
The Marginal Pricing Rule in Economies with
Infinitely Many Commodities

Jean-Marc Bonnisseau ∗
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Abstract

In this paper, we consider an economy with infinitely many commodities and non-convex pro-
duction sets. We propose a definition of the marginal pricing rule which allows us to encompass
the case of smooth and convex production sets. We also show the link with the definition used
in a finite dimensional setting where the marginal pricing rule is defined by means of the Clarke’s
normal cone. We prove the existence of a marginal pricing equilibrium under assumptions similar
to the one given for an economy with a finite set of commodities.
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1 Introduction

The marginal cost pricing rule was introduced in the thirties to obtain sufficient
conditions for the Pareto optimal allocation. To quote Hotelling (1938), an optimum
of welfare “corresponds to the sale of everything at marginal cost”. In a seminal
paper by Guesnerie (1975), a statement of the second welfare theorem is provided
in a general equilibrium framework. It appears that the marginal cost pricing rule
must be generalized by using the marginal pricing rule when the iso-production sets
are not convex since, in this case, the cost may not be minimized at a Pareto optimal
allocation. When the production set is smooth, the marginal pricing rule means that
the relative prices must be equal either to the marginal rate of transformation or to
the marginal rate of substitution. In other words, the producer fulfills a first-order
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necessary condition for profit maximization. Actually, by using the normal cone of
Dubovickii and Miljutin to define the marginal pricing rule, Guesnerie encompasses
nonsmooth production sets. Note that it is natural to define the marginal pricing
rule through a normal cone since, when the boundary is smooth and the cost function
is well defined and differentiable, the marginal cost pricing rule means that the price
vector is orthogonal to the tangent space to the production set. This is also true
with the marginal pricing rule when the cost function is not defined.

Several authors have generalized the result of Guesnerie in different frameworks
by using different definitions of the normal cone which correspond to different
marginal pricing rules (see, Bonnisseau-Cornet (1988b), Cornet (1986, 1990a), Jofré
(1997), Khan (1998), Khan and Vohra (1987, 1988), Quinzii (1988), Yun (1984)).
It is important to note that whatever is the definition of the marginal pricing rule,
it coincides with the profit maximization rule when the production set is convex
and it satisfies the equalities between relative prices and marginal rate when the
production set is smooth.

For the problem of the existence of a marginal pricing equilibrium, the situation
is not the same since the proof requires much more properties of the normal cone
than the one used in the proof of the second welfare theorem. Actually, the different
notions of normal cone given in the literature dealing with non-smooth analysis,
are designed to obtain optimization results like the characterization of the Pareto
optimal allocations. But it is well known that an equilibrium needs a simultaneous
optimization and thus, stronger properties of the tools used in the proof. After
Cornet (1990b), it appears that the right approach in a finite dimensional commodity
space is to define the marginal pricing rule by means of Clarke’s normal cone or the
related concept of generalized gradient. A fundamental reason for this choice is that
the marginal pricing rule satisfies then convexity and continuity properties under
reasonable assumptions on the production sets. An existence result of marginal
pricing equilibrium is presented in Bonnisseau-Cornet (1990b) and the proof reveals
how the different properties of Clarke’s normal cone are useful.

It appears that the Clarke’s normal cone does not have sufficient continuity
properties in infinite dimensional commodity space to obtain an equilibrium. Indeed,
in Bonnisseau-Meddeb (1999), an existence result for general pricing rules with
bounded losses is proved. It is assumed that the pricing rules satisfy a kind of
continuity assumption which is crucial to get an equilibrium as a limit of equilibria
in a sequence of auxiliary economies. The pricing rule defined by means of Clarke’s
normal cone does not satisfy this assumption. That is why we propose a definition
of the marginal pricing rule by using a new normal cone. The main interest of
our notion is that it allows us to obtain a version of the second theorem of welfare
economics together with an existence result under reasonable assumptions.

The cost to be paid to obtain a general existence result is that the marginal
pricing rule is less precise since the normal cone is larger than the Clarke’s one.
In a finite dimensional commodity space, the marginal pricing rule may also be
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to large as it is shown in Jouini (1988). Note that our definition of the marginal
pricing rule satisfies some requirements to be consistent with the literature. When
the production set is convex, one gets the standard maximization behavior for the
producer and when the commodity space is finite dimensional, the notion coincides
with the one defined by means of the Clarke’s normal cone. Furthermore, when the
production set is smooth as in Shannon (1997), there is only one price vector which
satisfies the marginal pricing rule, that is the unique outward normal vector. Thus,
our approach allows us to encompass economies with convex or smooth production
sets and we do not need to have a specific treatment for each case.

From a technical point of view, note that the profit maximization rule needs a
global information relative to the production set since it is included in an half space
defined by the price vector and the production plan. The Clarke’s normal cone takes
into account not only the production plan but every production plan is a neighbor-
hood. Our approach is similar but we consider weak∗-open neighborhoods instead
of open balls. Actually, since the weak∗-open neighborhoods are never bounded, we
consider the production plans which are not to far from the reference point. The use
of weak topologies is natural in infinite dimensional spaces as it is explained in the
survey of Mas-Colell and Zame in the Handbook of Mathematical Economics. When
the production set is smooth, the information on a neighborhood is summarized by
the unique outward normal vector.

As for our existence result, we consider the framework of Bewley (1972) and the
proof is similar since we consider a generalized sequence of equilibria of auxiliary
economies with increasing finite dimensional commodity spaces. Contrary to the
existence of Walras equilibria, we cannot consider the Pareto optimal allocations
since it is well known that a marginal pricing equilibrium may be not Pareto optimal
(See, Beato and Mas-Colell (??)). We need to be careful with the so-called survival
assumption which plays a key role in our proof since it has important consequences
on the topology of the attainable allocations (Bonnisseau-Cornet(1990a,b), Cornet
(1988), Kamiya(1988)). Indeed, even if the original economy is supposed to satisfy
the survival assumption, this may not be true for the auxiliary economies contrary
to the convex case. Thus, we begin the proof by a first limit argument which shows
that the survival assumption holds true if the commodity space is large enough.

To compare our result with the one of Shannon(1997), note that her model
allows with only one producer with a smooth production set and it is assumed that
the unique normalized normal vector is continuous for the product of the strong
and weak topologies which is a rather strong hypothesis. Indeed, it is not satisfied
even if the set is convex. In the finite dimensional case, it is known that it is not
possible to deduce the existence result for several producers from the one with one
producer when the production sets are not supposed to be convex. The proofs are
quite different since she uses a degree argument whereas we consider a generalized
sequence of auxiliary economies with a finite dimensional commodity space.

The result given in Bonnisseau-Meddeb (1999) is more general since it encom-
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passes general pricing rules. But, as in a finite dimensional setting, we remove the
bounded losses assumption together with the continuity assumption on the pricing
rules.

The note is organized as follows: in Section 2, we define the marginal pricing
rule and its major properties. In Section 3, we state the existence result. Section 4
is devoted to the proof whereas the proofs of lemmas are given in Appendix.

2 The Marginal Pricing Rule

We consider an economy with infinitely many commodities represented by a σ-finite
positive measure space (M,M, µ). The bundles of goods are defined by essentially
bounded, real-valued, measurable functions on (M,M, µ). The commodity space is
then L = L∞(M,M, µ) and we consider the standard norm defined on L denoted
‖.‖∞1. L+ is the positive cone of L. We give in Appendix the precise definitions.

