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Abstract

Binary choice sample selection models are widely used in applied economics with large cross-

sectional data where heteroscedaticity is typically a serious concern. Existing parametric and

semiparametric estimators for the binary selection equation and the outcome equation in such

models su®er from serious drawbacks in the presence of heteroscedasticity of unknown form in

the latent errors. In this paper we propose some new estimators to overcome these drawbacks

under a symmetry condition, robust to both nonnormality and general heterscedasticity. The

estimators are shown to be
p

n-consistent and asymptotically normal. We also indicate that our

approaches may be extended to other important models.
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1 Introduction

Sample selection models have received a great deal of attention since the seminal work of Gronau

(1974) and Heckman (1974) on female labor supply. They have also found wide application in

modelling the impact of unions, occupational choice, schooling, the choice of region of residence

and choice of industry, among others. In the female labor supply model, a binary choice selection

equation determines whether or not someone works, and then conditional on her working we observe

the hours worked. A typical binary choice sample selection model has the form

di = 1 ¤

¤
2i (1.2)

i = 1; 2; : : : n, where the latent variables y¤1i and y¤2i are de¯ned by

y¤1i = x0i°0 + v1i (1.3)

y¤2i = x0i¯0 + v2i (1.4)

Equation (1.1) is the binary choice selection equation, and (1.2) corresponds to the outcome equa-

tion. In this model, d and y are observable dependent variables, x 2 Rq is a vector of exogenous

variables, and (v1; v2) is a vector of latent error terms. The parameters of interest are ¯0 and °0.

If the distribution of (v1; v2) conditional on x is known up to a set of ¯nite parameters, ¯0 and °0

can then be estimated by maximum likelihood (Amemiya (1985)), and °0 can also be estimated

by a computationally simpler two-step approach by Heckman (1974). However, these likelihood-

based approaches typically yield inconsistent estimators if either the parametric form of the error

distribution is misspeci¯ed or if conditional heteroscedasticity of the error terms given the ex-

ogenous variables is not correctly modelled parametrically. Such parametric speci¯cations cannot,

in general, be justi¯ed by economic theory. This fact has motivated the recent interest in semi-

parametric methods, which do not require parametric speci¯cation of error distribution and/or

functional form of heteroscedasticity. While departure from normality has serious consequences

for commonly used parametric estimators, there is evidence suggesting that these estimators are

more severely a®ected by heteroscedasticity of unknown form than by nonnormality, and further-

more, semiparametric estimators requiring homoscedasticity also behave badly in the presence of

unknown form of heteroscedasticity (see, e.g., Donald (1995), Horowitz (1992), Klein and Spady

(1993), and Powell (1986)). Therefore, it is extremely desirable to develop semiparametric estima-

tors that are not only robust to nonnormality, but also to general heteroscedasticity, because the

binary choice sample selection model is widely used with large cross sectional data, and thus is
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often plagued with heteroscedasticity. In the past two decades, a large number of semiparametric

approaches have been developed for the binary choice sample selection model; there are, however,

serious drawbacks associated with the existing approaches. In this paper, we propose some new

semiparametric estimators to overcome these drawbacks. Speci¯cally, we consider
p

n-consistent es-

timation of both the binary choice selection equation and the outcome equation under a conditional

symmetry restriction, allowing for general form of unknown heteroscedasticity and nonnormality.

Many semiparametric estimators for °0 in the binary choice model have been proposed in the

literature under various weak distributional restrictions. The most common weak restrictions are

the independence (and index) restriction, the conditional mean, median and symmetry restrictions.

The approaches by Cosslett (1983), Han (1987), and Sherman (1993)) under the independence

restriction require homoscedasticity. The index (or monotonic index) restriction needed for the

estimators by Ahn et al. (1996), Cavanagh and Sherman (1998), HÄardle and Stoker (1989), Horowitz

and HÄardle (1996), Klein and Spady (1993), and Powell et al. (1989) only allows for very limited

form of unknown heteroscedasticity. Since no location restriction is imposed under the independence

and index restrictions, the intercept term is not estimated. Under a conditional median restriction,

where very general form of unknown heteroscedasticity is allowed, Manski (1985) and Horowitz

(1992) proposed maximum score and smoothed maximum score estimators, respectively. However,

these two estimators converge at rates slower than
p

n. In fact, Chamberlain (1986) showed that

no
p

n-consistent estimator exists under the their assumptions. By extending Chamberlain (1986),

Zheng (1995) showed that
p

n-consistent estimation is not possible even if the conditional median

restriction is strengthened to the conditional symmetry restriction. More recently, Chen and Khan

(1999) showed that Chamberlain's result still holds even under normality when arbitrary form

of heteroscedasticity is allowed, which, in turn, suggests that certain restrictions on the type of

unknown heteroscedasticity is necessary for
p

n-consistent estimation of the binary choice model.

While popular in linear and nonlinear regression analysis, the conditional mean restriction has

rarely been used in the analysis of discrete choice models; Horowitz (1993) and Manski (1988)

illustrated the di± culty for identi¯cation under the conditional mean restriction, and presented

a nonidenti¯cation result. Recently, however, based on an integration-by-parts argument, Lewbel

(1998b) proposed a
p

n-consistent estimator for °0 under a conditional mean restriction and a

mild exclusion restriction on heteroscedasticity; like other existing estimators, however, there are

several serious drawbacks (to be discussed in detail below) with Lewbel's approach. In this paper

we propose a
p

n-consistent estimator for °0 to overcome these drawbacks by strengthening the

conditional mean and median restrictions to a conditional symmetry restriction, while allowing for

more general form of heteroscedasticity than that of Lewbel (1998b).

