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1 Introduction

The actual development of real gross domestic product (GDP) per capita observed

in several industrialized countries (especially in the U.S.) over the last 125 years

can be remarkably well approximated by an exponential growth path (cf. Jones

1997). Thus it comes at no surprise that proponents of growth theory consider

a balanced growth path (BGP) as an adequate description of the process of

economic growth. Additional support for this view of the economy as being on or

at least very close to a BGP comes from a number of stylized facts characterizing

economic development such as the absence of trends in the real interest rate (cf.

Kaldor 1963). That kind of empirical evidence is put forward as a justification

for theoretical work concentrating on the analysis of a BGP. This is especially

true for a number of models of endogenous growth that completely abstract from

any form of transitional dynamics, as, e.g., in the one–factor models of Grossman

& Helpman (1991), Rivera–Batiz & Romer (1991), Aghion & Howitt (1992), or

the one–factor version of the Romer (1990) model discussed by Barro & Sala–i–

Martin (1995). By abstracting from any form of investment in the accumulation

of production factors, these models transform the essentially dynamic problem

describing economic development into a static problem, thereby simplifying the

technical analysis considerably.1

The concentration on the analysis of a BGP, though convenient from an ana-

lytical point of view, has been criticized on the grounds that it rules out important

phenomena by mere assertion (cf. Aghion & Howitt 1998: ch. 2). Along a BGP,

all variables grow at constant rates, and the economy of tomorrow will always be

a scaled–up version of today’s economy. But this implication of balanced growth

is clearly at odds with empirical observations. Several authors (cf. Clark 1957,

Chenery 1960, Kuznets 1971, Baumol et al. 1989, or Kongsamut et al. 1997) re-

port on the dramatic change in sectoral composition of output that occurred over

the last century in most industrialized countries. These facts about structural

change are a serious challenge for the traditional view of balanced growth, and

hence for predictions derived from models concentrating on the analysis of BGP.

Echevarria (1997) and Kongsamut et al. (1997) argue for a sectorally disag-

1This also applies to several analyses based on two–factor versions of the model developed
by Romer (1990). Although this model allows for accumulation of factors by investment in
capital, the complex transitional dynamics are typically ignored.
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gregated growth model which allows for structural change along the growth path.

Specifically, both papers develop a sectoral disaggregated version of the neoclas-

sical growth model and analyze structural change originating in nonhomothetic

consumer preferences.2 These models, however, are hard to reconcile with the ob-

servation that even massive changes in sectoral composition of an economy seem

to have only minor effects on the long–run aggregate development of economies

(especially in the U.S.), as indicated by the data. Although in both models the

economy converges towards a BGP, structural adjustment almost comes to a halt

as the economy approaches the BGP. As a result, these models are incompatible

with the stylized facts of the growth process, namely the simultaneous existence

of exponential growth in aggregates and nonnegligible structural change.

The present paper analyzes structural adjustment using a R&D–driven growth

model similar to Romer (1990) and Grossman & Helpman (1991). We allow for

structural adjustment in the process of economic growth by disaggregating the

final–goods sector. As in the work of Echevarria and Kongsamut et al., structural

change originates in nonhomothetic preferences. In contrast to their work, how-

ever, our model delivers a generalized balanced growth path (GBGP) that can

explain the simultaneous existence of balanced growth in aggregate variables and

change in the sectoral composition of the economy. Specifically, we require that

along a GBGP (i) all relative goods’ prices and factor prices are constant, and (ii)

the share of ressources allocated to research and manufacturing (the production

of final goods and of intermediate goods) remains fixed over time.3 This gener-

alization of the BGP concept allows for structural change since the allocation of

ressources within the sector producing final goods is not required to be fixed. We

show that with R&D taking the form of raising total factor productivity, there ex-

ists a GBGP along which all aggregate variables grow at constant rates, whereas

production and, of course, consumption of each final good grow at different rates.

2These two models differ only with respect to the specification of the utility function. Due
to the complexity of the utility function applied by Echevarria (1997), her model can be solved
only numerically. Kongsamut et al. (1997) overcome this problem by specifying a less complex
utility function which allows for an analytical analysis of growth paths.

3Note that our definition of a GBGP differs from the definition used by Kongsamut et al.
The latter define a GBGP as a path where the real interest rate does not change over time.
This definition is motivated by the Kaldor facts about economic growth. Our definition is more
restrictive, but also more in the spirit of the ordinary definition of an equilibrium as a situation
where relative prices do not change.
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Balanced growth in aggregate variables is consistent with structural adjustment

in disaggregate variables.

By explicitly aggregating over variables we also show that the behavior of

aggregates is correctly described by an appropriately specified non–disaggregated

endogenous growth model. The aggregated model’s implications for the behavior

of aggregates are robust with respect to structural dynamics. Thus, our analysis

refutes the conjecture by Kongsamut et al. (1997) that balanced–growth mod-

els are inconsistent with structural change. On the contrary, it is possible to

reinterpret a standard growth model formulated in aggregate variables as a dis-

aggregated model fully compatible with structural change while preserving the

balanced–growth properties in aggregates. Our analysis indicates that as long as

we are only interested in the behavior of aggregate variables, there is simply no

need to disaggregate.

The paper is organized as follows. Section 2 presents our model and analyzes

the instantaneous equilibrium. Section 3 introduces our concept of generalized

balanced growth and works out the necessary conditions for existence of a GBGP

with structural adjustment. In section 4 we show that a standard (BGP–)growth

model follows from explicit aggregation of our disaggregated model with struc-

tural adjustment. Section 5 provides some concluding remarks.