A price system of the economy is a continuous linear mapping on the commodity
space. Consequently, the price space is Π = ba(M,M, µ), the space of bounded
additive set functions on (M,M) absolutely continuous with respect to µ, so that
the value of a bundle x when the price system is given by π in Π is

∫
M xdπ. Note

that elements of Π which are countably additive can be identified with elements of
L1 = L1(M,M, µ). In this case, the economic interpretation is easier since the value
of a commodity bundle x ∈ L at a price system p ∈ L1 is

∫
M p(m)x(m)dµ(m).

In the following, the price vector is always fixed up to a multiplication with a
positive real number and the forthcoming assumptions imply that it is non-negative
that is in the the positive cone Π+ of Π. Consequently, we only consider the prices
in S = {p ∈ Π+ | p(χ) = 1}, where χ is the function equal to 1 for every m in M .

We consider the weak-star topology2, σ∞, and the Mackey topology3, τ∞, which
are respectively the weakest and the strongest topology on L for which the topolog-
ical dual is L1. The weak-star topology on Π is σba.

The interest of the marginal pricing rule comes from the second welfare the-
orem. In a model with infinite dimensional commodity spaces, we can find an
exposition of this result with non-convex production sets in Bonnisseau-Cornet
(1988b). This result has been generalized in several directions in Cornet(1986),
(1990), Benoist(1990), Jofré(1997), Khan(1998) and Khan and Vohra(1987),(1988).
Roughly speaking, it states that a non-zero price vector can be associated with a
Pareto optimal allocation such that each producer satisfies the marginal pricing rule

1If x is an element of L∞(M,M, µ) and ε a positive real number, B(x, ε) is the open ball of
center x and radius ε and B̄(x, ε) is the closed ball of center x and radius ε. If C is a subset of
L∞(M,M, µ), int∞C denotes its interior and ∂∞C its boundary for the norm topology.

2A generalized sequence (xψ)(ψ∈Ψ) converges to x for the σ∞ topology if for all p ∈ L1,
(p(xψ))(ψ∈Ψ) converges to p(x).

3τ∞ is the topology of uniform convergence on the weak compact subsets of L1.
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with respect to this price. A central question is the concept of normal cone which is
used in the definition of the marginal pricing rule. In Bonnisseau-Cornet(1988b), the
authors use the Clarke’s definition whereas the other results use different definitions
which lead to smaller sets, hence to better results.

Our purpose is to propose a new definition for the marginal pricing rule which
means a new concept of normal cone. We want to be able to prove a version of
the second welfare theorem together with an existence theorem for marginal pricing
equilibria. The need for a new concept comes from the problem of non-continuity
of the mapping (p, y) ∈ Π × L → p(y) in infinite dimensional spaces for the weak
topologies. This question is relevant even with convex production sets (See Mas-
Colell and Zame (1991) for more details). Furthermore, we need some closedness
assumption on the marginal pricing rule in order to prove the existence of an equi-
librium. If we consider the Clarke’s normal cone, it has a closed graph for the strong
topologies under Assumption (P). But, this is not enough since we consider weak
topologies and then, the closedness property fails.

To be consistent with the literature, our notion must satisfy some minimal re-
quirement. It must encompass the case of producers with a convex production set
who maximize their profits taken the prices as given and the case of smooth pro-
duction sets as it is defined in Shannon (1997). In this case, the normal cone is
the half line generated by the unique outward normalized normal vector. When
the commodity space L is finite dimensional (that is when M is a finite set), the
marginal pricing rule must coincide with the usual one given by the Clarke’s normal
cone.

We now come to a precise definition. We consider a producer whose technological
knowledge is represented by a production set Y which is a subset of L. We posit
the following assumption on Y .

Assumption (P) Y is σ∞-closed, Y ∩ L+ = {0} and Y satisfies the free-disposal
assumption that is, Y − L+ = Y .

Contrary to the case of a finite dimensional space, it is simpler to introduce first
the tangent cone and then, the normal cone is the polar cone of the tangent cone.
We call our notion of tangent cone, small tangent cone, since we shall prove that it
is included in the Clarke’s tangent cone. Conversely, we call our notion of normal
cone, large normal cone, since it contains the Clarke’s normal cone.

Definition 2.1 Let y ∈ Y . The small tangent cone of Y at y denoted TY (y) is the
closure of the set of vector v ∈ L which satisfies the following condition : for all
ρ > 0, there exists η > 0, for all r > 0, there exists a weak∗-open neighborhood U of
y and ε > 0, such that for all y′ ∈ B(y, ρ) ∩ U ∩ Y , for all t ∈ (0, ε),

[{y′} + tB(v + η(y − y′), r)] ∩ Y �= ∅
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The large normal cone of Y at y denoted NY (y) is the polar cone to TY (y), that is,
p ∈ NY (y) if p(v) ≤ 0 for all v ∈ TY (y).

Taken a price vector p ∈ S and a production plan y ∈ ∂∞Y , the producer follows
the marginal pricing rule if p ∈ NY (y). In the following, for every y ∈ ∂∞Y , we
denote by MP (y) the set NY (y)∩S. Note that the free-disposal assumption implies
that the boundary of Y is the set of weakly efficient production plans, that is, the set
of production plans y such that ({y}+int∞L+)∩Y = ∅. Consequently, the marginal
pricing rule requires that the producer satisfies a minimal efficiency condition.

To situate our definition with respect to previous works, we give in the following
proposition some properties of TY and NY . In the following, TY and NY denote
respectively the Clarke’s tangent cone and the Clarke’s normal cone.

Proposition 2.1 Under Assumption (P), for every y ∈ Y ,

(i) TY (y) and NY (y) are nonempty, convex and closed cones.

(ii) −L+ ⊂ TY (y) and NY (y) ⊂ Π+.

(iii) TY (y) ⊂ TY (y) and NY (y) ⊂ NY (y). Furthermore if Y is convex or if L is
finite dimensional, then TY (y) = TY (y) and NY (y) = NY (y).

(iv) Let ((yγ, pγ)γ∈(Γ,�) be a bounded generalized sequence of ∂∞Y × S which con-
verges to (y, p) for the topologies σ∞ and σba, such that (pγ(yγ)) converges and pγ ∈
NY (yγ) ∩ S for all γ. Then p(y) ≤ lim pγ(yγ). Furthermore, if p(y) = lim pγ(yγ),
then p ∈ NY (y).

Assertion (i) is a technical one. Assertion (ii) shows that a producer sets non
negative prices when he follows the marginal pricing rule. This is a consequence
of the free-disposal assumption on the production set. Assertion (iii) justifies our
terminology. Furthermore, since the large normal cone is included in the Clarke’s
normal cone, it implies that the second welfare theorem holds true in the sense
that we can associate to a Pareto optimal allocation, a price vector such that each
producer satisfies the marginal pricing rule for this price vector under the standard
assumption of the local nonsatiation of consumers. Furthermore, if a producer with
a convex production set follows the marginal pricing rule, then he maximises its
profit with respect to the price vector. Finally, our definition extends the usual
one for finite dimensional commodity space. Assertion (iv) is a key property in
the proof of the existence of marginal pricing equilibria since it allows us to deduce
that a limit of marginal pricing equilibria for a sequence of auxiliary economies, is a
marginal pricing equilibrium. Note that (iv) does not imply a closedness property
of the graph of NY but, roughly speaking, it means that the closure of the graph of
the Clarke’s normal cone is included in the graph of NY .
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We now show that our definition of the marginal pricing rule coincides with the
one of Shannon (1997) who considers smooth production sets.