Following Heckman's two-step approach in a parametric setting, several semiparametric two-

step estimators have been proposed for the estimation of the outcome equation. The approaches by

Andrews (1991), Cosslett (1991), Newey (1988b), and Powell (1989) require the independence or
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index restriction, thus only allowing for very limited form of unknown heteroscedasticity. Another

major drawback with these estimators is that the cross-equation exclusion restriction that some

regressor in the selection equation is excluded from the outcome equation, is required for model

identi¯cation. In general, this type of cross-equation exclusion restriction cannot be justi¯ed by

economic theory. In addition, the intercept term in the outcome equation, a parameter of great

importance itself (see, e.g., Andrews and Schafgans (1998) and Heckman (1990)), is not estimated

in these approaches. By relying on "identi¯cation at in¯nity" (see, e.g., Chamberlain (1986) and

Heckman (1990)), Andrews and Schafgans (1998) considered estimating the intercept term, but

their estimator converges at a rate slower than
p

n. Recently, by imposing an index and symmetry

restriction, Chen (1999b) considered
p

n-consistent estimation of both the intercept and slope pa-

rameters without the cross-equation exclusion restriction, but the approach rules out general form

of unknown heteroscedasticiy. Maintaining the normality assumption on the error distribution,

Donald (1995) recently proposed a two-step estimator allowing for general form of heteroscedas-

ticity; consequently, Donald's approach is susceptible to inconsistency due to nonnormality. In

addition, his method does not take into account the available parametric structure in the binary

selection equation in estimating the outcome equation, which, in turn, would adversely a®ect the

performance of the resulting estimator. In this paper we propose a
p

n-consistent estimator for

both the intercept and slope parameters by only imposing a joint symmetry assumption, which

relaxes the normality assumption of Donald (1995). In addition, our approach allows for even more

general form of heteroscedasticity. Furthermore, unlike Donald (1995), the parametric structure in

the binary selection equation will be explicitly accounted for in estimating the outcome equation;

exploitation of such parametric structure would be particularly important when heteroscedasticity

is only related to a small set of exogenous variables compared with the total number of exogenous

variables in the selection equation, in which case our approach will be much less susceptible to

the \curse of dimensionality". Like Chen (1999b) and Donald (1995), no cross-equation exclusion

restr

°0 + v1i > 0g (2.1)
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yi = di(x
0
i¯0 + v2i) (2.2)

i = 1; 2; : : : n. For the binary choice model, it is by now well known that some scale normalization

is needed to identify °0. Let x = (x0; ~x0)0, where x0 is the ¯rst component of x. We require that the

conditional on ~x, x0 has everywhere positive density with respect to Lebesgue measure. The scale

normalization is achieved by setting the ¯rst component of °0 to one, thus °0 = (1; ~° 00)
0 (see, e.g.,

Cosslett (1983), Horowitz (1992), Ichimura (1993), and Manski (1985) ). In this paper we consider
p

n-consistent estimation of both the binary choice selection equation and the outcome equation

under a joint symmetry restriction, allowing for a general form of unknown heteroscedasticity.

Speci¯cally, we assume that the distribution of the error term (v1; v2) depends on x only through

(z2; x2) and symmetric around the origin; namely, f (v1; v2jx) = f (v1; v2jz2; x2) and f (v1; v2jx) =

f(¡ v1; ¡ v2jx), where z = x0°0, and x2 is subvector of ~x = (x01; x
0
2)
0 such that 1 and x2 2 Rq2

with q1 + q2 + 1 = q.

The heteroscedasticity assumption made here is quite general. It allows an index restriction that

the error distribution depends on x only through (x0°0)
2, as in Prais (1953), Prais and Houthakker

(1955), and Theil (1951),; more signi¯cantly, arbitrary form of dependence on x2 can be accom-

modated. An important special case is when f (v1; v2jx) = f(v1; v2jx2), which amounts to a mild

exclusion restriction on heteroscedasticity. Chamberlain (1992), Donald (1995), Fishe et al. (1979),

Goldfeld and Quandt (1965), Greene (1994), Lewbel (1998a,1998b), Maddala and Nelson (1975),

and Powell (1994), among others, have adopted a similar exclusion restriction. This type of exclu-

sion restriction often arises in many economic applications; for example, in studies of ¯rm pro¯ts,

the dominant variable a®ecting heteroscedasticity is typically assumed to be ¯rm size, while in

the studies of family expenditures, heteroscedasticity is often related to family income only. As

suggested in Lewbel (1998a,1998b), the error distribution in consumer demand model should be

independent of those variables determined from the supply side of the economy, such as prices, thus

such variables would be excluded from heteroscedasticity. A popular form of heteroscedasticity is

commonly introduced by relating the conditional distribution of error term to a vector of exoge-

nous variables xh (see, e.g., Amemiya (1977), Breusch and Pagan (1979), Davidson and MacKinnon

(1984), Goldfeld and Quandt (1972), Harvey (1976), Kmenta (1971), and Rutemiller and Bowers

(1968)), among others, and the exclusion restriction on heteroscedasticity follows readily when xh

is a proper subset1 vector of x. In addition, models in which x2 has random coe± cients are also

included in our setting.