2 The model

We model R&D–driven economic growth using an idea–based growth model go-

ing back to the work of Romer (1990) and Grossman & Helpman (1991). While

for the present purpose it makes no difference whether technological change takes

the form of expanding the number of products or of increasing the quality of

a given number of products, we apply the product–variety approach. In or-

der to account for structural adjustment, we disaggregate the production sector

manufacturing final goods. These goods are assumed to be exclusively used for

consumption purposes. Structural adjustment then is the change in the relative

size of subsectors producing different final goods occurring simultaneously with a

corresponding change in their shares in total consumption expenditure. As in the

model of Echevarria (1997) and Kongsamut et al. (1997), structural adjustment is

driven by differences in income elasticities of demand originating in nonhomoth-
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etic preferences. The production structure adjusts accordingly during the growth

process.

2.1 Consumption

Consumption decisions are modelled by assuming a representative agent maxi-

mizing the utility function

U(t) =
∫ ∞

t

C(τ)1−θ − 1

1− θ
e−ρ(τ−t)dτ , θ > 0 , (1)

where C denotes an aggregator function for the consumption of final goods, ρ the

rate of time preference, and θ stands for the inverse of the elasticity of substitu-

tion. In specifying the consumption–aggregator function we follow Kongsamut et

al. (1997) and assume C to be of the form

lnC =
N∑

i=1

βi ln(Ci + C̄i) ,
N∑

i=1

βi = 1 . (2)

Here, Ci denotes the consumption of final good i and the C̄i are parameters. This

specification covers the homothetic Cobb–Douglas form as a special case (C̄i = 0

for all i = 1, . . . , N) with an income elasticity of demand equal to unity for all

goods. In general, income elasticities exceed (are less than) unity for goods with

C̄i > 0 (C̄i < 0).

The vector of factor supplies L = (L1, . . . , LM) is assumed to be given ex-

ogenously. The representative agent chooses time paths of Ci that maximize (1)

while respecting the dynamic budget constraint

Ẇ = rW + w.L − p.C ,

where W is the value of the household’s asset holdings, and r is the interest

rate. Aggregate factor income is given by the vector product w.L, where w is

the vector of factor prices (w1, . . . , wM). Consumption expenditure is given by

E ≡ p.C, where p is the vector of final–goods’ prices (p1, . . . , pN), and C is the

vector of final–goods’ demand (C1, . . . , CN).

Denoting the shadow price of the dynamic constraint by λ, the FOCs of the

consumer problem are

βi
C1−θ

Ci + C̄i

= λpi , i = 1, . . . , N (3)

λ̇ = λ(ρ− r) . (4)
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(3) determines the optimal allocation of consumer goods as

Cj + C̄j =
βjpi

βipj

(Ci + C̄i) ∀i, j = 1, . . . , N . (5)

(5) defines the expansion path of consumption for a given vector of goods’ prices

p. Due to the specification of C, there is a linear relation between each two pairs

of consumer demands. Considering only two consumer goods i = 1, 2, the expan-

sion path is a straight line with a slope −β2p1/(β1p2) in (C1, C2) space. Only in

the case of an homothetic aggregator function C, this line passes through the ori-

gin. In general, (5) defines a family of parallel lines. This means that the values

C̄i in the consumption index just shift the origin of the system of coordinates in

a certain direction. As a consequence of this shift, relative consumption expen-

ditures piCi/pjCj converge towards the fixed value βi/βj as income grows over

time. This implies that—given the price vector p—the growth rates of demand

for the different consumption goods converge over time.

We can use the FOCs to determine the growth rate of C and the growth rate

of consumption expenditure E. Substituting in (2) for Cj according to (5) gives

lnC = ln(Ci + C̄i)− ln
βi

pi

+
n∑

j=1

βj ln
βj

pj

.

Given a price vector p, the growth rates of the Ci and the growth rate of C are

related by
Ċi

Ci
=

Ci + C̄i

Ci

Ċ

C
. (6)

In general, the growth rates for the various Ci differ in the case of a nonhomothetic

consumption aggregator function. Consumption of final goods with an income

elasticity of demand exceeding unity grows at a rate exceeding the growth rate

of the consumption aggregator and vice versa. These differences in growth rates,

however, diminish over time. As a result, the demand of goods with high income

elasticities rises relative to the demand of goods with low income elasticities, but

converges to a fixed value.

In order to relate the growth rate of C to the interest rate, we differentiate

(3) with respect to time:

(1− θ)
Ċ

C
− Ci

Ci + C̄i

Ċi

Ci
=

λ̇

λ
. (7)

6



From (4), (6) and (7) we find that the following condition holds for the aggregator

function for consumption:

gC ≡ Ċ

C
=

r − ρ

θ
. (8)

This is exactly the same condition that determines the time path of consumption

in a model with a single consumer good. In the present model, however, C is not

equal to consumption expenditure. Note that our specification of the aggregator

function for consumption ensures that differences in growth rates of demand for

each consumer good do not affect the growth rate of the consumption aggregator.

Whether a situation with constant growth rates in aggregate variables is com-

patible with nonconstant growth rates in disaggregated variables will turn out

to depend on whether the aggregator function for consumption C and aggregate

consumption expenditure E grow at the same rate. Given the price vector p, E

grows at rate

gE ≡ Ė

E
=
∑

i

piCi

E

Ċi

Ci
.

Substituting for Ċi/Ci according to (6) yields

gE =
∑

i

pi(Ci + C̄i)

E
gC . (9)

Thus, E and C grow at the same rate iff
∑

piC̄i = 0. Obviously, the special

case of a homothetic aggregator function for consumption always satisfies this

condition.