Lemma 2.1 Let Y be defined as follows : Y = {y ∈ L | g(y) ≤ 0} where g,
from L to R is differentiable, ∇g(y) ∈ Π+ \ {0} when g(y) = 0. Furthermore,
for all ȳ ∈ ∂∞Y , for all ε > 0, there exists a weak∗-open neighborhood U of ȳ
such that ∇g(y) ∈ B(∇g(ȳ), ε) for all y ∈ U ∩ ∂∞Y . Then, for all ȳ ∈ ∂∞Y ,
NY (ȳ) = NY (ȳ) = {t∇g(ȳ) | t ≥ 0}.

The proof of this lemma is given in Appendix. With a smooth production set,
the interpretation of the marginal pricing rule is natural. Indeed, the relative prices
are equal to the marginal rate of substitution between two inputs or the marginal
rate of transformation.

3 Existence of marginal pricing equilibrium

The purpose of this section is to show that our concept of the marginal pricing rule
allows us to prove the existence of an equilibrium under assumptions similar to the
ones of a finite dimensional model.

3.1 Description of the economy

The economy has a finite number m of consumers denoted by the subscript i running
from 1 to m. We denote by Xi ⊂ L the set of possible consumption plans of the ith
consumer, and the tastes of this consumer are described by a complete, reflexive,
transitive, binary preference relation �i on his consumption set Xi. The relation of
strict preference x ≺i x

′ is then defined by [x �i x
′ and not x′ �i x]. Let ωi in L be

the initial endowment of agent i and ω =
∑m
i=1 ωi the total initial endowment of the

economy. We make the following assumption on the consumption sector.

Assumption (C) For all i: (ı) Xi is a σ∞-closed and convex subset of L+, containing
0; (ıı) the preference relation �i is convex, τ∞-continuous and non-satiated4.

This assumption is standard and usually considered in general equilibrium mod-
els with infinite dimensional commodity spaces. Just note that the σ∞ and τ∞

topologies have the same closed and convex sets so that it’s equivalent to consider
that the consumption sets are τ∞-closed or σ∞-closed.

4For all xi ∈ Xi: {x ∈ Xi | x �i xi} and {x ∈ Xi | xi �i x} are τ∞-closed and there
exists x′

i ∈ Xi such that xi ≺i x′
i. For all (xi, x′

i) ∈ Xi × Xi, for all t ∈]0, 1[, if xi ≺i x′
i then

xi ≺i txi + (1 − t)x′
i.
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The production sector of this economy consists of a finite number n of producers
represented by the subscript j running from 1 to n. The technological knowledge of
the jth firm is represented by a production set Yj. We assume that each production
set satisfies Assumption (P). Note that we do not have any convexity assumption
neither on the individual production sets nor on the global one.

The revenues of the agents are defined by wealth functions, (ri), which depend
on the value of the initial endowments and the profits or losses of the producers, that
is, ri is a function from Rn+1 to R. For every (p, (yj)) ∈ S×∏n

j=1 Yj, for i = 1, ...,m,
the wealth of the ith consumer is ri(p(ωi), (p(yj)))

A particular case of wealth distribution is the one corresponding to the private
ownership economy, where each function ri is given by ri(νi, (νj)) = νi +

∑n
j=1 θjiνj

where the (θji) correspond to the shares of consumers in the profits of each firm.
(
∑m
i=1 θji = 1 for j = 1, ..., n and θji ≥ 0 for all i, j.) We posit the following

assumption on the revenue functions.

Assumption (R) The functions (ri) from Rn+1 to R are continuous. For every
((νi), (νj)) ∈ Rm+n,

∑m
i=1 ri(νi, (νj)) =

∑m
i=1 νi+

∑n
j=1 νj and if

∑m
i=1 νi+

∑n
j=1 νj > 0

then for every i = 1, ...,m, ri(νi, (νj)) > 0.

The distribution wealth structure is slightly more restrictive than the one con-
sidered in Bonnisseau-Cornet(1988a). This is due to the difficulty coming from the
non continuity of the duality product with respect to the product of the weak-star
topologies. This fact is well known even when one works with an exchange economy.
The last part of Assumption (R) can be interpreted as the fact that the distribution
of the income among the consumers is fair in the sense that each consumer has a
positive income if the total wealth of the economy is positive. Nevertheless, behind
this assumption, there is an institutional mechanism to support the losses of the
nonconvex firms.

As usual in an economy with production, we need a boundedness assumption
which means that with a finite quantity of inputs, the production sector is not
able to produce an unbounded quantity of outputs. Contrary to the case of convex
productions sets, we must consider the attainable allocations associated with larger
initial endowments. We refer to Bonnisseau-Cornet(1988a) for an example of an
economy with a bounded attainable set but without marginal pricing equilibrium
since the following assumption does not hold.

Assumption (B) For every ω′ ≥ ω, the set

A(ω′) =


(yj) ∈ Πn

j=1Yj | 0 ≤
n∑
j=1

yj + ω′




is norm bounded.
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Note that the previous assumptions are almost the same as those in Bonnisseau-
Meddeb(1999). The difference with this paper is the behavior of the producers
since we consider the marginal pricing rule whereas more general pricing rules are
considered in the quoted paper.

3.2 The existence result

We first give the definition of a marginal pricing equilibrium which actually extends
the one in Bonnisseau-Cornet (1990a,b) to an infinite dimensional space.

Definition 3.1 ((x∗
i ), (y

∗
j ), π

∗) an element of
∏m
i=1 Xi×

∏n
j=1 ∂∞Yj×S is a marginal

pricing equilibrium of the economy if:

(a) x∗
i is �i-maximal in {x ∈ Xi | π∗(x) ≤ ri(π

∗(ωi), (π
∗(y∗j )))} for i = 1, ...,m.

(b) π∗ ∈ ∩nj=1MPj(y
∗
j ).

(c)
∑m
i=1 x

∗
i =

∑n
j=1 y

∗
j + ω.

Condition (a) defines the behavior of consumers : each of them maximizes his
preferences under his budget constraint. Condition (b) requires the production
sector of the economy to be at equilibrium that is, each producer is at equilibrium
for the same equilibrium price vector π∗. Condition (c) means that all markets clear
or the demand is equal to the supply. This definition encompasses the concept of
competitive equilibrium when the production sets are convex. A marginal pricing
equilibrium is a special case of an equilibrium with general pricing rule as it is defined
in Bonnisseau-Meddeb(1999).

Let’s define the set of production equilibria:

PE = {(p, (yj)) ∈ S ×
n∏
j=1

∂∞Yj | p ∈ ∩nj=1MPj(yj)}

We are now able to state the existence result.

Theorem 3.1 The economy E = ((Xi,�i, ri), (Yj), (ωi)) has a marginal pricing
equilibrium if it satisfies Assumptions (C), (P), (R), (B) and:

Assumption (SA) For all (p, (yj), t) ∈ PE × R+,
∑n
j=1 yj + ω + tχ ≥ 0 implies∑n

j=1 p(yj) + p(ω) + t > 0.