Write the binary choice selection equation as

di = 1fx0i°0 + v1i > 0g = 1fx0i + x01i~°10 + x02i~°20 + v1ig

Thus, given our heteroscedasticity assumption, it is obvious that certain location restriction on

1Our approach can be easily modi¯ed to deal with the more general case in which xh also contains components

excluded from x.
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the error distribution is required to identify ~°20. Manski (1985) and Horowitz (1992) proposed

maximum score and smoothed maximum score estimators under a conditional median restriction,

respectively; their estimators, however, converge at rates slower than
p

n. Recently, based on an

integration-by-parts argument, Lewbel (1998b) considered
p

n-consistent estimation under a con-

ditional mean restriction by imposing a mild exclusion restriction on the form of heteroscedasticity;

however, Lewbel's approach su®ers from several serious drawbacks. First, his approach relies on a

fragile identi¯cation condition related to the tail behavior of regressors that requires very strong

boundary conditions on the regressors relative to that of the error term v1; in particular, his proce-

dure rules out the probit and logit models with bounded regressors. Second, Lewbel (1998b) deals

with the case with q1 = 0 and involves (q ¡ 1)-dimensional nonparametric smoothing. In contrast,

our approach below deals with the more general case with q1 ¸ 0 and only needs q2-dimensional

nonparametric smoothing. Therefore our procedure is less susceptible to the curse of dimensional-

ity, especially when q2 is small, as in Goldfeld and Quandt (1965), Greene (1994), Kmenta (1971),

Maddala and Nelson (1975), and Park (1966), among others. Here we strengthen the conditional

median and mean restrictions to the conditional symmetry restriction to overcome the shortcomings

mentioned above. In fact, we impose a symmetry restriction on the joint conditional distribution of

(v1; v2) to consider
p

n-consistent estimation of the binary choice equation as well as the outcome

equation. This symmetry restriction relaxes the normality assumption imposed by Donald (1995).

It is worth pointing out that we allow for a more general form of heteroscedasticity than that of

Donald (1995) and Lewbel (1998b). In addition, by taking into account the linear structure in the

selection equation, our estimator for the outcome equation would be much less susceptible to the

\curse of dimensionality" than that of Donald (1995) when q2 is much smaller than q. As a central

tendency measure, the symmetry restriction has been widely used as a common shape restriction

on the error distribution. (see, e.g, Chen (1998b, 1999a,b,c), Cosslett (1987), Honor¶e et.al (1997),

Lee (1996), Linton (1993), Manski (1988), Newey (1988a, 1991), and Powell (1986)). As indicated

below, the full symmetry can be relaxed to some extent. Also, there is some evidence (see, e.g.,

Powell (1986), Honor¶e et al. (1997)) that symmetry-based estimators possess certain robustness to

violations of the symmetry assumption.

To motivate our estimator for °0, we ¯rst consider the case with homoscedasticity. Under the

condition that v1 is independent of x, for a pair of observations (i; j), i 6= j , Han (1987) established

the following rank condition

E(di ¡ dj jxi; xj) > 0 if and only if (xi ¡ xj)
0°0 > 0 (2.3)

to estimate the slope parameter, and Chen (1998b) used the following rank condition

E(di + dj jxi; xj) > 1 if and only if (xi + xj)
0°0 > 0 (2.4)

to estimate the intercept term ce and symmetry restriction. Notice that these

two rank conditions have their own advantages and disadvantages. Equation (2.3) can only identify
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the slope parameter, whereas Equation (2.4) can be used to identify both the slope and intercept

terms. On the other hand, reasonably accurate estimation of the relevant parameter n (2.3)

and (2.4) requires that there are a large portion of observations for which (xi¡ xj)0°0 and (xi+xj )0°0

lie in the neighborhood of 0, respectively; in general, the former is easier to satisfy than the latter.

We now extend these rank conditions to the heteroscedastic case. We assume the symmetry and

heteroscedasticity assumption made above. In addition, we assume that F (zjz2; x2) = E(djx) is a

strictly increasing function2 of z for every x2. Consider a pair of observation (i; j), i 6= j, such that

x2i = x2j . Then similar to (2.3) and (2.4), we can show that

E(di ¡ djjxi; xj; x2i = x2j) = F (zijz2i ; x2i) ¡ F (zjjz2j ; x2j) > 0 (2.5)

if and only if x0i + x1i
0°10 > x0j + x1j

0°10, and

E(di + djjxi; xj; x2i = x2j) = F (zijz2i ; x2i) + F (zjjz2j ; x2j) > 1 (2.6)

if and only if (xi + xj )°0 > 0. Similar to the comparison between (2.3) and (2.4), (2.5) and

(2.6) each has its own weakness and strength; (2.5) can only be used to identify and estimate °10,

whereas (2.6) can be used to identify and estimate the whole vector °0. On the other hand, for

accurate estimation based on (2.5) and (2.6), it is essential to have a large portion of observations

for which x0i ¡ x0j + (x1i ¡ x1j)
0°10 and (xi + xj)°0 lie in the neighborhood of 0, respectively.

Typically the latter is more di± cult to satisfy. Our estimator is de¯ned by combining both (2.5)

and (2.6) in order to exploit the strength in each rank condition.

For the special case when x2 is discrete, and P (x2i = x2j) > 0, then following Abrevaya (1999),

Cavanagh and Sherman (1998), Chen (1998a,b), Han (1987), Horowitz (1992), Manski (1985), and

Sherman (1993), among other, we can estimate °0 by maximizing H ¤
n(°) with respect to ° , where

H¤
n(°) = H ¤

1n(°1) + H ¤
2n(°)

H ¤
1n(°1) =

1

n(n ¡ 1)

X

i6=j

¤
1(wi;wj; °1)

and.