2.2 Production

The production side of the economy consists of three sectors: a final–goods sec-

tor, an intermediate–goods sector, and a research sector. The final–goods sector

is made up by a number of N subsectors producing goods that are used solely for

consumption purposes (in the case of N = 3, we may interpret the sectors as agri-

culture, manufacturing, and services). In each final–goods subsector i, perfectly

competitive firms produce a homogeneous final good using primary factors and a

number of different varieties of intermediate goods. At any instant, A measures

the range of intermediate goods that are available to producers of final goods.

The output in each subsector, Yi, is given by the production function

Yi = [Fi(Li)]
1−α

∫ A

0
[xi(ω)]

α dω , 0 < α < 1 , i = 1, . . . , N . (10)
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Fi is a linearly homogeneous function of sector i’s vector of factor inputs Li =

(L1i, . . . , LMi), and xi(ω) denotes the input of intermediate good ω in the final–

goods subsector i. In order to ensure that R&D can be interpreted as technological

progress altering total factor productivity, the partial elasticities of production

with respect to intermediate goods are assumed to be identical for all final–goods

subsectors.

The unit–cost functions associated with these technologies are

ci(w, pD) ≡ [c̃i(w)]1−α pα
D , i = 1, . . . , N , (11)

where pD is a price index for intermediates given by

pD =

(∫ A

0
[p(ω)]α/(α−1) dω

)(α−1)/α

. (12)

Denoting the price of final good i by pi, the zero–profit conditions can be written

as

pi = ci(w, pD) , i = 1, . . . , N . (13)

From our assumption on technologies it follows that the unit–cost functions

c̃i(w) and ci(w, pD) are linearly homogeneous functions. Applying the envelope

theorem to the unit–cost function ci gives sector i’s demand for intermediate

goods as

xi(ω) = αpiYi

(
pα

D

p(ω)

)1/(1−α)

, i = 1, . . . , N . (14)

Aggregating over all final–goods subsectors, the total demand for each variety ω

of the intermediate good is

x(ω) = αp.Y

(
pα

D

p(ω)

)1/(1−α)

, (15)

where p.Y is the vector product of the price vector p = (p1, . . . , pN) and the

final–goods output vector Y = (Y1, . . . , YN) .

Each variety of the intermediate goods is produced by a single firm owning

a perpetual monopoly right (an infinitely lived patent) for the use of a certain

previously invented design necessary for production. Designs are either developed

in a firm’s own R&D department or they are purchased from firms specializing

in R&D. Once designs are developed or purchased, producers combine primary
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factors to produce intermediate goods. We assume identical constant–returns–

to–scale technologies for all intermediate producers. Each intermediate producer

chooses the price of his product to maximize profits, taking p.Y and pD as given

(monopolistic competition). The problem of the producer of intermediate good

ω then is

max
p(ω)

[p(ω)− cx(w)]αp.Y

(
pα

D

p(ω)

)1/(1−α)

,

where cx is the unit–cost function for producing intermediates. The solution of

this problem yields an equilibrium price for each intermediate of

p(ω) = cx(w)/α ≡ px . (16)

With all intermediates bearing the same price, they are all produced in equal

quantities, and pD is given by

pD = pxA
(α−1)/α =

cx(w)

α
A(α−1)/α . (17)

With (16) and (17), the profits of an intermediate producer, πx, turn out to be a

linear function of p.Y /A:

πx = α(1− α)p.Y /A . (18)

Due to patent protection, these profits cannot be driven to zero by imitation.

Producers of intermediates realize a stream of future profits with a present value

of

V (t) =
∫ ∞

t
πx(τ)e

−
∫ τ

t
r(s) ds dτ . (19)

Differentiating (19) with respect to time gives

V̇ = rV − π . (20)

This condition equating the expected capital gains and dividend payments (firm

profits) received by shareholders of a representative R&D firm to the yields on a

riskless loan describes the capital–market equilibrium.

Profits of firms producing intermediates are extracted by the cost of developing

new designs or purchasing these from firms specializing in R&D. Firms in the

research sector use only primary factors to invent designs for new intermediate

goods according to the production function

gA ≡ Ȧ

A
= FR(LR) . (21)
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Here, gA denotes the growth rate of the number of varieties of intermediates, the

rate of innovation. FR is a linearly homogeneous function of the vector of factor

inputs LR = (L1R, . . . , LMR) employed in the research sector. As in the models

of Romer (1990) and Grossman & Helpman (1991), long–run growth originates

in the fact that the research technology is linearly homogeneous in the public

good “knowledge” (the number of intermediate goods that have been already

invented). The only difference to their work is that we allow for M factors to be

used in R&D.

We assume free entry into the R&D sector. Firms in the R&D sector finance

the upfront costs of developing new designs by issuing shares on the equity market.

Since the shares issued by R&D firms are the only asset in the economy, we have

W = AV . Successful inventors either become producers of intermediates or

charge a royalty for the use of the design. In any case, the R&D costs are covered

by the present value of future profits that accrue to a producer of intermediates.

Denoting the unit–cost function associated with the R&D technology FR(LR) by

cR(w), free entry into the research sector implies that

cR(w(t))

A(t)
≥ V (t) , (22)

with equality in equilibria with positive R&D. In the following, we concentrate

on equilibria with positive R&D and, hence, growing A at all points in time.

2.3 Equilibrium

The model is closed by the equilibrium conditions for factor markets and consumer

goods markets. Before analyzing these market–clearing conditions in detail, let

us have a closer look at firms’ unit–cost functions first. From the homogeneity

properties of the unit–cost functions it follows that

c̃i(w) = c̃i(A
α−1w)A1−α ≡ c̃i(w̄)A1−α (23)

cx(w) = cx(A
α−1w)A1−α ≡ cx(w̄)A1−α (24)

cR(w) = cR(A
α−1w)A1−α ≡ cR(w̄)A1−α , (25)

where w̄ ≡ Aα−1w denotes the vector of productivity–adjusted factor prices.

