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“Third down with a yard to go”:

the Dixit-Skeath conundrum on equilibria in

competitive games.

Abstract

In strictly competitive games, equilibrium mixed strategies are invariant to changes in the ultimate prizes.
Dixit & Skeath (1999) argue that this seems counter-intuitive. We show that this invariance is robust to
dropping the independence axiom, but is removed if we drop the reduction axiom. The conditions on the
resulting recursive expected-utility model to get the desired outcome are analogous to conditions used in
the standard model of comparative statics under risk.
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1 Introduction

In their textbook, Games of Strategy, Dixit & Skeath (1999, ch. 8.5) pose a “conundrum”. They

consider the strictly competitive game between the o¤ense and the defense in an American football

game. It is third down and the o¤ense has a yard to go. Suppose the o¤ense can only choose to

run or to pass. Similarly, the defense can only chose optimally to defend the run or the pass. The

probability that the o¤ense goes on to win the game depends on the actions chosen. Presumably,

the probability that the o¤ense wins is higher when its action is not matched by the defense. Run

and pass, however, are not equivalent. If the o¤ense attempts a pass against a run defense, then

the o¤ense wins the game with very high probability, but if meets a pass defense, o¤ense loses with

very high probability. On the other hand, if the o¤ense runs against a pass defense the probability

of the o¤ense winning the game is not very much higher than if it meets a run defense. As Dixit

& Skeath put it, run is the “percentage” or safe play for the o¤ense, whereas pass is the “risky”

alternative. The equilibrium of this game involves mixed strategies.

Dixit & Skeath observe:

“...people often say that if the occasion is really important, in the sense that winning
versus losing is a big di¤erence in payo¤s, then one should use the percentage play
more often. Thus the o¤ense may throw a long pass on third down with a yard to go
in an ordinary season game, but in the superbowl that is too big a risk to take.”

The “surprise” is that the equilibrium mixing probabilities are completely independent of the

ultimate prizes.

“The theory says that you should mix the percentage play and the risky play in exactly
the same proportions on a big occasion as you would on a minor occasion. ... So which
is right: theory or intuition?”

They note that “...the problem is fundamental to the use of expected utility in constructing the

payo¤s”, and so they pose the following challenge:

“We hope that the conundrum will spur readers of such persuasions to undertake some
basic research in game theory, and to give it new foundations that do not use expected
utility theory.”

This paper takes up that challenge. We consider two separate departures from standard

expected-utility theory. Section 2 formally sets up the problem. Section 3 shows that merely

relaxing the independence axiom of expected utility does not a¤ect the invariance of the equi-

librium mixing probabilities in strictly competitive games to changes in the ultimate prizes. On

the other hand, Section 4 shows that if we keep independence but instead drop the reduction of

compound lotteries axiom (that is, if players have Kreps-Porteus (1978) recursive expected-utility

preferences), then this “invariance property” is lost. Section 5 then gives precise conditions on the

recursive expected-utility model for it to coincide with Dixit & Skeath’s intuition. Under these

conditions, all other things being equal, as we increase the stakes, players will be more inclined to

play the safe alternative.1 The equilibrium mixes will then have to adjust to deter this inclination.

As Dixit & Skeath point out, some people may like and some may dislike the invariance

property. Our results have implications either way. If you like the invariance property, you need

1 Reversing the inequalities in these conditions, generates the opposite e¤ect.
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not be committed to independence; but you must commit to reduction. On the other hand,

if you want to get away from the invariance property, so that theory can concur with intuition,

merely relaxing independence will not do the trick; but relaxing reduction can generate the desired

comparative statics.

Recursive expected utility is not the only way to resolve the Dixit-Skeath conundrum. For

example, one could relax probabilistic sophistication and allow players to be uncertainty averse

with respect to each other’s moves. Our approach, however, seems a more minimal departure from

the standard model.

The recursive expected-utility model sometimes looks intimidating. The conditions that gen-

erate our comparative statics, however, are analogous to familiar conditions used in standard

expected-utility comparative statics results, such as the portfolio problem. The use of this anal-

ogy illustrates a way to make recursive expected utility more tractable.