H¤
2n(°) =

1

n(n ¡ 1)

X

i 6=j
1fx2i = x2jgh¤2(wi;wj; °)]

with

h¤1(wi;wj; °1) = [(di ¡ dj)[2 ¤ 1f(xi0 ¡ xj0) + (xi1 ¡ xj1)
0°1 > 0g ¡ 1]

and

h¤2(wi;wj; °) = [(di + dj ¡ 1)[2 ¤ 1f(xi + xj )
0° > 0g ¡ 1]

2This monotonicity condition can be relaxed if a semiparametric likelihood approach, such as that of Chen (1999c)

and Klein and Spady (1993), is adopted; it is currently being investigated separately.
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for wi = (di; xi), wj = (dj ; xj ), i; j = 1; 2; :::; n. Let x = (xd0; xc
0
)0 where xd and xc represent the

vectors of discrete and continuous components respectively. Obviously, the above approach does not

work when x contains continuous components. To allow for continuous elements in x2, similar to

Honor¶e and Kyriazidou (1998), we modify the objective function by replacing the indicator function

1fxc2i = xc2jg with kernel weights, which give increasingly large weights to pairs of observations for

which xc2i and xc2j are close. Speci¯cally, we have the following modi¯ed objective function

H ¤¤
n (°) =

1

n(n ¡ 1)

X

i 6=j
1fxd2i = xd2jgK1(

xc2i ¡ xc2j
a1

)fh¤1(wi;wj; °1) + h¤2(wi;wj; °)g

where K1(¢) is a kernel function speci¯ed below, and a1 is a bandwidth sequence converging to

zero as n increases. Since heteroscedasticity related to discrete components can be treated as

groupwise heteroscedasticity, and is much easier to deal with than its continuous counterpart, we

assume x2 only contains continuous components, for notational simplicity. Furthermore, analogous

to Horowitz (1992), we consider smoothed versions of the indicator functions 1f(xi0 ¡ xj0) + (xi1 ¡
xj1)0°1 > 0g and 1f(xi + xj )0° > 0g for both computational and technical reasons3. Finally, we

propose to estimate °0, by °n = (1; ~°n), as a solution to

arg max
°2G

Hn(°) = H1n(°1) + H2n(°)

where G is a subset of Rq speci¯ed below,

H1n(°) =
1

n(n ¡ 1)

X

i6=j
K1(

x2i ¡ x2j
a1

)h1(wi; wj ; °1)

and

H2n(°) =
1

n(n ¡ 1)

X

i6=j
K1(

x2i ¡ x2j
a1

)h2(wi; wj ; °)

with

h1(wi; wj ; °1) = (di ¡ dj)[2L(
(xi0 ¡ xj0) + (xi1 ¡ xj1)

0°1
a2

) ¡ 1]

and

h2(wi; wj; °) = (di + dj ¡ 1)[2L(
(xi + xj)0°

a2
) ¡ 1]

L(¢) is a cumulative distribution function, and a2 is a bandwidth sequence converging to zero as n

increases.

3By employing this smoothing scheme, one requires less stringent assumptions on the smoothness of the distribution

of x2.
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We now turn to the estimation of the outcome equation. To motivate our estimator for ¯0, we

write the outcome equation as

yi = dix
0
i¯0 + ¸(zi; x2i) + »i (2.7)

where ¸(z; x2) = E(dv2jx) = E(dv2jz; x2) is the selection bias term, and E(»jx) = 0 by construction.

Equation (2.7) has a partial linear structure as in Engle et al. (1986), Powell (1989) and Robinson

(1988). Taking conditional expectation of both sides of Equation (2.7) leads to

E(yjzi; x2i) = E(dx0jzi; x2i)¯0 + ¸(zi; x2i) (2.8)

Substracting (2.7) from (2.8) yields

yi ¡ E(yjzi; x2i) = (dix
0
i ¡ E(dx0jzi; x2i))¯0 + »i (2.9)

It might appear that (2.9) can be used to estimate ¯0 as in Powell (1989) and Robinson (1988).

There are, however, three major drawbacks in estimate ¯0 based on (2.9). First, the components in

¯0 corresponding x2 cannot be identi¯ed. Second, the intercept term is not identi¯ed either. Third,

a cross-equation exclusion restriction is necessary. Instead, we will exploit the symmetry restriction

to overcome these drawbacks. Chen (1999b) recently has shown that under homoscedasticity and

symmetry ¸hm(z) = E(dv2jx) = E(dv2jz) = ¸hm(¡ z); in particular, ¸hm(z) = cÁ(z=¾) under

normality, where Á(¢) is the standard normal density function, ¾ is the standard deviation of v1,

and c is a constant. We can easily show that ¸(¡ z; x2) = ¸(z; x2) in our current heteroscedastic

setting. Thus, we obtain

E(yij ¡ zi; x2i) = E(dix
0
ij ¡ zi; x2i)¯0 + ¸(zi; x2i) (2.10)

Substracting (2.10) from (2.7) yields

yi ¡ E(yij ¡ zi; x2i) = [dix
0
i ¡ E(dix

0
ij ¡ zi; x2i)]¯0 + »i (2.11)

Notice that

E(dix
0
ijxi) ¡ E(dix

0
ij ¡ zi; x2i) = F (zijz2i ; x2i)x0i ¡ F (¡ zijz2i ; x2i)E(x0ij ¡ zi; x2i)

is, in general, of full rank. In particular,

[E(dix
0
ijxi) ¡ E(dix

0
ij ¡ zi; x2i)]°0 = [F (zijz2i ; x2i) + F (¡ zijz2i ; x2i)]zi

which is nonzero with positive pr ) suggests an instrumental variables

approach to estimating ¯0 if the expectation terms were known. An appropriate set of instrumental

variables would be

E(dixijxi) ¡ E(dixij ¡ zi; x2i)