Substituting for pD in the unit–cost function of final–goods producers according
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to (17) implies

ci(w, pD) = [c̃i(w)]1−α

[
cx(w)

α

]α

Aα−1 .

Substituting for c̃i(w) and cx(w) according to (23) and (24) gives

ci(w, pD) =
[
c̃i(w̄)A1−α

]1−α
[
cx(w̄)A1−α

α

]α

Aα−1

= [c̃i(w̄)]1−α

[
cx(w̄)

α

]α

≡ ci(w̄) . (26)

Due to our assumption of identical values α for all sectors producing final goods,

the reduced form of the unit–cost function ci is only a function of productivity–

adjusted factor prices. The impact of the state of technology (as measured by

A) is only indirect insofar as it affects factor prices. For this reason we can refer

to innovation of new intermediates as neutral technological progress raising total

factor productivity in all final–goods sectors equally. Finally, substituting for

ci(w, pD) from (26) in (13) gives the zero–profit conditions as

pi = ci(w̄) , i = 1, . . . , N . (27)

Applying the envelope theorem to the reduced form of the unit–cost function

ci allows us to derive the factor–input coefficients as

∂ci(w̄)

∂wl
= bli(w̄)Aα−1 . (28)

The input coefficients bli measure the direct and indirect (the factor input em-

bodied in intermediates) input of primary factor l in final–goods sector i. These

coefficients depend only on relative factor prices. The same applies for the factor–

input coefficients in the R&D sector alR(w̄) which can be derived by applying

the envelope theorem to the unit–cost function cR(w̄). Factor inputs of the R&D

sector are then given by ȦalR(w̄)/A.

With an exogenously given vector of factor supplies L, the conditions for

factor–market clearing can then be written as

gAa + BȲ = L , (29)

where a is the (M × 1)–vector of input coefficients alR(w̄), B is the (M × N)–

matrix of input coefficients bli(w̄), Ȳ is the vector of final–good outputs adjusted

for changes in total factor productivity, and Ȳi ≡ YiA
α−1.
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It turns out to be useful to define a maximum–value function φ(p,L, gA) that

summarizes the production–sector equilibrium, i.e. the zero–profit conditions for

producers of final goods and the factor–market–clearing conditions. We define

this function by the optimization problem

φ(p,L, gA) ≡ min
w̄

{w̄.L − gAcR(w̄) : ci(w̄) = pi} . (30)

Interpreting the Lagrange multipliers of the constraints as the productivity–

adjusted outputs of final goods, the FOCs of this problem are given by (27)

and (29). The following properties of the function φ(p,L, gA) will turn out to

be useful in the analysis of the intertemporal allocation. It is non–decreasing in

factor endowments L, it is non–increasing in the growth rate gA, and it is concave

and linearly homogeneous in (L, gA). The latter properties follow from the fact

that the objective function is linear in L and in gA, while L and gA do not enter

the constraints.

The value of φ(p,L, gA) is the difference of the productivity–adjusted values

of aggregate factor income and total R&D costs. The following argument shows

that this value is proportional to the aggregate revenue in the final–goods sector.

Due to the homogeneity properties of all technologies, the aggregate revenue in

the final goods sector is exhausted by aggregate factor payments in the final–

goods sector and in the intermediate–goods sector plus the aggregate profits in

the intermediate–goods sector. Making use of (18), this condition can be written

as

p.Y = w.L − gAcR(w) + α(1− α)p.Y

⇐⇒
p.Ȳ = γ [w̄.L − gAcR(w̄)] ,

where γ ≡ [1− α(1− α)]−1 > 0. Thus, we can define the net GDP function

ȳ(p,L, gA) by

ȳ(p,L, gA) ≡ γφ(p,L, gA) . (31)

Obviously, ȳ equals the value of productivity–adjusted outputs p.Ȳ. The prop-

erties of the function φ(.) carry over to the function ȳ(.).

The equilibrium conditions are completed by the market–clearing conditions

for final goods:

Yi = Ci , i = 1, . . . , N . (32)
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This completes our specification of the model. At every moment in time, the

number of existing intermediate goods, A(t), is determined by history. Expec-

tations about future profitability determine the value of the representative firm

producing intermediates, V (t). Agents take this value as exogenous. Given A(t)

and V (t), the static equilibrium is described by the equilibrium of a standard

Arrow–Debreu model. Since the preferences of the representative consumer are

strictly convex and the production–possibility set is convex, there exists a unique

solution for the equilibrium price vector. Provided that the economy is of suffi-

cient size, this solution is characterized by full diversification, i.e. the output of

all final–goods subsectors is positive.

3 Generalized balanced growth

In this section we demonstrate that the disaggregated version of a standard

reseach–driven growth model developed in section 2 can explain structural ad-

justment along a growth path that is characterized by balanced–growth behavior

in aggregate variables. We term this path that is consistent with these stylized

facts of the growth process, a generalized balanced growth path (GBGP). In par-

ticular, we work out restrictions on consumer preferences and on the structure of

the final–good sector which are necessary for a GBGP to exist.

3.1 GBGP and equilibrium rate of innovation

We define a GBGP as a growth path where both (i) all relative prices of goods

(if required, as for intermediate goods, adjusted for changes in total factor pro-

ductivity) and of factors and (ii) the shares of ressources allocated to research,

production of intermediates and production of final goods remain fixed over time.

Due to this definition, the growth rates of aggregate variables (per capita GDP,

consumption expenditure, rate of innovation) will be constant along a GBGP.