We postpone the proof to the next section. We have already discussed Assump-
tions (C), (P), (R), (B). As for Assumption (SA), we refer to the papers of Cornet
(1988) and Kamiya (1988) which show its crucial importance in the proof of the
existence. We recall that it is satisfied when the production sets are convex and the
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total initial endowments are in the interior of the positive cone of L. Note also that
if

∑n
j=1 yj + ω + tχ ≥ 0, then

∑n
j=1 p(yj) + p(ω) + t ≥ 0 for any positive price p.

Consequently, we just require that the common price vector p which is given by the
marginal pricing rule of each producer, does not lead to the smallest possible total
wealth.

To compare this result with the literature, we first remark that it generalizes the
result of Bewley(1972) since it considers nonconvex production sets and the marginal
pricing rule leads to the same equilibria as the profit maximization rule when the
production sets are convex. In Bonnisseau-Meddeb (1999), the behavior of the firms
is defined through a general pricing rule which allows to encompass a large number
of situations. Nevertheless, the existence result uses a bounded losses assumption
as in the finite dimensional case, which is not necessary with the marginal pricing
rule. Furthermore, the link of the normal cone with the geometry of production
sets, allows to remove Assumption (PR) on the continuity of the pricing rules.

Our model is very close to the one of Shannon(1997). Nevertheless, the main
difference comes from the fact that we consider several producers and our assump-
tion on the marginal pricing rule is weaker. In the finite dimensional setting, it is
well known that the gap between one and several producers is important when the
production sets are not supposed to be convex. The proofs are very different since
Shannon uses the degree theory whereas we use a limit argument.

4 Proof of Theorem 3.1

4.1 Finite dimensional auxiliary economies

In this subsection, we apply Theorem 2.1 of Bonnisseau-Cornet(1990b) to a family
of auxiliary economies. The difficulty comes from the fact that the survival as-
sumption is not satisfied for every production equilibria but only on a bounded set.
Consequently, we have to check carefully the proof of the above quoted result to
obtain a marginal pricing equilibrium of auxiliary economies when the commodity
space is large enough.

In order to define auxiliary economies with a finite dimensional space of com-
modity, we introduce some notations. Let F be the directed set of finite dimensional
subspaces of L containing ωi for all i and χ. Let F ∈ F . Then F+ = F ∩ L+ is
the positive cone of F . Note that the interior of F+, is equal to F ∩ intL+ and
thus it is non-empty since χ is an element of this interior. Since F+ is a pointed
cone (F+ ∩ (−F+) = {0}), we can choose an Euclidean structure on F such that the
orthogonal space to χ, χ⊥F satisfies χ⊥F ∩F+ = {0} and the norm of χ is equal to 1.
In the following, 〈., .〉F denotes the inner product of F and projχ⊥F the orthogonal
projection on χ⊥F . With this Euclidean structure, we identify the dual space of F
to itself. Let SF = {p ∈ F ◦

+ | 〈p, χ〉F = 1} where F ◦
+ is the positive polar cone of
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F+. With a little abuse, if π is an element of S, we let π|F be the element of SF

such that the restriction of π to F is 〈π|F , .〉F .

For every F ∈ F , let us consider the economy EF = {(XF
i = Xi ∩ F,�F

i

, ri), (Y
F
j = Yj ∩ F ), (ωi)}, where �F

i is the preorder induced on XF
i by �i. For

j = 1, ..., n and yj ∈ ∂Y F
j , we define:

MP F
j (yj) = NY F

j
(yj) ∩ SF ,

and

PEF = {(p, (yj)) ∈ SF ×
n∏
j=1

∂Y F
j | p ∈ ∩nj=1MP F

j (yj)}

Since the two notions coincide in finite dimensional spaces, we define above the
marginal pricing rule as usual by means of Clarke’s normal cone. Our first lemma
gives an important link between the finite economies and the original one which is
used in the proof.

Lemma 4.1 Let Yj be a subset of L satisfying Assumptions (P). For every F ∈ F ,
for every yj ∈ ∂Y F

j , for every p ∈ MP F
j (yj), there exists π ∈ NYj

(yj) such that
π|F = p.

The proof of this lemma is given in Appendix. We now remark that the economy
EF satisfies Assumptions (C), (P), (R) and (B) except the non satiation of the
preferences. The following lemma shows that weak versions of Assumption (SA)
and of the non satiation of the preferences are also satisfied if the commodity space
F is large enough. Let us now introduce the elements for the statement of the
lemma. Let η̄ an arbitrary positive real number. From Assumption (B), there exists
r̄ > 0 such that A(ω + η̄χ) ⊂ B(0, r̄)n.

Lemma 4.2 Under the Assumptions of Theorem 3.1, there exists F̄ ∈ F such that
for all F ∈ F , if F̄ ⊂ F , then the economy EF satisfies :

Assumption (SA’) For all (p, (yj), t) ∈ PEF×[0, 4nr̄+‖ω‖∞],
∑n
j=1 yj+ω+tχ ≥ 0

implies 〈p,∑n
j=1 yj + ω〉F + t > 0.

Assumption (NS’) For every ((xi), (yj)) ∈ ∏m
i=1 X

F
i × ∏n

j=1 Y
F
j , if

∑m
i=1 xi ≤∑n

j=1 yj + ω, then there exists (x′
i) ∈

∏m
i=1 X

F
i such that xi ≺F

i x′
i for every i.

The proof of this lemma is given in Appendix. It is important to consider only
bounded values for t since it implies that the production plans remain in a bounded
hence relatively weakly compact set. Note also that the convexity of the preferences
implies that they are locally non satiated if they are non satiated.

Proposition 4.1 Under the Assumptions of Theorem 3.1, if F̄ ⊂ F , then EF has
a marginal pricing equilibrium ((xFi ), (yFj ), pF ).
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Proof. Let F such that F̄ ⊂ F . To compare with the proof of Bonnisseau-
Cornet(1990b), note that the Euclidean structure on F is not the same as the one
on R but it suffices to replace the vector e by χ. For the non satiation of the
preferences, we remark that it is used only in Claim 4 for an attainable allocation
so that Assumption (NS′) of Lemma 4.2 is enough to conclude.

We now come to the main difference that is the fact that the survival assumption
is true only on a bounded set. Note that the proof of Bonnisseau-Cornet(1990b)
starts with an arbitrary fixed parameter ε > 0. We replace it by η̄ as given before
Lemma 4.2. We remark that in the proof of Bonnisseau-Cornet(1990b), the survival
assumption is used to prove the existence of a retraction and in the proofs of Claims
2 and 3. For the last points, it is applied only for production plans close to the
attainable allocation in the sense that

∑n
j=1 yj + ω + η̄χ ≥ 0 with the notations of

this paper. From the definition of r̄, η̄ < 4nr̄ + ‖ω‖∞. Consequently, Assumption
(SA′) is enough to conclude.