= E(dijzi; x2i)xi ¡ E(dixij ¡ zi; x2i)

= E(1 ¡ dij ¡ zi; x2i)xi ¡ E(dixij ¡ zi; x2i) (2.12)
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We will replace the expectation terms in (2.11) and (2.12) by nonparametric kernel estimates. For

technical convenience, we adopt a density weighted version, in the spirit of Powell (1989). Let

p(z; x2) denote the joint density function of (zi; x2i). De¯ne

pn(¡ ẑi; x2i) =
1

n ¡ 1

X

j 6=i

1

a3a
q2
4

K3

Ã
ẑi + ẑj

a3

!
K4

Ã
x2i ¡ x2j

a4

!

En(dixij ¡ ẑi; x2i) =

P
j 6=i djxjK3

¡ẑi+ẑj
a3

¢
K4

¡x2i¡ x2j
a4

¢

P
j 6=i K3

¡ẑi+ẑj
a3

¢
K4

¡x2i¡ x2j
a1

¢

and

En(1 ¡ dij ¡ ẑi; x2i) =

P
j 6=i(1 ¡ dj)K3

¡ẑi+ẑj
a3

¢
K4

¡x2i¡ x2j
a4

¢

P
j 6=i K3

¡ẑi+ẑj
a3

¢
K4

¡x2i¡ x2j
a4

¢

where K3(¢) is a kernel function, and a3 is a bandwidth sequence converging to zero as n increases;

pn(¡ ẑi; x2i), En(dixij ¡ ẑi; x2i) and En(1 ¡ dij ¡ ẑi; x2i) are nonparametric estimates of p(¡ zi; x2i),

E(dixij ¡ zi; x2i), and E(1 ¡ dij ¡ zi; x espectively, with ẑi = x0i°n for i = 1; 2; :::; n. We are

now ready to propose the following estimator for ¯0;

¯n = Ŝ¡ 1nxxŜnxy (2.13)

where

Ŝnxx =
1

n

nX

i=1

[En(1 ¡ dij ¡ ẑi; x2i)xi ¡ En(dixij ¡ ẑi; x2i)][dix
0
i ¡ En(dix

0
ij ¡ ẑi; x2i)]p

2
n(¡ ẑi; x2i)

and

Ŝnxx =
1

n

nX

i=1

[En(1 ¡ dij ¡ ẑi; x2i)xi ¡ En(dixij ¡ ẑi; x2i)][yi ¡ En(yij ¡ ẑi; x2i)]p
2
n(¡ ẑi; x2i)

Notice that unlike Donald (1995), the linear structure in the latent regression in the selection

equation has been taken into account in our approach to estimating the outcome equation.

Remark 1: The proposed estimator for °0 is based on two rank conditions with equal weighting.

It is possible to use di®erent weights with possible e± ciency gains. Also, notice that the estimation

of °0 involves maximizing over a (q1 + q2)-dimensional parameter space. We could use a com-

putationally simpler two-step method; speci¯cally, we can estimate °10 by °a1n which maximizes

Hn(°1) with respect to °1; In the second step, °20 can be estimated by maximizing

Hbn(°2) =
X

i 6=j
K1(

x2i ¡ x2j
a1

)h2(wi;wj ; (1; °0a1n; °
0
2)
0)
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with respect to °2. Consequently, we only need to maximize over q1 and q2 dimensional parameter

spaces separately instead of a (q1 + q2)-dimensional parameter space.

Remark 2: As discussed earlier, we have focused on heteroscedastictiy associated with continu-

ous exogenous variables for notational simplicity. For more general cases, we can use mixed kernels

as in Bierens (1987) to deal with heteroscedasticity associated both discrete and continuous vari-

ables, and the details will be similar to the continuous case presented here. For the important special

case of groupwise heteroscedasticity, however, there exists a computationally more e± cient alterna-

tive. Suppose heteroscedasticity is related to xhd, which has ¯nite support xhd1; xhd2; :::; xhdK . Let

the observations in the sample for which xhd = xhdk are xki ,.i = 1; 2; :::; nk . For this subsample,

de¯ne an augmented subsample of size 2nk :

x¤ki = xki and d¤ki = dki for i = 1; 2; :::; nk

and

x¤ki = ¡ xki and d¤ki = 1 ¡ dki for i = n 2nk

Then we de¯ne an estimator °nd, which maximizes

Hdn(°) =
KX

k=1

X

ki<kj

[(d¤ki > d¤kj )(x
¤
ki

° > x¤kj°) + (d¤ki < d¤kj)(x
¤
ki

° < x¤kj°)] (2.14)

Some algebraic manipulation will show that °nd also maximizes H ¤
n(°). Direct implementation

of the maximization problem (2.14) requires O(n2) evaluations in each iteration step. However,

as pointed out by Cavanagh and Sherman (1998), this maximization problem can be implemented

with only O(n lnn) evaluations in each iteration step, which is computationally much more e± cient.