However, factor reallocation within the sector producing intermediate goods or

within the final–goods subsectors is allowed on a GBGP. In contrast to the conven-

tional definition of a BGP, which requires constant growth rates for all variables,

growth along a GBGP is consistent with structural adjustment.

We assume that there are at least as many final goods as there are factors,

i.e. N ≥ M . In this case, any M of the zero–profit conditions (27) determine
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the productivity–adjusted factor prices w̄ as a function of the final–good prices

p1, . . . , pM . The requirement that relative prices for final goods are constant

along a GBGP implies constant prices pi for all i = 1, . . . , N . It follows that the

productivity–adjusted factor prices are also constant implying that relative factor

prices remain fixed along the GBGP. Real factor prices grow at rate (1 − α)gA,

the growth rate of total factor productivity.

The second GBGP condition requires that factor inputs in the R&D sector do

not change over time. From our specification of the research technology it follows

that on a GBGP the rate of innovation must be constant. The equilibrium value

of the innovation rate can then be calculated from the arbitrage condition (22).

With (18), (19), (25), and the fact that p.Y = ȳ(p,L, gA)A
1−α, the arbitrage

condition can be written as

cR(w̄)A(t)−α =
∫ ∞

t
α(1− α)ȳ(p,L, gA)A(τ)−αe−

∫ τ

t
r(s) ds dτ .

In order to solve for the integal in this arbitrage condition, note that along a

GBGP the values of p, L and gA are constant, implying that ȳ cannot change over

time. Furthermore, for a constant rate of innovation we can solve the differential

equation (21):

A(τ) = A(t)egA(τ−t) .

Hence, the arbitrage condition simplifies to

cR(w̄) = α(1− α)ȳ(p,L, gA)
∫ ∞

t
e−αgA(τ−t)e−

∫ τ

t
r(s) ds dτ . (33)

For (33) to hold for any t, the interest rate has to be constant. Solving the integral

for a constant value of the interest rate gives

αgA + r =
α(1− α)

cR(w̄)
ȳ(p,L, gA) .

We now substitute for r from (8) and arrive at the following relation between

the rate of innovation and the growth rate of consumption

αgA + θgC + ρ =
α(1− α)

cR(w̄)
ȳ(p,L, gA) . (34)

Due to our assumptions on consumer preferences, we have gC = gE . Furthermore,

clearing of the markets for final goods ensures that E = ȳ(p,L, gA)A
1−α. The
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latter implies that the growth rate of consumption and the rate of innovation are

related by

gC = (1− α)gA . (35)

From (34) and (35) we can then solve for gA as

gA =

[
α(1− α)

ȳ(p,L, gA)

cR(w̄)
− ρ

]
[α + θ(1− α)]−1 . (36)

Eq. (36) implicitly determines the equilibrium rate of innovation as a function

of final–goods’ prices. For a given price vector p, the solution of (36) is unique

due to the properties of the ȳ function. As shown in appendix A, the equilibrium

rate of innovation depends positively on factor endowments Ll (l = 1, . . . ,M),

and negatively on the rate of time preference ρ and the elasticity of substitution

θ. This is exactly what we expect from the analysis of aggregated R&D–driven

growth models.

3.2 Restrictions on preferences and production struc-

ture

Our analysis in the previous subsection implicitly assumed that markets for final

goods and factor markets clear simultaneously at constant prices p. In general,

this is not guaranteed without restrictions on consumer preferences and produc-

tion technologies. We will now work out conditions which are necessary for the

existence of a GBGP with simultaneous clearing of all markets at each instant.

We start from the static equilibrium allocation with full diversification. Be-

cause along the GBGP relative factor prices are constant, relative factor inputs

do not change over time. As shown in appendix B, the production function for

final good i can then be written as

Yi = kiA
1−αL1i , (37)

where ki ≡ Fi(1, . . . , LMi/L1i)]
1−α(Axi/L1i)

α is a subsector–specific constant.

The production of final good i then grows according to

Ẏi

Yi
= (1− α)gA +

L̇1i

L1i
. (38)

15



For goods markets to be in equilibrium along the GBGP, demand and production

must grow at identical rates for each final good i: Ċi/Ci = Ẏi/Yi. Using (6), (35)

and (38), this condition can be written as

L̇1i

L1i

=
C̄i

Ci

(1− α)gA . (39)

(38) implies that changes in factor employments along the GBGP are neces-

sary for structural adjustment to occur. If L̂1i = 0 for all i = 1, . . . , N , relative

outputs of final goods do not change over time. Then (39) says that market clear-

ing for final goods is only possible if C̄i = 0 for all i = 1, . . . , N , i.e. if preferences

are homothetic.

Finally, we have a general equilibrium if the growth of factor inputs determined

by (39) is compatible with clearing of the factor markets for given factor–input

coefficients. We now have to distinguish three cases: (i) the even case, where

N = M , (ii) the uneven case N > M , where C̄i = 0 for at least N−M final goods,

and (iii) the uneven case N > M , where C̄i = 0 for less than M final goods. As we

will show in the following, structural adjustment along a GBGP is only possible

in case (iii). In cases (i) and (ii), existence of a GBGP requires preferences

to be homothetic and thus the cause for structural adjustment—differences in

income elasticities of demand—becomes obsolete. Structural adjustment along

the GBGP is only possible if income elasticities of demand differ from unity for

a sufficient number of goods.