To prove that Assumption (SA′) is sufficient for the existence of the retraction, we
recall how it is built. Let ΛF

j (sj) = sj − λFj (sj)χ be the lipeomorphism between the
hyperplan χ⊥F and the boundary of the production set Y F

j and ΛF
0 (sj) = sj−λF0 (sj)χ

be the lipeomorphism between the χ⊥F and the boundary of F+. We remark that sj
and ΛF

j (sj) are neither in int∞F+ nor in −int∞F+ since we have suitably chosen the
Euclidean structure of F , the production sets satisfy the free disposal assumption
and 0 is on their boundaries. Furthermore, sj−ΛF

j (sj) is colinear to χ. Consequently,
one deduces that ‖ΛF

j (sj)‖∞ ≤ 2‖sj‖∞. Conversely, with the same arguments, if
yj ∈ ∂Y F

j , then ‖projχ⊥F (yj)‖∞ ≤ 2‖yj‖∞. For s ∈ (χ⊥F )n, let

θF (s) =
n∑
j=1

λFj (sj) + λF0 (−
n∑
j=1

sj − projχ⊥F ω) − 〈ω, χ〉F

From the definition of λFj and λF0 , θF (s) ≤ t is equivalent to
∑n
j=1 ΛF

j (sj) + ω +
tχ ≥ 0. If we look carefully to the proof of Lemma 4.1 of Bonnisseau-Cornet(1990b),
we just need to check that the Clarke’s generalized gradient of θF does not contain
0 for s in the convex hull of Mη̄ = {s ∈ (χ⊥F )n | θF (s) ≤ η̄}.

For all s ∈ (χ⊥F )n, if θF (s) ≤ η̄, then (ΛF
j (sj)) ∈ A(ω+ η̄χ). Consequently, from

our choice of r̄, ‖ΛF
j (sj)‖∞ < r̄ and from the above remark, ‖projχ⊥F (ΛF

j (sj))‖∞ =
‖sj‖∞ < 2r̄. Consequently, Mη̄ ⊂ (B(0, 2r̄) ∩ χ⊥F )n. Thus the convex hull of Mη̄ is
included in (B(0, 2r̄)∩χ⊥F )n. Now, let s ∈ (B̄(0, 2r̄)∩χ⊥F )n. Then ‖ΛF

j (sj)‖∞ ≤ 4r̄
for all j which implies that ΛF

j (sj) ≥ −4r̄χ. Thus,
∑n
j=1 ΛF

j (sj) + ω + (4nr̄ +
‖ω‖∞)χ ≥ 0. Using the same argument than the one in Bonnisseau-Cornet (1990b),
one deduces that Assumption (SA′) implies that the Clarke’s generalized gradient
of θF at s does not contain 0.

12



4.2 From the finite to the infinite dimensional commodity
space

We consider the generalized sequence ((xFi ), (yFj ), pF ) given by Proposition 4.1. From
Lemma 4.1, there exist price vectors (πFj ) in S such that for all j, πFj ∈ NYj

(yFj )
and πFj|F = pF . Note that Proposition 4.1, implies that ((xFi ), (yFj )) is an attainable
allocation. Hence, from Assumption (B) and from Alaoglu-Bourbaki Theorem, it
remains in a weak-star compact subset of Lm+n. We can do the same remark for (πFj )
since S is σba compact. This also implies that the real numbers (πFj (yFj )) remain in
a bounded set.

Consequently, there exists ((x
F (ψ)
i ), (y

F (ψ)
j ), (π

F (ψ)
j ))(ψ∈(Ψ,≥)) a generalized subse-

quence which converges to ((x̄i), (ȳj), (π̄j)) for the product of weak-star topologies

and such that for j = 1, ...n, the generalized sequences (π
F (ψ)
j (y

F (ψ)
j )) are converging

to limits denoted (ν̄j).

The purpose of the following claims is to prove that ((x̄i), (ȳj), π̄1) is a marginal
pricing equilibrium of the economy E . Note that

∑m
i=1 x̄i =

∑n
j=1 ȳj + ω.

Claim 1. For j = 2, . . . , n, π̄j = π̄1.

Proof. Let j ∈ {2, . . . , n}. Let x in L. There exists a finite dimensional space
F ∈ F containing x. There exists ψ0 ∈ Ψ such that ψ > ψ0 implies F ⊂ F (ψ). As

π
F (ψ)
j|F (ψ) = π

F (ψ)
1|F (ψ) = pF (ψ), we deduce that for ψ > ψ0, 〈pF (ψ), x〉F (ψ) = π

F (ψ)
1 (x) =

π
F (ψ)
j (x). The limit of (π

F (ψ)
1 (x)) is π̄(x) and the limit of (π

F (ψ)
j (x)) is π̄j(x), thus

π̄j(x) = π̄1(x). Since this equality holds for all x ∈ L, this leads to the result.

Claim 2. For i = 1, . . . ,m, for all xi ∈ Xi, if x̄i �i xi, then π̄1(xi) ≥ ri(π̄1(ωi), (ν̄j)).

Proof. Let xi ∈ Xi such that x̄i �i xi. From Assumption (C), there exists x′
i

arbitrarily close to xi such that xi ≺i x
′
i. We consider the set P̄i(x

′
i) = {x̃i ∈ Xi |

x′
i �i x̃i}. From the continuity and the convexity of the preferences, the set P̄i(x

′
i) is

convex (see, for example, Debreu (1959)). It is also τ∞-closed, then it’s σ∞-closed.

As x̄i /∈ P̄i(x
′
i) and (x

F (ψ)
i ) converges to x̄i for the σ∞ topology, there exists

ψ0 ∈ Ψ, for all ψ ≥ ψ0, x
F (ψ)
i ≺i x

′
i and x′

i ∈ F (ψ). Since ((x
F (ψ)
i ), (y

F (ψ)
j ), pF (ψ)) is

an equilibrium, one has 〈pF (ψ), x′
i〉F (ψ) > ri(〈pF (ψ), ωi〉F (ψ), (〈pF (ψ), y

F (ψ)
j 〉F (ψ))).

Recalling the facts that 〈pF (ψ), x′
i〉F (ψ) = π

F (ψ)
1 (x′

i) , 〈pF (ψ), ωi〉F (ψ) = π
F (ψ)
1 (ωi),

〈pF (ψ), y
F (ψ)
j 〉F (ψ)) = π

F (ψ)
j (y

F (ψ)
j ), the weak-star convergence of (π

F (ψ)
1 ) to π̄1 and

the continuity of ri (Assumption (R)), imply that

π̄1(x
′
i) ≥ ri(π̄1(ωi), (ν̄j))

Since this inequality holds for x′
i arbitrarily close to xi, one deduces that it holds
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for xi which ends the proof of the claim.

Claim 3. π̄1 ∈ ∩nj=1MPj(ȳj) and, for all i = 1, . . . ,m,
π̄1(x̄i) = ri(π̄1(ωi), (π̄1(ȳj))) = ri(π̄1(ωi), (ν̄j)).

Proof. From Proposition 2.1(iv), one has π̄1(ȳj) ≤ ν̄j for all j. From Claim 2,
for all i, π̄1(x̄i) ≥ ri(π̄1(ωi), (ν̄j)). Consequently, 0 = π̄1(

∑m
i=1 x̄i −

∑n
j=1 ȳj − ω) ≥∑m

i=1 ri(π̄1(ωi), (ν̄j))−
∑n
j=1 ν̄j−π̄1(ω) = 0. The last equality comes from Assumption

(R). This implies that π̄1(ȳj) = ν̄j for all j and π̄1(x̄i) = ri(π̄1(ωi), (ν̄j)) for all i.

Finally, one deduces that π̄1 ∈ ∩nj=1MPj(ȳj) from Proposition 2.1(iv).

Claim 4. For i = 1, ...,m, x̄i is �i-maximal in the budget set {xi ∈ Xi | π̄1(xi) ≤
ri(π̄1(ωi), (π̄1(ȳj))}.

