dx+

Z 1

0

W2(x)
2dx:

Moreover, it follows similarly to (29) that

1

n

nX

t=1

cos(2Át)W1;n(t=n)
2 (30)

= a(2Á)

Z 1

0

cos(2nÁx)W1;n(x)
2dx

+b(2Á)

Z 1

0

sin(2nÁx)W1;n(x)
2dx+Op(1=n);
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1

n

nX

t=1

sin(2Át)W1;n(t=n)W2;t(t=n) (31)

= c(2Á)

Z 1

0

cos(2nÁx)W1;n(x)W2;n(x)dx

+d(2Á)

Z 1

0

sin(2nÁx)W1;n(x)W2;n(x)dx+Op(1=n):

In analyzing the asymptotic properties of continuous functions of W1;n

and/orW2;n, it often su¢ces to analyze the properties of the same functions of
the independent standard Wiener processesW1;W2; because of the Skorohod
(1956), Dudley (1968), and Wichura (1970) representation theorem. See also
Gaenssler, P. (1983, p. 83). Loosely speaking, this representation theorem
states that there exist versions W n = (W 1;n;W 2;n)0 and W = (W 1;W 2)0

of Wn = (W1;n;W2;n)
0 and W = (W1;W2)

0; respectively, such that W n has
the same distribution as Wn; W has the same distribution as W (namely a
bivariate standard Wiener process), and Wn !W a.s.6

Due to the representation theorem, the limiting distribution of
Z 1

0

cos(2nÁx)W1;n(x)
2dx

is the same as the limiting distribution of
Z 1

0

cos(2nÁx)W1(x)
2dx:

The latter limited distribution is constant zero, because.

E

µZ 1

0

cos(2nÁx)W1(x)
2dx

¶2

=

Z 1

0

Z 1

0

cos(2nÁx) cos(2nÁy)E
£
W1(x)

2W1(y)
2
¤
dxdy

6More precisely,
P

h
lim

n!1
½

¡
Wn; W

¢i
= 1;

where ½ is the Skorohod norm on the space D2[0; 1] of right-continuous mappings from
[0; 1] into R2. See Billingsley (1968).
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=

Z 1

0

Z 1

0

cos(2nÁx) cos(2nÁy)
¡
2 (min(x; y))2 + xy

¢
dxdy

= O(1=n):

The second equality is a standard Wiener measure calculus result, and the
last equality is an easy calculus exercise. Thus by Chebishev’s inequality

Z 1

0

cos(2nÁx)W1;n(x)
2dx ! 0: (32)

The same applies to the sinus case. Along the same lines it can be shown
that Z 1

0

cos(2nÁx)W1;n(x)W2;n(x)dx! 0; (33)

and the same applies to the sinus case. Q.E.D.
Proof of (19): It follows from (8) that

1

n
p
n

nX

t=1

yt cos(Át) =
¾p

2 sin(Á)

1

n

nX

t=1

cos2(Át)W1;n(t=n)

+
¾p

2 sin(Á)

1

n

nX

t=1

cos(Át) sin(Át)W2;n(t=n)

=
¾

2
p
2 sin(Á)

1

n

nX

t=1

W1;n(t=n)

+
¾

2
p
2 sin(Á)

1

n

nX

t=1

cos(2Át)W1;n(t=n)

+
¾

2
p
2 sin(Á)

1

n

nX

t=1

sin(2Át)W2;n(t=n)

=
¾

2
p
2 sin(Á)

Z 1

0

W1;n(x)dx+Op(1=
p
n):

The last step follows similarly to the proof of (17). Similarly,

1

n
p
n

nX

t=1

yt sin(Át) =
¾

2
p
2 sin(Á)

Z 1

0

W2;n(x)dx+Op(1=
p
n): (34)
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Part (19) of Lemma 5 follows now from the continuous mapping theorem.
Q.E.D.

Proof of (20): Similarly to the proof of (19). Q.E.D.
Proof of Theorem 2: We only need to prove the parts (22) and (23),

because the other results in Theorem 2 follow straightforwardly from Lemma
5 and its proof.

Denote

am =

µZ 1

0

W1;m(x)dx

¶2

+

µZ 1

0

W2;m(x)dx

¶2

;

bm =

Z 1

0

W1;m(x)
2dx+

Z 1

0

W2;m(x)
2dx

Then

Ãk(Áj) =
!2jajPk

m=1 !
2
mbm

; (35)

hence for j = 1; 2; ::; k;

!2j =
!21a1Ãk(Áj)

ajÃk(Á1)
: (36)

Substituting (36) in (36) yields

kX

m=1

Ãk(Ám)
bm
am

= 1;

hence

min
m=1;::;k

Ãk(Ám)
kX

m=1

bm
am

· 1 · max
m=1;::;k

Ãk(Ám)
kX

m=1

bm
am
:

Q.E.D.
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