Consider case (i) first. As argued above, the input coefficients bli are con-

stant along a GBGP since relative factor prices do not change. Furthermore, the

amount of ressources allocated to R&D, LR, is also required to be constant over

time. It follows that the equilibrium conditions for factor markets can be written

as

BȲ = L − LR ,

where L − LR is the vector of factor endowments employed in production of

intermediates and final goods. Provided that the N final goods are produced by

different technologies, the matrix B has full rank, and the productivity–adjusted

outputs of final goods Ȳi are fully determined by the conditions for factor–market

clearing. Consequently, for a given price vector p, the productivity–adjusted

levels of final–goods outputs cannot change over time. It follows that L̇1i/L1i = 0
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for all i = 1, . . . , N , and all outputs Yi grow at rate

Ẏi

Yi
= (1− α)gA .

Obviously, in the even case N = M , markets for final goods and factor markets

clear simultaneously at constant final–goods’ prices iff C̄i = 0 for all i (cf. (6)),

i.e. if preferences are homothetic. The conditions for generalized balanced growth

do not allow for structural adjustment. However, if preferences are assumed to

be homothetic, the GBGP is identical to the BGP in a sectoral disaggregated

model. The model collapses to a generalization of the two–sector growth model

of a small open economy developed by Grossman & Helpman (1991: ch. 6).

A similar argument applies in case (ii). According to the conditions for clear-

ing of the final–goods markets (39), C̄i = 0 for i = M + 1, . . . , N implies that

factor inputs in the respective subsectors do not change along the GBGP. Hence,

we can subtract the vector of factor inputs in these subsectors from the endow-

ment vector. Clearing of factor markets then requires

B1Ȳ1 = L − LR − B2Ȳ2 ,

where B1 is the matrix of input coefficients bli (l, i = 1, . . . ,M), B2 is the ma-

trix of input coefficients bli (l = 1, . . . ,M, i = M + 1, . . . , N), Ȳ1 is the vec-

tor of productivity–adjusted outputs Ȳi (i = 1 . . . ,M), and Ȳ2 is the vector of

productivity–adjusted outputs Ȳi (i = M+1 . . . , N). Provided that the technolo-

gies used in the final–goods subsectors differ, the matrix B1 has full rank and the

equilibrium conditions for factor markets determine the vector of productivity–

adjusted outputs. Relative outputs are then again determined by clearing of the

factor markets. Again, a GBGP then exists iff C̄i = 0 for all consumer goods

i = 1, . . . , N .

Structural adjustment along the GBGP is only possible if C̄i = 0 for less

than N −M subsectors. The problem now is to elaborate on conditions ensuring

that the reallocation of factors between subsectors producing final goods required

by the growth of outputs is consistent with factor–market clearing. Since input

coefficients are fixed and factor markets are in equilibrium initially, we can con-

centrate on equilibrium on the market for L1. The market–clearing condition for

this factor requires
N∑

i=1

L1i = L1 − L1R
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Differentiating this condition with respect to time and making use of (39) gives

N∑
i=1

C̄i

Ci

L1i = 0 .

By using the market–clearing conditions Ci = Yi and (37), we finally arrive at

N∑
i=1

C̄i

ki

= 0 . (40)

This condition is fulfilled under the assumptions we made with respect to

consumer preferences, namely
∑

piC̄i = 0. This can be seen by substituting for

ki in (40) as follows. From the condition of equal factor prices across subsectors it

follows that marginal value products equalize. With respect to L1, we can write

this condition (by making use of (37)) as

piki = w1 , i = 1, . . . , N.

After substituting in (40) for ki, the condition for factor–market clearing reduces

to ∑
piC̄i = 0 . (41)

This is exactly the same condition that ensures the growth rates of expenditure

and of the consumption aggregator to be the same.4 In the end, condition (41)

ensures factor inputs to adjust such that factor makets clear at each instant.

A special example may be helpful to clarify how the reallocation of factors

works. Suppose there are only M = 2 factors. In this case we can analyze factor–

market clearing with the help of a diagram in (L1, L2) space. In figure 1, the

vector OL represents the economy’s factor endowments. Additionally, we assume

that there are N = 3 final goods. The rays OAi (i = 1, 2, 3) represent the factor

proportions corresponding to a given relative factor price w1/w2. We label final–

good subsectors such that subsector 1 uses L1 most intensively, and subsector 2

4Note the difference to the result derived by Kongsamut et al. (1997). These authors also
analyze an uneven model (two factors, three goods). Since in their model the accumulation of
one factor (capital) is tied to the size of one sector (manufacturing), a GBGP (as defined above)
with constant overall growth rate exists only if preferences are homothetic. Hence, these authors
take an alternative definition of a GBGP (they take a path with constant rate of interest and
implying constant factor intensities) and analyze a path with constant relative price allowing
for structural adjustment. However, adding a fourth sector to their model would also allow for
structural adjustment and constant overall growth.
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uses L2 most intensively. Along these rays, the lengths OBi = bi(w̄1, w̄2)Ȳi corre-

spond to the factor–input requirements of the equilibrium productivity–adjusted

output levels Ȳi. Equilibrium on the factor markets then requires that the vector

sum of this lengths add up to the endowment vector OL. Obviously, sectoral

factor inputs are not uniquely determined by factor market clearing.

�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
���

���
���

���
���

��:

�
�
�
�
�
��

���
���

���
���

���
��:

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

���
���

���:

B1

B̃1
B3

B̃3

B2

B̃2

O

A1
A3

A2

L
L1

L2

Figure 1: Factor reallocation along the GBGP

Suppose now that in the static equilibrium at t = 0 the factor inputs in

final–goods subsectors are determined by the lengths OBi which add up to OL
as shown in figure 1. We know that the GBGP converges to the BGP of the

homothetic case with C̄i = 0 (i = 1, 2, 3) at the same price vector. The homo-

thetic case, however, is characterized by an allocation of factors that does not

change over time. Suppose that the factor inputs in the homothetic case are

determined by the lengths OB̃i, which also add up to OL. Starting at t = 0, the

economy starts with the factor allocation characterized by OBi, and converges

towards the allocation determined by OB̃i. Along the GBGP, the lengths OBi
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monotonically adjust towards their long–run values OB̃i with all markets clear-

ing simultaneously at each instant. In the special case illustrated in figure 1,

factors are reallocated towards sector 3 as the economy develops along its GBGP.