2 The Setting

Consider a strictly competitive contest between two players, row and column. There are two

ultimate outcomes, row wins (and column loses) or row loses (and column wins). If row wins, he

gets x; and if he loses, he gets x, where x > x. Similarly, if column wins, she gets y; and if she

loses, she gets y, where y > y. Which outcome occurs depends not only on the players’ actions but

also on chance. The players’ choices are simultaneous. Row chooses between S or R and column

chooses between s or r. Later, we will identify S with Dixit & Skeath’s “safe” (or “percentage”)

strategy, and identify R with their “risky” strategy. Each action-pair results in a lottery. For

example, given the action-pair (R; s), let ¼Rs be the probability that row wins x (in which case

column gets y); and let 1 ¡ ¼Rs be the probability that column wins y (in which case row gets x).

If we write [¼; x; x] for the lottery which yields x with probability ¼ and x with probability 1 ¡ ¼,

this contest can be summarized in the matrix below.

s r

S [¼Ss;x; x]; [1 ¡ ¼Ss; y; y] [¼Sr; x; x]; [1 ¡ ¼Sr; y; y]

R [¼Rs;x; x]; [1 ¡ ¼Rs; y; y] [¼Rr; x; x]; [1 ¡ ¼Rr ; y; y]

We are interested in mixed-strategy equilibria so we assume: ¼Rs > ¼Ss, ¼Rr < ¼Sr , 1¡¼Rs <

1 ¡ ¼Rr and 1 ¡ ¼Ss > 1 ¡¼Sr. We use the terminology of a mixed-strategy equilibrium being an

equilibrium in beliefs.2 Let q¤ denote row’s equilibrium belief that column will play s, and let p¤

denote column’s equilibrium belief that row chooses S.

As Dixit & Skeath note, under the standard assumption of expected utility, the equilibrium

mixed-strategy pro…le in such ‘strictly-competitive’ games is invariant to the sizes of the …nal

2 We adopt the “belief” rather than the “randomizing” terminology simply because we …nd it helps our intuitions,
but nothing in our formal results depends on this. Since there are only two ultimate outcomes, there is no existence
problem when we relax independence.
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prizes, x, x, y and y. In particular, row’s equilibrium belief q¤ is given by

q¤¼Ss [u (x) ¡ u(x)] + (1 ¡ q¤)¼Sr [u (x) ¡ u(x)]

= q¤¼Rs [u (x) ¡ u(x)] + (1 ¡ q¤)¼Rr [u (x) ¡ u(x)] , (1)

where u denotes row’s von Neumann-Morgenstern utility index. It is clear that the q¤ that solves

this equation does not depend on x or x. Similarly, p¤ does not depend on y or y.3

De…nition We say that the invariance property of mixed equilibria in strictly competitive games

is satis…ed if, for all such games with ¼Rs > ¼Ss, ¼Rr < ¼Sr, 1 ¡ ¼Rs < 1 ¡ ¼Rr and

1 ¡ ¼Ss > 1 ¡ ¼Sr, the equilibrium beliefs (p¤; q¤) do not depend on the ultimate prizes, x,

x, y, and y.

We are interested in whether this invariance extends beyond the expected-utility model. For

our purposes, there are two key assumptions in expected-utility theory. First, is the reduction

of compound lotteries axiom (hereafter, ‘reduction’). Our equilibria in beliefs involve two sets of

probabilities: those representing each agent’s beliefs about the other’s actions, and those coming

from the resulting lotteries. Reduction imposes that agents treat these two the same. Agents

are assumed to ‘multiply through’ the probabilities to form one-stage lotteries on the …nal prizes.

More generally, we can model agents as having preferences over two-stage lotteries, the …rst stage

representing each player’s uncertainty about the other’s action, and the second the ‘¼-lottery’ over

outcomes.

The second assumption is the independence axiom. There is a large literature discussing

reasons we might want to relax this assumption. We refer to models that relax independence

but maintain reduction as atemporal nonexpected-utility models. We refer to models that relax

reduction but maintain independence as recursive expected-utility models.

3 Atemporal Non-Expected Utility

Let L be the set of one-stage (real-valued) lotteries. Let the function V : L ! R represent a general

(complete, transitive and continuous) preference relation over L. Under atemporal nonexpected

utility, row’s equilibrium belief q¤ is given by

V ([q¤¼Ss + (1 ¡ q¤) ¼Sr;x; x]) = V ([q¤¼Rs + (1 ¡ q¤)¼Rr ;x; x]) . (2)

That is, given q¤, the (reduced) lottery over outcomes induced by S is indi¤erent to that induced

by R. Just as with expected utility, the equilibrium belief q¤ must be that which makes the

total probability of ‘winning’ from S equal to that from R. Thus, as long as winning is strictly

better than losing, this equilibrium q¤ is invariant to the exact value of the prizes. Strictly

speaking, this argument requires that V be strictly increasing in the probability of winning, but

3 For these equilibrium beliefs to be well-de…ned, we are assuming that u (x) ¡ u(x) is …nite. We retain this or
the equivalent ‘boundedness’ assumptions below.
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most widely-used atemporal nonexpected-utility models retain such monotonicity. They assume

that preferences respect …rst-order stochastic dominance. This discussion is summarized in the

following proposition.