Remark 3: One widely used model in applied economics and statistics is the transformation

model in the form

¤ 0(y) = x0°0 + v

where y is the dependent variable and x is the independent variable, v is the unobservable distur-

bance term, and ¤ 0 is a strictly increasing unknown transformation function (see Horowitz (1996)

for details). Recently, with a ¯rst-step estimator for °0 available, various estimators for ¤ 0 have

been proposed (Chen (1998a), Horowitz (1996), Klein and Sherman (1998)) without parametric

speci¯cation for the transformation function or the error distribution since misspeci¯cation of ei-

ther function could lead to inconsistent estimates and invalid inferences. One major drawback

associated with these approaches is that they require the error distribution to be independent of

x. Here we consider the estimation of the transformation under heteroscedasticity. Speci¯cally, we

assume that the conditional density of v depends on x only through x2, a proper subset of x, and

symmetric around the origin; namely, f (vjx) = f(vjx2) and f(vjx) = f (¡ vjx). As in the binary

choice model above, scale and location normalization is needed for identi¯cation. We adopt the
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same scale normalization as above; location normalization is achieved by setting the intercept to

zero.

To estimate ¤ 0(y0), ¤ 0(¢) evaluated at y0, de¯ne

diy0 = 1fyi > y0g = fx0i°0 ¡ ¤ 0(y0) + vi > 0g (2.15)

Therefore ¡ ¤ 0(y0) becomes the intercept term for the resulting binary choice model in (2.15). Thus

¤ 0(y0) can be estimated by the method proposed above. Alternatively, we can adopt a two-step

approach; in the ¯rst step °0 is estimated by other methods, such as the approach for the ordered

response model proposed in Section 4.1 or the estimator by Chen (1999d); in the second step,

¤ 0(y0) can be estimated by the method for binary choice model except that the slope parameters

are replaced by the estimator in the ¯rst stage.

Remark 4: The proposed estimator for ¯ 0 is based on the whole sample, including the selected

subsample with d = 1 and the censored subsample with d = 0. Estimation could also be based on

the selected subsample, as in Andrews (1991), Donald (1995), Heckman (1974), Newey (1988), and

Powell (1989). Similar to (2.7) and (2.8), we have, conditional on di = 1,

yiF (zijz2i ; x2i) = F (zijz2i ; x2i)x
0
i¯0 + ¸(zi; x2i) + »¤ (2.16)

with E(»¤jx; d = 1) = 0, and

E(yij ¡ zi; x2i; di = 1)F (¡ zijz2i ; x2i) = F (¡ zijz2i ; x2i)E(x0ij ¡ zi; x2i; di = 1)¯0 + ¸(zi; x2i) (2.17)

Thus, conditional on di = 1,

yiF (zijz2i ; x2i) ¡ E(yij ¡ zi; x2i; di = 1)F (¡ zijz2i ; x2i)

= [F (zijz2i ; x2i)x0i ¡ F (¡ zijz2i ; x2i)E(x0ij ¡ zi; x2i; di = 1)]¯ 0 + »¤i (2.18)

Consequently, ¯0 can also be estimated by an instrumental variables approach based on (2.18).

Remark 5: Powell (1989) suggested that his pairwise di®erence estimation approach is basically

equivalent to that of Robinson (1988). Similarly, we can show that our estimator for ¯ 0, ¯n ,

essentially, can be motivated by the following moment condition based on pairwise di®erence

E(yi ¡ dixi¯0 ¡ yj ¡ djxj¯ 0)jzi + zj = 0; xi; xj)

= E(div2i ¡ djv2jjzi + zj = 0; xi; xj)

= 0

since conditional on (xi; xj ), div2i ¡ djv2j is symmetrically distributed given zi + zj = 0. However,

the symmetry restriction actually implies that

E[¥ (yi ¡ dixi¯ 0 ¡ yj ¡ djxj¯0)jzi + zj = 0; xi; xj] = 0 (2.19)

holds for any even function ¥ . Therefore it is possible to improve e± ciency by exploiting more

moment conditions as in Newey (1988).
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3 Large Sample Properties

In this section, we consider large sample properties of the estimators proposed in the previous

section. We ¯rst make the following assumptions.

¯nite eighth-order moments for each component.

Assumption 2: The conditional density of (v1; v2) given x, f(v1; v2jx) depends on x only through

(z2; x2), and symmetric around the origin; that is f (v1; v2jx) = f (v1; v2jz2; x2), and f (¡ v1; ¡ v2jx) =

f(v1; v2jx). In addition, F (z jz2; x2) is a strictly increasing function of z for every x2.

Assumption 3: (a) The support of the distribution of x is not contained in any proper linear

subspace of Rq . (b) 0 < P (d = 1jx) < 1 for almost all x. (c) The distribution of x0 conditional on

~x has everywhere positive density with respect to Lebesgue measure.

Assumption 4: The ¯rst component of °0 is set to one, and °0 is an interior point of a compact

set G.

Assumption 5: The functions E(x1jz; x2), E(x1x01jz; x2), p(z; x2), and F (zjz2; x2) are s1 times

continuously di®erentiable with respect to x2 and twice continuously di®erentiable with respect to

z, these functions and their partial derivatives are dominated by M1(z; x2) with EM 4
1 (z; x2) < 1

; in addition, jM1(z + b1; x2 + b2)¡ M1(z; x2)j < M2(z; x2)(jb1j+ jjb2jj) for some function M2(z; x2)

and (b1; b
0
2)
0 in a small neighborhood of the origin, with EM 4

2(z; x2) < 1.

Assumption 6: The kernel function K1(¢) is of bounded variation with a bounded support, s1

times continuously di®erentiable and is a s1-th order bias-reducing kernel:
R

K(u)du = 1, and
R

ui11 ui22 :::u
iq2
q2 du1du2:::duq2 = 0 if 0 < i1 + i2 + ::: + iq2 < s1.