As a result, the productivity–adjusted output of good 3 rises over time. Since

we assumed final product 3 to be neither the most L1–intensive nor the most

L2–intensive good, clearing of factor markets requires factor inputs—and hence

productivity–adjusted output levels—of subsectors 1 and 2 to decline along the

GBGP. This does not imply that production of these goods falls. Due to the

increase in total factor productivity by the rise in the number of intermediate

goods production of all sectors increases. In our special example, the output of

good 3 rises relative to the outputs of the other final goods, and the output of

good 2 rises relative to good 1.5 Since our choice of factor intensities and our

selection of the long–run and the short–run allocation is completely arbitrary,

any adjustment driven by preferences fulfilling (41) is compatible with clearing

of factor markets.

4 The model in aggregates

This section shows that the aggregated version of our model collapses to a special

version of the Romer (1990) model. With respect to the reference one–sector

model, we depart from Romers original specification in the following way. First,

we follow Barro & Sala–i–Martin (1995: ch. 6) and assume (i) that labor is

the only factor of production, and (ii) that intermediate goods are not trans-

formed into physical capital but fully used up in the production of final goods.6

Second, we allow for technological differences in the final–goods sector and the

intermediate–goods sector by assuming that intermediates are produced using

only labor. The latter implies a linear transformation curve between the outputs

of intermediates and R&D. It shows up that our model formulated in aggregates

5The latter follows from the Rybczynski theorem. With relative factor inputs in subsector
3 exceeding the relative factor endowment (i.e. L13/L23 > L1/L2), the reallocation of factors
towards subsector 3 acts like a decline in relative factor endowment that is left for subsectors 1
and 2. According to the Rybczynski theorem, the output of the L2 intensive good must then
rise relative to the output of the other good.

6The second assumption ensures that any form of transitional dynamics is absent in the
model.
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is formally identical to this modified version of the Romer model. As a result,

the analysis of the bahavior of aggregates follows from the appropriately modified

version of the Romer model.

In order to prove this assertion, we explicitly carry out the aggregation proce-

dure in our model. Aggregation on the demand side is straightforward. How-

ever, we cannot use the already introduced consumption–aggregator function

C as a measure of aggregate consumption, because C does not appear in the

representative household’s budget constraint. Therefore, we apply the Hicksian

composite–commodity theorem and define aggregate consumption expenditure as

the appropriate consumption index. Given our assumptions on the values of C̄i,

it is completely irrelevant for the behavior of aggregates whether we define the

household’s utility function in the aggregated model as a function of C or of E.

Of course, we can find a price index P for aggregate consumption by some func-

tion ψ(p). In the following, we take aggregate consumption as numeraire, i.e. we

assume P = 1.

On the production side, we have to aggregate over factor inputs and over

factor prices. As shown in appendix B, from the homogeneity properties of the

technologies and the fact that relative factor prices do not change along the GBGP

it follows that

Fi(L1i, . . . , LMi) = biL1i .

With respect to the unit–cost functions, this implies

ci(w1, . . . , wM) = w1ci(1, . . . , wM/w1) .

For constant relative factor prices, c(1, . . . , wM/w1) is also a constant value. Due

to the linearity of production in L1i, we arrive at

ci(w1, . . . , wM) = w1/bi .

The same argument applies for the technologies in the intermediate–goods sector

and the research sector. Hence,

cx(w1, . . . , wM) = w1/bx

cR(w1, . . . , wM) = w1/bR .

The variables biL1i and w1/bi (i = 1, . . . , N, x, R) are a measure of aggregate

factor input and aggregate factor payments, respectively. Because of the differ-

ences in production technologies the values of b are (sub–)sector specific. In order
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to ensure compatibility to the appropriately modified Romer model, we define

w ≡ w1/bx as the wage rate (the price index for aggregate factor inputs), where

bx ≡ [cx(1, . . . , wM/w1)]
−1. As a result, the aggregate factor bxL1 is regarded as

the economy’s labor endowment. Furthermore, the labor–input coefficients of the

technologies are given by 1 in the intermediate–goods sector, bx/bR in the R&D

sector, and bx/bi in the ith final–goods sector.

We can then write the unit–cost functions as

cx(w1, . . . , wM) = w ≡ cx(w)

cR(w1, . . . , wM) = ηw ≡ cR(w)

ci(w1, . . . , wM , pD) = κiw
1−αpα

D ≡ ci(w, pD) , i = 1, . . . , N ,

where η = bx/bR > 0 and κi > 0 are indexes measuring differences in labor

productivity across the various production activities.

We now derive an explicit formula for the rate of innovation in aggregated

terms. Denoting the productivity–adjusted real wage by w̄ ≡ wAα−1, the produc-

tivity–adjusted net GDP function can then be written as7

ȳ(L, gA) = γ [w̄L− gAcR(w̄)]

⇐⇒
ȳ(L, gA) = γ [w̄(L− LR)] .

From that we derive
ȳ(L, gA)

cR(w̄)
= γ

(
L

η
− gA

)
.