Proposition 1 Provided the players’ preferences respect …rst-order stochastic dominance, the in-

variance property of mixed equilibria in strictly competitive games is maintained if we relax inde-

pendence but retain reduction.

4 Recursive Expected Utility

Each action by a player results in that player facing a two-stage lottery. For example, if row

believes column is choosing s with probability q, then row’s choosing S yields the two-stage

lottery where the second-stage lottery [¼Ss; x; x] occurs with …rst-stage probability q, and the

second-stage lottery [¼Sr; x; x] with …rst-stage probability 1¡q. Let us write such two-stage (real-

valued) lotteries in the form X = [q; [¼Ss; x; x] ; [¼Sr; x; x]], and let L2 be the set of such two-stage

lotteries. Let the function W : L2 ! R represent a general (complete, transitive and continuous)4

preference relation over L2. In this context the utility function W satis…es recursive expected

utility if W can be written in the following form:

W ([q; [¼;x; x] ; [¼0;x; x]]) = qv ± u¡1 (U ([¼; x; x])) + (1 ¡ q) v ± u¡1 (U ([¼0; x; x])) ,

where U is the expected utility of lotteries that resolve in the second stage (using expected-utility

index u), and v is the utility index for lotteries that resolve in the …rst stage. To help understand

this form, notice that u¡1 (U ([¼; x; x])) := u¡1(u (x) + ¼(u (x) ¡ u (x))) is just the certainty

equivalent of the second-stage lottery [¼; x; x] according to the expected u-utility preferences.

Similarly, u¡1 (U ([¼0; x; x])) is the corresponding certainly equivalent of the second-stage lottery

[¼0; x; x]. The function W is evaluated by taking the expected v-utility of the …rst-stage lottery

that assigns probability q to the (second-stage) certainty equivalent of [¼; x; x] and 1 ¡ q to the

(second-stage) certainty equivalent of [¼0;x; x].

Set ' := v ± u¡1. Under recursive expected utility, row’s equilibrium belief q¤ is given by

q¤' (u(x) + ¼Ss (u (x) ¡ u(x))) + (1 ¡ q¤)' (u(x) + ¼Sr (u (x) ¡ u(x)))

= q¤' (u(x) + ¼Rs (u (x) ¡ u(x))) + (1 ¡ q¤)' (u(x) + ¼Rr (u (x) ¡ u(x))) . (3)

That is, given q¤, the two-stage lottery induced by S is indi¤erent to that induced by R. In

contrast to equations (1) and (2), in equation (3), the …rst-stage q-probabilities do not multiply

the second-stage ¼-lotteries directly. Instead, they multiply the function ' evaluated at the U -

utilities of the ¼-lotteries. This ' function can be non-linear. For example, if the utility index v

is a concave transformation of the utility index u, then ' is concave. Concavity of ' is analogous

to risk aversion in a utility index. In this case, row would prefer the U-utilities of the ¼-lotteries

to be less spread out.

4 In addition we assume that preferences are su¢ciently smooth to allow for a twice-di¤erentiable representation.
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The following proposition makes this intuition more precise, and stands in stark contrast to

the discussion of atemporal nonexpected-utility models.

Proposition 2 The invariance property of mixed equilibria in strictly competitive games is not

maintained if we relax reduction but retain independence. Indeed, for recursive expected utility,

the invariance property implies reduction.

Proof. See Appendix.

5 A Resolution of the Conundrum

It remains to show how the equilibrium beliefs change in response to changes in the prizes. Consider

a setting similar to that of Dixit & Skeath, in which the action S results in almost the same lottery

for row regardless of what action column chooses. The action R on the other hand results in a

very good lottery for row if column chooses s and a very bad lottery for row if column chooses r.

In particular, suppose that ¼Rs > ¼Sr > ¼Ss > ¼Rr. In this case, it is as if S is a ‘safer’ action

for row than is R.