Proof. In view of Claim 3, we have to show that for every agent i, if x̄i ≺i xi then
π̄1(xi) > π̄1(x̄i). From Claim 2, one has π̄1(xi) ≥ π̄1(x̄i). Suppose π̄1(xi) = π̄1(x̄i).
From Assumptions (SA) and (R) and Claim 3, we know that π̄1(x̄i) > 0. For
t > 0 close enough to 0, (1 − t)xi ∈ Xi and since the preferences are continuous,
x̄i ≺i (1 − t)xi. From Claim 2 and 3, π̄1((1 − t)xi) = (1 − t)π̄1(x̄i) ≥ π̄1(x̄i). But,
this contradicts π̄1(x̄i) > 0. Consequently, π̄1(xi) > π̄1(x̄i) which ends the proof of
the claim.

Appendix A

Let us first defined precisely the space L and Π. Let (M,M, µ) be a σ-finite posi-
tive measure space, that is, µ is a non-negative real valued, countably additive set
function defined on the σ-algebra M of subsets of M . Let L∞(M,M, µ) be the set
of all µ-essentially bounded M-measurable functions on M .

L∞(M,M, µ) = {f : M → R | f is measurable and ‖f‖∞ < ∞}

where ‖f‖∞ = sup {α ≥ 0 | µ{m ∈ M | |f(m) |≥ α} > 0}. Consider now the equiv-
alence relation ∼ defined by: f and f ′ are real-valued measurable functions on M ,
f ∼ f ′ if µ {m ∈ M | f(m) �= f ′(m)} = 0. L∞(M,M, µ) is L∞

∼ (M,M, µ) the set
of equivalence classes. We let L∞

+ (M,M, µ) be the positive cone of L∞(M,M, µ)
defined as follows:

L∞
+ (M,M, µ) = {f ∈ L∞(M,M, µ) | f(m) ≥ 0 a.e. }

We also define L1(M,M, µ) = {f : M → R | f is measurable and
∫
M | f(m) |

dµ(m) < ∞}. L1(M,M, µ) = L1
∼(M,M, µ).

ba(M,M, µ) is the space of bounded additive set functions on (M,M) absolutely
continuous with respect to µ, that is, π in ba(M,M) is such that π(E) = 0 for all
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M ′ ∈ M such that µ(M ′) = 0. The norm of ba(M,M, µ) is the total variation. If
π ∈ ba(M,M, µ), ‖π‖ = sup{∑n

i=1 | π(Ei) | | E1, ..., En disjoint sets of M}. Every
π ∈ ba+(M,M, µ) can be decomposed π = πc + πp where πc is an element of
L1

+(M,M, µ) and πp is positive and purely finitely additive, that is, for all p ∈
L1(M,M, µ), 0 ≤ p ≤ πp implies p = 0.

Proof of Proposition 2.1 In order to simplify the notations, for all ρ > 0, we
denote by T ρ

Y (y) the set of vecteur v such that there exists η > 0, for all r > 0,
there exists a weak∗-open neighborhood U of y and ε > 0 such that for all y′ ∈
B(y, ρ) ∩ U ∩ Y , for all t ∈ (0, ε),

[{y′} + tB(v + η(y − y′), r)] ∩ Y �= ∅

Consequently, TY (y) is the closure of ∩ρ>0T ρ
Y (y).

We recall the definition of the Clarke’s tangent cone to Y at y. An element v ∈ L
is in TY (y), if for all r > 0, there exists ε > 0, such that for all y′ ∈ B(y, ε) ∩ Y , for
all t ∈ (0, ε),

[{y′} + tB(v, r)] ∩ Y �= ∅
The Clarke’s normal cone, NY (y), is the polar cone of the Clarke’s tangent cone.

(i) Taken into account Definition 2.1, it suffices to prove that ∩ρ>0T ρ
Y (y) is a

nonempty convex cone. Let α > 0. We first prove that −αχ belongs to TY (y).
Let ρ > 0, η < α

ρ
, U = L and ε = 1. Then for all r > 0, for all y′ ∈ Y ∩B(y, ρ), one

has ‖η(y−y′)‖ ≤ α, hence −αχ+η(y−y′) ≤ 0. Consequently, y′+ t(v+η(y−y′)) ≤
y′, hence, from the free-disposal assumption, it belongs to Y and obviously to
{y′} + tB(v + η(y − y′), r) which shows that −αχ belongs to T ρ

Y (y).

We now prove that ∩ρ>0T ρ
Y (y) is a cone. Let v ∈ ∩ρ>0T ρ

Y (y) and τ > 0. Let
ρ > 0. There exists η > 0, for all r > 0, there exists a weak∗-open neighborhood U
of y and ε > 0 such that for all y′ ∈ B(y, ρ) ∩ U ∩ Y , for all t ∈ (0, ε),

[{y′} + tB(v + η(y − y′), r)] ∩ Y �= ∅

Let η′ = τη, and for all r > 0 let U and ε associated for v to r
τ
. Let ε′ = ε

τ
. Then, for

all y′ ∈ B(y, ρ)∩U∩Y , for all t ∈ (0, ε′), tB(τv+η′(y−y′), r) = τtB(v+η(y−y′), r
τ
).

Since τt < ε, from our choice of U and ε, one has

[{y′} + tB(τv + η′(y − y′), r)] ∩ Y �= ∅

Since it is true for all ρ, this implies τv ∈ ∩ρ>0T ρ
Y (y).

We end the proof by showing that ∩ρ>0T ρ
Y (y) is stable by addition which implies

that it is convex. Let v and w in ∩ρ>0T ρ
Y (y). Let ρ > 0 and r > 0. From the

definition of T ρ+1
Y (y), there exists η > 0, η′ > 0, ε > 0, ε′ > 0 and weak∗-open

neighborhoods U and U ′ of y such that for all y′ ∈ B(y, ρ + 1) ∩ U ∩ Y , for all
t ∈ (0, ε),

[{y′} + tB(v + η(y − y′,
r

3
)] ∩ Y �= ∅
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and for all y′ ∈ B(y, ρ + 1) ∩ U ′ ∩ Y , for all t ∈ (0, ε′),

[{y′} + tB(w + η′(y − y′),
r

3
)] ∩ Y �= ∅

There exists α ∈ (0, 1) and U ′′ a weak∗-open neighborhood5 of y such that
U ′′ + B(0, α) ⊂ U ∩ U ′.

Let ε′′ > 0 smaller than ε, ε′, r
η′(3‖v‖+3ρη+r)

and 3α
3‖v‖+3ηρ+r

. For all y′ ∈ B(y, ρ) ∩
U ′′ ∩ Y , for all t ∈ (0, ε′′), there exists ζ ∈ L such that ‖ζ‖ ≤ r

3
and z = y′ + t(v +

η(y − y′) + ζ) ∈ Y . Note that ‖z − y′‖ ≤ ε′′(‖v‖ + ηρ + r
3
) < α < 1. Consequently,

z ∈ B(y, ρ + 1) ∩ U ′ ∩ Y . Thus, there exists ζ ′ ∈ L such that ‖ζ ′‖ ≤ r
3

and
z′ = z + t(w + η′(y − z) + ζ ′) ∈ Y . We remark that z′ = y′ + t(v + w + (η +
η′)(y − y′) + ζ + ζ ′ + η′(y′ − z)) and η′‖y′ − z‖ ≤ η′ε′′(‖v‖ + ηρ + r

3
) < r

3
. Thus

z′ ∈ Y ∩ [{y′} + tB(v + w + (η + η′)(y − y′), r)] which implies that v + w ∈ T ρ
Y (y).