Substituting in (36), we arrive at

gA =

[
α(1− α)

1− α(1− α)

L

η
− ρ

] [
α

(
1 +

1− α

1− α(1− α)

)
+ θ(1− α)

]−1

. (42)

Formally, this is exactly the same result which can be derived from the version

of the Romer model modified as discussed above.8 Analogously, we can derive

the results for the growth rates of aggregate consumption and the real wage,

7We can omitt the price index P as argument of the productivity–adjusted net GDP function
since P has been normalized to unity.

8The result differs slightly from the result derived by Barro & Sala–i–Martin (1995, ch. 6)
since we do not assume identical technologies for producing intermediates and final goods.
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and arrive at the same results as in the (appropriately modified) Romer model.

Hence, all results derived from the non–disaggregated Romer model carry over

to the present model formulated in aggregates. Consequently, the Romer model

describes correctly the behavior of aggregates in our disaggregated model. If we

are only interested in the behavior of aggregate variables—such as the innovation

rate, consumption expenditure, aggregate factor incomes—there is no need to

analyse the GBGP of the disaggregated model. We can take the results directly

from the BGP analysis of the non–disaggregated model.

5 Conclusion

Critics of growth theory stress the massive change in sectoral composition as a

challenge for theories concentrating on balanced–growth paths (BGP). Our anal-

ysis has shown that the obvious inconsistence of these models and structural

adjustment does not necessarily render BGP analyses useless. By disaggregating

the final–goods sector of a standard research–driven growth model and gener-

alizing the concept of a balanced growth path (GBGP), we could explain that

balanced–growth behavior of aggregate variables is indeed consistent with a mas-

sive change in sectoral composition of the economy. In this sense, structural

adjustment is only a byproduct of economic growth that has no feedback on the

growth process itself. This stands in contrast to Schumpetarian growth models

(cf. Aghion & Howitt 1998), where a special form of structural change within the

intermediate–goods sector—the permanent change in the industry leadership by

the process of “creative destruction”—drives economic growth. However, we can

easily substitute for the product–variety explanation of growth by the Schum-

petarian specification where innovations take the form of quality upgrading of

intermediate goods thus covering this additional aspect of structural change.

The decisive prerequisite for the explanation of structural change along a

GBGP in the present model is that the production–sector equilibrium is not

uniquely determined for a given vector of goods’ prices and given factor endow-

ments. With different production technologies, such an indeterminacy arises when

the number of final goods used for consumption purposes exceeds the number of

factors. Indeterminacy of the production–sector equilibrium, however, is not a

necessary condition for structural adjustment along a GBGP. Alternatively, we
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can give up our assumption of exogenously given factor supplies and search for

a suitable modelling of factor accumulation in a model with an equal number of

factors and final goods.9 In such a framework, outputs are uniquely determined

by factor–market clearing at each point in time. However, relative outputs of

final goods will change if the accumulation process alters the economy’s relative

factor endowments over time. Of course, we can always specify a process of factor

accumulation ad hoc generating a path of final–goods’ outputs that is consistent

with consumers’ demand derived from nonhomothetic preferences. The challenge

of this modification is to provide a plausible microeconomic foundation, or other

plausible justification, for the process of factor accumulation that is compatible

with the required growth of final–goods outputs. This is the program of ongoing

research.
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Appendix

A Deriving the properties of the equilibrium

rate of innovation

Calculating the comparative–static effects of changes in factor endowments, in

the rate of time preference, and in the elasticity of substitution from (36) gives

dgA

dLl
=

α(1− α)

cR(w̄)

∂ȳ(.)

∂Ll
[α + θ(1− α)]−1 ψ , l = 1, . . . ,M (A.1)

dgA

dρ
= − [α + θ(1− α)]−1 ψ (A.2)

dgA

dθ
= −α(1− α)2

ȳ(.)

cR(w̄)
[α + θ(1− α)]−2 ψ , (A.3)

where

ψ ≡
{
1− α(1− α)

cR(w̄)

∂ȳ(.)

∂gA
[α + θ(1− α)]−1

}−1

.

The derivative properties of the net GDP function ensure that dgA/dLl > 0,

dgA/dρ < 0, and dgA/dθ < 0.

B The production function at constant relative

prices

Due to the linear–homogeneity of the functions Fi in factor inputs, production of

Yi can be written as:

Yi = [Fi(1, . . . , LMi/L1i)]
1−αL1−α

1i Axα
i . (B.1)

For constant relative factor prices, the term Fi(1, . . . , LMi/L1i) is a sector–specific

constant. Hence, the growth rate of final–goods output i along the GBGP is given

by
Ẏi

Yi

= (1− α)
L̇1i

L1i

+ gA + α
ẋi

xi

.

The growth rate of xi along the GBGP can be calculated from (15):

ẋi

xi
=

Ẏi

Yi
+

α

1− α

ṗD

pD
− 1

1− α

ṗx

px
.
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With

pD =
cx(w̄)

α
A−(1−α)2/α

from (17) and (24), and

px =
cx(w̄)

α
A1−α

from (16) and (24), we arrive at

ẋi

xi
=

Ẏi

Yi
− (2− α)gA .

Hence,
Ẏi

Yi
=

L̇1i

L1i
+ (1− α)gA .

Substituting back, we get
ẋi

xi
= −gA +

L̇1i

L1i
,

which implies that Axi/L1i is constant. Rewriting (B.1) as

Yi = [Fi(1, . . . , LMi/L1i)]
1−αL1iA

1−α
(
Axi

L1i

)α

,

and using the fact that along the GBGP Axi/L1i is constant, we finally arrive at

Yi = kiA
1−αL1i , (B.2)

where ki ≡ [Fi(1, . . . , LMi/L1i)]
1−α(Axi/L1i)

α is a subsector–specific constant.

27