Following Dixit & Skeath, suppose we raise the stakes by increasing the value of winning, x,

or decreasing the value of losing, x, or some combination of the two. For example, compare a

regular season game with the superbowl. Introspection might suggest that, in the superbowl, row

might be less willing to incur risk and hence more inclined to choose S. Therefore to keep row

indi¤erent, his equilibrium belief q¤ that column will play s will have to increase.

The following proposition gives conditions on the composite function ' = v ± u¡1 associated

with recursive expected utility that yield this comparative static.

Proposition 3 Suppose that ¼Rs > ¼Sr > ¼Ss > ¼Rr; and that the row player’s preferences

over two-stage lotteries satisfy recursive expected utility. Then a su¢cient condition for row’s

equilibrium belief q¤ that column will play s to increase as x decreases and/or x increases is that

the associated composite function ' : R+ ! R+ with '(0) = 0 is concave, ¡'00 (w) ='0 (w) is

decreasing and ¡w'00 (w) ='0 (w) is increasing.

Proof. See Appendix.

One way to view this result is that, if row holds the same beliefs about column’s actions in the

superbowl as he does in the regular season, then the safe alternative now looks more attractive.

If commentators hold this naïve belief , then they would predict that row is more likely to play

S. Of course, it does not follow that, in equilibrium, row will in fact play S more often. If we

interpret mixed strategies as randomizations then, as usual, row’s equilibrium mix is that which

makes column indi¤erent. Under this interpretation, the result above says that column is more

likely to defend the safe alternative in the superbowl than in the regular season. It is tempting to

think that, for this same ordering of the ¼’s, a similar comparative static result applies to column’s

beliefs (and hence to row’s randomization). Since 1¡¼Rr > 1¡¼Ss > 1¡¼Sr > 1¡¼Rs, however,
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it is not the case that s is a ‘safer’ action for column than is r in Dixit & Skeath’s contest. In fact,

it can be shown that the change in p¤ for the analogous changes in y and y can not be signed for

the general case.5

Proposition 3 resembles standard results in comparative statics for expected-utility theory

originally due to Pratt (1964).6 To require ¡'00 (w) ='0 (w) to be decreasing is analogous to

assuming decreasing absolute risk aversion. Similarly, to require ¡w'00 (w) ='0 (w) to be increasing

is analogous to assuming increasing relative risk aversion. This analogy should not, however, be

taken literally. The function ' is not a utility index. Loosely speaking, rather than mapping

outcomes to utils, it maps utils to utils. Grant, Kajii & Polak (1998) show that curvature of ' does

not capture risk aversion, but rather captures the agent’s intrinsic attitude toward information.

The following example satis…es the conditions of Proposition 3, but does not require either of the

underlying utility indices, u or v, to be risk averse.

Example Let u(x) = (x + 1)a ¡ 1 and v (x) = (x + 1)b ¡ 1, where a > b > 0. Then ' := v ± u¡1

is given by '(w) = (w + 1)b=a ¡ 1, which is concave and has '(0) = 0. Moreover,

¡'00 (w)

'0 (w)
=

µ
a ¡ b

a

¶
1

w + 1
and

¡w'00 (w)

'0 (w)
=

µ
a ¡ b

a

¶
w

w + 1
.

So the former is decreasing in w, and the latter is increasing in w, as required. The under-

lying utility indices are only risk averse, however, if their respective coe¢cients, a and b,

are less than one.

Although the interpretation of ' is not the same as that of a utility index, the analogy allows us

to borrow Pratt’s machinery of standard comparative statics under risk. Proposition 3 illustrates

just one example of this method, but one could similarly translate other results.7

Appendix.

Proof of Proposition 2. Let u := u(x), and let ¢u := u (x) ¡ u(x). It is enough to show that

q¤ cannot be invariant both to changes in u (holding ¢u …xed) and to changes in ¢u (holding u

…xed) unless the preferences satisfy reduction. For q¤ to be invariant to changes in u (holding ¢u

…xed), di¤erentiating equation (3) with respect to u, we require

q¤'0 (u + ¼Ss¢u) + (1 ¡ q¤)'0 (u + ¼Sr¢u)

= q¤'0 (u + ¼Rs¢u) + (1 ¡ q¤)'0 (u + ¼Rr¢u) .

5 The problem is that the di¤erence in the relevant ‘mean values’, ¹¼ (¼Rr; ¼Rs) ¡ ¹¼ (¼SS ; ¼Sr), can not be
uniquely signed.