Assumption 7:The kernel function L(¢) a cumulative distribution function, and l(¢) = L0(¢) is a

twice continuously di®erential symmetric density function.

Assumption 8: The bandwidth sequences satisfy na
q2=2+"
1 a

3=2+"
2 ! 1; naq21 a2 ! 1, na2s11 ! 0,

and na42 ! 0 for a small positive constant ".

De¯ne Q = Q1 + Q2, where

Q1 = 4E
@F (zjz2; x)

@z
p(z; x2)S1

and

Q2 = 2E
@F (z jz2; x)

@z
p(¡ z; x2)(S21 + S22)

with

S1 =

0
@ (x1 ¡ E(x1jz; x2)(x1 ¡ E(x1jz; x2))0 0

0 0

1
A
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S21 = (~x + E(~xj ¡ z; x2)(~x + E(~xj ¡ z; x2)
0

and

S22 = E[(~x ¡ E(~xj ¡ z; x2)(~x
0 ¡ E(~x0j ¡ z; x2)j ¡ z; x2]

Assumption 9: The matrix Q is positive de¯nite.

Assumption 1 describe the model and the data. The independence assumption could be relaxed

as in Andrews (1994) and Whang and Andrews (1993). The existence of higher order moments of

x is made mainly to apply Theorem 3 of Sherman (1994). (For details, See the discussion following

Theorem 3 in Sherman (1994)).

For the purpose of estimating both the selection equation and the outcome equation, we state a

joint symmetry condition in Assumption 2, although only a marginal symmetry condition is needed

for estimating the selection equation, and the error term in the outcome equation can be of the

form v¤2 = v2 + v¤¤2 , such that (v1; v2) satis¯es Assumption 2 and E(v¤¤2 jv1) = 0. As pointed out

earlier, the monotonicity is needed for the rank-based estimation approach, and may be relaxed for

approaches based on semiparametric likelihood (such as Chen (1999c) and Klein and Spady (1993))

or semiparametric least squares (Ichimura and Lee (1991)). Unlike Donald (1995), normality is not

required. In addition, our approach allows for more general heteroscedasticity than Donald (1995)

and Lewbel (1998a, 1998b).

Assumption 3 is an identi¯cation condition. (See Manski (1985), Ichimura (1993), and Horowitz

(1992) for related discussions). It implies that x has at least one continuously distributed compo-

nent, and that this component has unbounded support. However, this assumption of unbounded

support can be relaxed following the arguments in Horowitz (1998).

Assumption 4 is standard in the literature. Assumption 5 is a boundedness and smoothness con-

dition. Assumptions 6, 7, and 8 place restrictions on the kernel functions and bandwidth sequences.

Notice that the kernel function used for controlling for heteroscedasticity is q2-dimensional. Thus

our approach is particularly useful when q2 is small when the problem of the `curse of dimen-

sionality' is not serious. The matrix Q in Assumption 9 is analogous to the Hessian form of the

information matrix in maximum likelihood estimation.

Theorem 1 Under Assumptions 1-9, ~°n is consistent and asymptotically normal,

p
n(~°n ¡ ~°0)

d! N(0; § 1)

where

§ 1 = Q¡ 1­ 1Q
¡ 1

with

Ã 1i =

0
@ Ã 11i

0

1
A + Ã 12i
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Ã 11i = (di ¡ F (zijz2i ; x2i))(x1i ¡ E(x1jzi; x2i))p(zi; x2i)

Ã 12i = (di ¡ F (zijz2i ; x2i))(~xi + E(~xj ¡ zi; x2i))p(¡ zi; x2i)

and ­ 1 = EÃ 1iÃ
0
1i

We now turn to the estimation of the outcome equation. The following additional assumptions

are made.

Assumption 10: The functions ¸(z; x2); E(xjz; x2), E(xx0jz; x2), p(z; x2) and F (zjz2; x2) are

s3 times continuously di®erentiable with respect to x2 and twice continuously di®erentiable with

respect to z, and these functions and their partial derivatives are dominated by M3(z; x2) with

EM 6
3 (z; x2) < 1 ; in addition, jM4(z + b1; x2 + b2)¡ M1(z; x2)j < M4(z; x2)(jb1j + jjb2jj) for some

function M2(z; x2) and (b1; b
0
2)
0 in a small neighborhood of the origin with EM 6

2 (z; x2) < 1.

Assumption 11: The kernel function K3(¢) is s3 times and K4(¢) is twice continuously di®eren-

tiable with bounded supports; K3(¢) a s3-th order bias-reducing kernel, and K4(¢) a second order

bias-reducing kernel.

Assumption 12: The bandwidth sequences satisfy naq2+"3 a1+"4 ! 1, na24 ! 1, na2s33 ! 0 and

na44 ! 0 for a small positive constant " as n ! 1.

Let

Sxx = Ef[(F (zjz2; x2)x¡ F (¡ zjz2; x2)E(xj¡ z; x2))(F (zjz2; x2)x¡ F (¡ z jz2; x2)E(xj¡ z; x2))
0]p2(¡ z; x2)g

Assumption 13: The matrix Sxx is positive de¯nite.