Since it is true for all ρ > 0, this ends the proof.

(ii) It suffices to show that the strictly negative element of L are in ∩ρ>0T ρ
Y (y) but

one easily checks from the definition and the free-disposal assumption on Y that,
for all ρ > 0, T ρ

Y (y) − L+ = T ρ
Y (y) and we proved above that −αχ ∈ T ρ

Y (y) for all
α > 0.

(iii) Since TY (y) is closed, it suffices to prove that ∩ρ>0T ρ
Y (y) ⊂ TY (y). Let ρ > 0

and v ∈ T ρ
Y (y). Let r > 0. There exists η > 0, ε > 0 and U associated to ρ and r

2
. Let

ε′ > 0, smaller than ε, r
2η

and such that B(y, ε′) ⊂ U . Then, for all y′ ∈ B(y, ε′)∩Y ,

one has y′ ∈ U and consequently, for all t ∈ (0, ε′), [{y′}+tB(v+η(y−y′), r
2
)]∩Y �= ∅.

But, ‖η(y − y′)‖ ≤ ε′η < r
2
. Thus, [{y′} + tB(v, r)] ∩ Y �= ∅, hence v ∈ TY (y).

If Y is convex, we just need to prove that Y − {y} ⊂ ∩ρ>0T ρ
Y (y) ⊂ TY (y) since

TY (y) is a closed, convex cone. Let z ∈ Y . Let ρ > 0, r > 0, η = ε = 1 and U = L.
For all y′ ∈ B(0, ρ)∩Y , for all t ∈ (0, 1), y′ + t(z− y+ (y− y′)) = (1− t)y′ + tz ∈ Y
since Y is convex. Clearly, y′ + t(z − y + (y − y′)) ∈ [{y′}+ tB(z − y + (y − y′), r)],
hence z − y ∈ T ρ

Y (y).

If L is finite dimensional, then the weak∗-open neighborhood are the open neigh-
borhood for the norm topology. Let y ∈ Y and v ∈ TY (y). Let r > 0, then there ex-
ists ε > 0 such that for all y′ ∈ B(y, ε)∩Y , for all t ∈ (0, ε), [{y′}+tB(v, r

2
)]∩Y �= ∅.

Thus, for ρ > 0, let η = 1 and ε′ > 0 smaller than ρ, ε and r
2
. Let U = B(y, ε′).

Note that B(y, ρ) ∩ U ∩ Y ⊂ B(y, ε). For all y′ ∈ B(y, ρ) ∩ U ∩ Y , one has
[{y′}+tB(v, r

2
) ⊂ [{y′}+tB(v+(y−y′), r)]. Consequently, ∅ �= [{y′}+tB(v, r

2
)]∩Y ⊂

[{y′} + tB(v + (y − y′), r)] ∩ Y . This implies that v ∈ T ρ
Y (y), thus v ∈ TY (y) since

it is true for all ρ > 0.

(iv) We first state a lemma which is the key argument of the proof.

5If U is a weak∗ open neighborhood of y, there exists a finite family (fi)i∈I of L1 and α > 0
such that {x ∈ L | |fi(x − y)| < α, ∀i ∈ I} is included in U . Let β = α

2 max{‖fi‖|i∈I} . Let
U ′ = {x ∈ L | |fi(x − y)| < α

2 , ∀i ∈ I}. Then, for all i ∈ I, for all x ∈ U ′ and for all x′ ∈ B(0, β),
|fi(x + x′ − y)| ≤ |fi(x − y)| + |fi(x′)| ≤ α

2 + β‖fi‖ ≤ α. Consequently, x + x′ ∈ U .
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Lemma. Let ρ > 0, v ∈ T ρ
Y (y), r > 0 and η, U and ε as given by the definition of

T ρ
Y (y). Then, for all y′ ∈ B(y, ρ) ∩ U ∩ Y , v + η(y − y′) − 2rχ ∈ TY (y).

Proof. Let ε′ > 0 smaller than ε, r
η

and such that B(y′, ε′) ⊂ B(y, ρ) ∩ U .

For all z ∈ B(y′, ε′) ∩ Y , for all t ∈ (0, ε′), there exists ζ such that ‖ζ‖ < r and
z+t(v+η(y−z)+ζ) ∈ Y . Note that ‖ζ+η(y′−z)‖ < 2r, hence ζ+η(y′−z) ≥ −2rχ.
Since z+t(v+η(y−z)+ζ) = z+t(v+η(y−y′)+ζ+η(y′−z)) ≥ z+t(v+η(y−y′)−2rχ),
one deduces that, for all t ∈ (0, ε′), z + t(v + η(y − y′) − 2rχ) ∈ Y . Since it is true
for all z ∈ B(y′, ε′) ∩ Y , this implies that v + η(y − y′) − 2rχ ∈ TY (y′).

Let ρ > 0 such that yγ ∈ B(0, ρ) for all γ ∈ Γ. For all v ∈ T ρ
Y (y), let η > 0

as given by the definition of T ρ
Y (y). Let r > 0. From the above lemma, there

exists a weak∗-open neighborhood U of y such that for all y′ ∈ B(y, ρ) ∩ U ∩ Y
v + η(y − y′)− 2rχ ∈ TY (y′). Since (yγ) converges to y, there exists γ̄ such that for
all γ � γ̄, yγ ∈ v + η(y − y′) − 2rχ ∈ TY (y′). Consequently, since pγ ∈ NY (yγ) ∩ S,
pγ(v + η(y − y′) − 2rχ) ≤ 0. This implies that pγ(v) + pγ(y) − pγ(yγ) ≤ 2r. Taking
the limit, one obtains p(v) + p(y)− lim pγ(yγ) ≤ 2r. Since this inequality is true for
all r > 0, one has p(v) + p(y) − lim pγ(yγ) ≤ 0.

For all α > 0, −αχ ∈ T ρ
Y (y), thus the above inequality implies that p(y) ≤

lim pγ(yγ) + α. Since it is true for all α > 0, one obtains the desired inequality,
p(y) ≤ lim pγ(yγ).

If p(y) = lim pγ(yγ), then one obtains for all v ∈ T ρ
Y (y), p(v) ≤ 0. Since TY (y) ⊂

T ρ
Y (y), this implies that p ∈ NY (y).

Proof of Lemma 2.1 Note that ∂∞Y = {y ∈ Y | g(y) = 0}. Since g is continuously
differentiable, the tangent cone at y ∈ ∂∞Y is then {u ∈ L | ∇g(y)(v) ≤ 0} (See,
Clarke(1983), Corollary 2 of Theorem 2.4.7.).