6 For other examples of comparative statics under expected utility, see Gollier (1995).

7 For example, su¢cient conditions for q¤ to decrease as the value of both prizes, x and x are increased by the
same amount are those of Proposition 3 plus risk aversion with respect to lotteries that are degenerate in the …rst
stage.
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Evaluating this expression at u = 0 and ¢u = 1, rearranging and substituting for q¤ from

expression (3), we get

sign

·
dq¤

du

¸

= ¡ sign [q¤ ('0 (¼Rs) ¡ '0 (¼Ss)) ¡ (1 ¡ q¤) ('0 (¼Sr) ¡ '0 (¼Rr))]

= sign

·
('0 (¼Sr) ¡ '0 (¼Rr))

(' (¼Sr) ¡ ' (¼Rr))
¡ ('0 (¼Rs) ¡ '0 (¼Ss))

(' (¼Rs) ¡ ' (¼Ss))

¸
. (4)

So, for dq¤=du to be zero, we require the di¤erence in the last square bracket to be zero for all ¼’s

such that a mixed-strategy equilibrium applies. This in turn implies that

('0 (¼1) ¡ '0 (¼2))

(' (¼1) ¡ ' (¼2))
= ®

for all ¼1 > ¼2, where ® is a constant. Allowing ¼2 = ¼1 + ¢¼, and taking ¢¼ arbitrarily small,

by l’Hôpital’s rule, we obtain

'00(¼1)

'0(¼1)
= ®

for all ¼1 (where '0(¼1) > 0). It is as if the composite function ' must exhibit “constant absolute

risk-aversion” (although, we do not require the function to be concave).

Similarly, for q¤ to be invariant to changes in ¢u (holding u …xed) we require

q¤¼Ss'
0 (u + ¼Ss¢u) + (1 ¡ q¤)¼Sr'

0 (u + ¼Sr¢u)

= q¤¼Rs'
0 (u + ¼Rs¢u) + (1 ¡ q¤)¼Rr'

0 (u + ¼Rr¢u) .

Again, evaluating this expression at u = 0 and ¢u = 1, rearranging and substituting for q¤ from

expression (3), we get

sign

·
dq¤

d (¢u)

¸
= sign

·
(¼Sr'

0 (¼Sr) ¡ ¼Rr'
0 (¼Rr))

(' (¼Sr) ¡ ' (¼Rr))
¡ (¼Rs'

0 (¼Rs) ¡ ¼Ss'
0 (¼Ss))

(' (¼Rs) ¡ ' (¼Ss))

¸
. (5)

So, for dq¤=d (¢u) to be zero, we require the di¤erence in the last square bracket to be zero for

all ¼’s such that a mixed-strategy equilibrium applies. This in turn implies that

(¼1'0 (¼1) ¡ ¼2'0 (¼2))

(' (¼1) ¡ ' (¼2))
= ½

for all ¼1 > ¼2, where ½ is a constant. Again, allowing ¼2 = ¼1 + ¢¼, and applying l’Hôpital’s

rule, we obtain

¼1'00(¼1)

'0(¼1)
= ½ ¡ 1

for all ¼1. It is as if the composite function ' must also exhibit “constant relative risk-aversion”.

It is well-known, however, that the only functions that satisfy constant relative and constant

absolute risk aversion are linear. By the de…nition of ', this implies that the utility index v is an

a¢ne transformation of the utility index u. In this case, we can write v(x) = a + bu(x) (where
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b > 0) and

W ([q; [¼;x; x] ; [¼0; x; x]])

= q
£
a + bu ± u¡1 (U ([¼;x; x]))

¤
+ (1 ¡ q)

£
a + bu ± u¡1 (U ([¼0; x; x]))

¤

= a + b (qU ([¼; x; x]) + (1 ¡ q)U ([¼0; x; x]))

= a + bU ([q¼ + (1 ¡ q)¼0;x; x]) .

But [q¼ + (1 ¡ q)¼0; x; x] is simply the one-stage lottery that is the reduction of the two-stage

lottery [q; [¼;x; x] ; [¼0; x; x]]. That is, if the invariance property of mixed equilibria in strictly

competitive games applies under the recursive expected-utility preferences W then the preferences

also satisfy reduction.

Proof of Proposition 3. Set u := u (x) and ¢u := u (x)¡u (x). As x decreases, u decreases.

As x decreases and/or x increases, ¢u increases. So, it is enough to show that q¤ is decreasing in

u (that is, expression (4) is negative), and increasing in ¢u (that is, expression (5) is positive).

We deal …rst with changes in u. Set ¼1 > ¼2. Let wi := u + ¼i¢u and let ³i := '(wi) for

i = 1; 2. Then, by the mean value theorem,

'0 ± '¡1 (' (w1)) ¡ '0 ± '¡1 (' (w2))

= '0 ± '¡1 (³1) ¡ '0 ± '¡1 (³2)

= (³1 ¡ ³2)
d

d³
'0 ± '¡1

¡
¹³ (³1; ³2)

¢

for some ¹³ (³1; ³2) in the interval (³2; ³1). Applying the inverse function rule, we get

'0 (w1) ¡ '0 (w2) = (' (w1) ¡ ' (w2))
'00 [ ¹w (w1; w2)]

'0 [ ¹w (w1; w2)]

for some ¹w (w1; w2) in the interval (w2; w1) (since '0(w) > 0).

Let A(w) := ¡'00 (w) ='0 (w). We next show that the mean value is increasing in its arguments.

By the implicit function theorem,

@

@w1
¹w (w1; w2) =

[A(w1) ¡ A ( ¹w (w1; w2))] '0 (w1)

A0 ( ¹w (w1; w2)) [' (w1) ¡ ' (w2)]
,

which is greater than zero, since (by our assumptions) A is strictly monotone. Similarly, ¹w (w1; w2)

is also increasing in w2.

Putting wSr for u + ¼Sr¢u etc., and using this ‘mean-value’ method, we can rewrite the

bracketed term in expression (4) as

'00 ( ¹w (wSr ; wRr))

'0 ( ¹w (wSr; wRr))
¡ '00 ( ¹w (wRs; wSs))

'0 ( ¹w (wRs; wSs))
.

Since ¼Rs > ¼Sr > ¼Ss > ¼Rr, we have ¹w (wSr ; wRr) < ¹w (wRs; wSs). Hence the expression is

negative. That is, q¤ is decreasing in u.
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The argument for changes in ¢u is similar but more involved. Using the same notation as

before, by the mean value theorem,

¼1'
0 (w1) ¡ ¼2'

0 (w2)

=

µ
'¡1 (³1) ¡ u

¢u

¶
'0 ¡'¡1 (³1)

¢
¡

µ
'¡1 (³2) ¡ u

¢u

¶
'0 ¡'¡1 (³2)

¢

= (³1 ¡ ³2)
d

d³

"Ã
'¡1

¡
¹³
¢

¡ u

¢u

!
'0 ¡'¡1

¡
¹³
¢¢

#

where ¹³ is in the interval (³2; ³1). Applying the inverse function rule, the last expression becomes:

(³1 ¡ ³2)

¢u

·
'0 ( ¹w)

'0 ( ¹w)
+ ¹¼¢u

'00 ( ¹w)

'0 ( ¹w)

¸
,

where ¹¼ is in the interval (¼2; ¼1), and ¹w = u + ¹¼¢u. That is,

¼1'
0 (w1) ¡ ¼2'

0 (w2) =
(' (w1) ¡ ' (w2))

¢u

·
1 ¡ ¹¼¢u

¹w
R ( ¹w)

¸

where R(w) = ¡w'00 (w) ='0 (w).

We next show that the mean value is increasing in ¼1 and ¼2. By the implicit function theorem

¡ @¹¼

@¼1

1

¹w2
[uR ( ¹w) + ¹¼¢u ¹wR0 ( ¹w)] =

·
¹¼¢u

¹w
R ( ¹w) ¡ ¼1¢u

w1
R (w1)

¸
.

Given our assumptions, R is positive and increasing, so ¹¼ is increasing in ¼1. Similarly, it is

increasing in ¼2.

Let ¹¼(¼Sr ; ¼Rr) be the relevant mean-value for ¼Sr and ¼Rr, and let ¹¼(¼Rs; ¼Ss) be the relevant

mean-value for ¼Rs and ¼Ss. Since ¼Rs > ¼Sr > ¼ > ¼Rr, we have ¹¼(¼Rs; ¼Ss) > ¹¼(¼Sr; ¼Rr).

Applying the mean-value method, we can rewrite the bracketed term in expression (5) as:

¹¼(¼Rs; ¼Ss)¢u

u + ¹¼(¼Rs; ¼Ss)¢u
R (u + ¹¼(¼Rs; ¼Ss)¢u) ¡ ¹¼(¼Sr; ¼Rr)¢u

u + ¹¼(¼Sr ; ¼Rr)¢u
R (u + ¹¼(¼Sr; ¼Rr)¢u)

which is positive since R is positive and increasing. Hence q¤ is increasing in ¢u.
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