To prove that TY (y) = TY (y), it suffices to show that for all v such that
∇g(y)(v) < 0, for all ρ > 0, v ∈ T ρ

Y (y). Let ρ > 0 and β = ∇g(ȳ)(v). Let
α < −β

2‖v‖ . From the continuity of ∇g, there exists a weak∗-open neighborhood U of

y such that for all y′ ∈ Y ∩ U , ‖∇g(y′) − ∇g(y)‖ < α. There exist a weak∗-open
neighborhood U ′ of y and δ > 0 such that U ′ + B(0, δ) ⊂ U . Let η < −β

2ρ(‖∇g(y)‖+α)

and ε < δ
‖v‖+ηρ . Then, for all y′ ∈ U ′ ∩B(y, ρ) ∩ Y , for all t ∈ (0, ε), one has

g(y′ + t(v + η(y − y′)) = g(y′) + t∇g(y′′)(v + η(y − y′))

where y′′ ∈ [y, y′ + t(v+η(y−y′)]. We first remark that ‖y′′−y′‖ ≤ ε(‖v‖+ηρ) < δ.
Consequently y′′ ∈ U . Thus

∇g(y′′)(v + η(y − y′)) ≤ β + (∇g(y′′) −∇g(y))(v) + η∇g(y′′)(y − y′)

One remarks that (∇g(y′′) −∇g(y))(v) ≤ ‖∇g(y′′) −∇g(y)‖‖v‖ ≤ α‖v‖ < −β
2

and

η∇g(y′′)(y − y′) ≤ η‖∇g(y′′)‖‖(y − y′)‖ ≤ η(‖∇g(y)‖ + α)ρ < −β
2

. Consequently,
∇g(y′′)(v+η(y−y′)) < 0 and since g(y′) ≤ 0, one deduces that g(y′+t(v+η(y−y′)) ≤
0 or equivalently, that y′ + t(v + η(y − y′)) ∈ Y . This implies that v ∈ T ρ

Y (y).
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Proof of Lemma 4.1 Let F ∈ F , yj ∈ ∂Y F
j and p ∈ MP F

j (yj). We first remark
that int∞TYj

(yj)∩F ⊂ intTY F
j

(yj). Indeed, if vj ∈ int∞TYj
(yj)∩F , from a result of

Rockafellar (see Clarke(1983), Theorem 2.4.8) it is hypertangent to Yj at yj which
means that there exists ε > 0 such that y′j + tv′ ∈ Yj for all y′j ∈ B(yj, ε) ∩ Yj,
v′ ∈ B(v, ε) and t ∈]0, ε[. This clearly implies that vj is hypertangent to Y F

j at yj,
hence it belongs to intTY F

j
(yj).

Since p ∈ MP F
j (yj), one deduces that the kernel of 〈p, .〉F , does not intersect

intTY F
j

(yj). Thus, from the previous remark, it does not intersect int∞TYj
(yj). It

now suffices to apply the standard separation theorem between int∞TYj
(yj) and the

kernel of 〈p, .〉F to obtain the existence of π.

Proof of Lemma 4.2 We first prove the existence of F̄ ∈ F such that EF sat-
isfies Assumption (SA′) for each F containing F̄ . If it is not true, for all F ∈ F ,
there exist F ′ ∈ F and (pF , (yFj ), tF ) ∈ PEF ′ × [0, 4r̄ + ‖ω‖∞] such that F ⊂ F ′,∑n
j=1 y

F
j + ω + tFχ ≥ 0 and 〈pF ,∑n

j=1 y
F
j + ω〉F + tF = 0. From Lemma 4.1,

for each j, there exists πFj ∈ NYj
(yFj ) such that πFj|F ′ = pF . From Assumption

(B), ((πFj ), (yFj ), tF , (πFj (yFj ))) remain in a compact set for the product of the weak-
star topologies and the topology of R1+n. Consequently, there exists a general-
ized subsequence ((π

F (ψ)
j ), (y

F (ψ)
j ), tF (ψ), (π

F (ψ)
j (y

F (ψ)
j )))(ψ∈(Ψ,≥)) which converges to

((π̄j), (ȳj), t̄, (ν̄j)).

Since L+ is weak star closed,
∑n
j=1 ȳj + ω + t̄χ ≥ 0. We now prove that π̄1 = π̄j

for j = 2, . . . , n. Actually the proof is similar to the one of Claim 1 above. Let
j ∈ {2, . . . , n}. Let x in L. There exists a finite dimensional space F ∈ F containing

x. There exists ψ0 ∈ Ψ such that ψ > ψ0 implies F ⊂ F (ψ). As π
F (ψ)
j|F ′(ψ) = π

F (ψ)
1|F ′(ψ) =

pF (ψ), we deduce that for ψ > ψ0, 〈pF (ψ), x〉F (ψ) = π
F (ψ)
1 (x) = π

F (ψ)
j (x). The limit

of (π
F (ψ)
1 (x)) is π̄(x) and the limit of (π

F (t)
j (x)) is π̄j(x), thus π̄j(x) = π̄1(x). Since

this equality holds for all x ∈ L, this leads to the result.

From Proposition 2.1(iv), one has π̄1(ȳj) ≤ ν̄j for all j. Since 〈pF ,∑n
j=1 y

F
j +

ω〉F + tF = 0, one deduces that
∑n
j=1 ν̄j + π̄1(ω) + t̄ = 0. Since π̄1 ≥ 0, 0 ≤∑n

j=1 π̄1(ȳj)+ π̄1(ω)+ t̄ ≤ ∑n
j=1 ν̄j + π̄1(ω)+ t̄ = 0. Hence π̄(yj) = ν̄j for all j. Again

from Proposition 2.1(iv), π̄1 ∈ ∩nj=1MPj(ȳj). From Assumption (SA), one deduces
that

∑n
j=1 π̄1(ȳj) + π̄1(ω) + t̄ > 0 which leads to a contradiction.

To complete the proof of the Lemma, it suffices to prove that there exists F ∈ F
such that the economy EF satisfies Assumption (NS′). If it is not true, for all
F ∈ F , there exist F ′ ∈ F and ((xFi ), (yFj )) ∈ ∏m

i=1 X
F ′
i × Y F ′

j such that F ⊂ F ′,∑m
i=1 x

F
i ≤ ∑n

j=1 y
F
j + ω and for some i, it does not exist ξFi ∈ XF

i such that
xFi ≺i ξFi . From Assumption (B), ((xFi ), (yFj )) remain in a weakly compact set

hence it has a generalized subsequence ((x
F (ψ)
i ), (y

F (ψ)
j ))(ψ∈(Ψ,≥)) which converges to

(x̄i), (ȳj)) ∈ ∏m
i=1 Xi × Yj. From the non satiation of the preferences (Assumption

(C)), there exists (ξ̄i) ∈
∏m
i=1 Xi, such that x̄i ≺i ξ̄i for every i. There exists a finite

dimensional space F ∈ F containing every ξ̄i. There exists ψ0 ∈ Ψ such that ψ ≥ ψ0
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implies F ⊂ F (ψ). From Assumption (C), the sets P̄i(ξ̄i) = {xi ∈ Xi | ξ̄i �i xi}
are σ∞ closed and x̄i /∈ P̄i(ξ̄i). Consequently, since (x

F (ψ)
i ) weakly converges to (x̄i),

there exists ψ1 ≥ ψ0 such that ψ ≥ ψ1 implies x
F (ψ)
i /∈ P̄i(ξ̄i) for every i. In other

words, for ψ ≥ ψ1, ξ̄i ∈ F ⊂ F (ψ) and x
F (ψ)
i ≺i ξ̄i for every i. This contradicts the

fact that for some i it does not exist ξFi ∈ XF
i such that xFi ≺i ξ

F
i . This ends the

proof of the lemma.
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