Assumption 10 contains some boundedness and smoothness conditions. Assumptions 11 and

12 place restrictions on the kernel functions and bandwidth sequences. Assumption 13 is the

main identi¯cation condition. The presence of p(¡ z; x2) in the de¯nition of Sxx implies that

accurate estimation would require signi¯cant portion of individuals with selection probabilities

above as well as below 0:5. This identi¯cation condition holds quite generally, even without the

cross equation exclusion restriction (see Chen (1999b) for some related discussions). In contrast,

the approaches by Andrews (1991), Cosslett (1991), Newey (1988b) and Powell (1989) rely crucially

on this exclusion restriction, even though it typically cannot be justi¯ed by economic theory. In

addition, the identi¯cation condition allows x to contain a constant term, thus the intercept term

in the outcome equation can be treated equally as the slope parameter, estimatible at the usual

parametric rate.

Theorem 2 Under Assumptions 1-13, ¯ n is consistent and asymptotically normal,

p
n(¯n ¡ ¯0)

d! N (0; § 2)

where

§ 2 = S¡ 1xx ­ 2S
¡ 1
xx
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­ 2 = E[(Ã 2i + Sx1Ã 1i)(Ã 2i + Sx1Ã 1i)
0] with

Sx1 = E(
@¸(¡ z; x2)

@z
p2(¡ z; x)[F (z jz2; x2)x ¡ F (¡ z jz2; x2)E(xj ¡ z; x2)][~x

0 + E(~x0j ¡ z; x2)])

and

Ã 2i = (div2i ¡ ¸(zi; x2i))F (zijz2; x2i)(xi ¡ E(xj ¡ zi; x2i))p
2(¡ zi; x2i)

For the purpose of carrying out large sample statistical inferences, consistent estimators of § 1

and § 2 need to be constructed. From the proofs of the theorems, we can see that ¡ @2Hn(°n)
@~°@~° and

Snxx(°n) are consistent for Q and Sxx respectively. De¯ne v̂2i = yi ¡ dixi¯ n for i = 1; 2; :::; n. Then

Ŝ1nxv2 =
1

n2(n ¡ 1)

X

j;l6=i
(div̂2i ¡ dj v̂2j)[(1 ¡ dl)xi ¡ dlxl ]

1

a
2q2
3 a24

K3

µ
x2i ¡ x2j

a3

¶
K3

µ
x2i ¡ x2l

a3

¶
K5(°n)

can be shown to be consistent for Sx1, where K5(¢) is de¯ned in (A.7) in the Appendix. Next,

de¯ne

Ã̂ 1i =

0
@ Ã̂ 11i

0

1
A + Ã̂ 12i

Ã̂ 11i =
1

n ¡ 1

X

j 6=i

1

aq21 a2
K1(

x2i ¡ x2j
a1

)(di ¡ dj)l(
ẑi + ẑj

a2
)(x1i ¡ x1j)

Ã̂ 12i =
1

n ¡ 1

X

j 6=i

1

aq21 a2
K1(

x2i ¡ x2j
a1

)(di + dj ¡ 1)l(
ẑi + ẑj

a2
)(~xi + ~xj)

Ã̂ 2i =
1

n(n ¡ 1)

X

jl

(div̂2i ¡ dj v̂2j)
1

a2q23 a24
K3

µ
x2i ¡ x2j

a3

¶
K4

µ
ẑi + ẑj

a4

¶

((1 ¡ dl)xi ¡ dlxl)K3

µ
x2i ¡ x2l

a3

¶
K4

µ
ẑi + ẑl

a4

¶

§̂ 1 =

"
¡ @2Hn(°n)

@~°@~°

#¡ 1
­̂ 1

"
¡ @2Hn(°n)

@~°@~°

#¡ 1

and

§̂ 2 = S ¡ 1nxx(°n)­̂ 2S
¡ 1
nxx(°n)

where

­̂ 1 =
1

n

nX

i=1

Ã̂ 1iÃ̂
0
2i
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and

­̂ 2 =
1

n

nX

i=1

[(Ã̂ 2i + Ŝ1nxv2 Ã̂ 1i)(Ã̂ 2i + Ŝ1nxv2 Ã̂ 1i)
0]

Then, following the arguments in the proof of Theorems 1 and 2, we can show that §̂ 1 and §̂ 2 are

consistent for § 1 and § 2, respectively.

4 Extensions

In this section we indicate that our previous approaches can be extended to estimate some other

important models, including an ordered response model, a sample selection model with endogenous

regressors, a censored nonparametric regression model, and a panel data sample selection model.

Full details and regularity conditions will not be given. Similar notations to those in the previous

sections will be used without explanation if no confusion arises.

4.1 Estimating an Ordered Response Model

The ordered response model has been widely used in applied economics (see Amemiya (1985) and

Maddala (1983) for a review). An ordered response model with K +1 choices is commonly de¯ned

as

dik = 1fx0i°0 + vi > ®ok)

for k = 1; 2; :::;K and i = 1; 2; :::; n. We assume that the distribution of v given x is symmetric

around the origin, and depends on x only through x2, a subset of x. The same scale normalization

is adopted as in the binary case above. The location normalization is achieved by setting the

intercept term in °0 to zero; thus ¡ ® ok becomes the new intercept. We consider the estimation of

the slope parameter °0 as well as the threshold values ® ok, k = 1; 2; :::;K .

To motivate our approach, we ¯rst consider some rank conditions related to choices k1 and k2.

For a pair of observation (i; j), i 6= j, such that x2i = x2j, analogous to (2.5) and (2.6), we have

E(dik1 ¡ djk2jxi; xj; x2i = x2j) = F (x0i°0 ¡ ®ok1 jx2i) ¡ F (x0j°0 ¡ ® ok2 jx2j ) > 0 (4.1)

if and only if x0i ¡ x0j + (x1i ¡ x1j )0°10 ¡ (® ok1 ¡ ® ok2) > 0, and

E(dik1 + djk2jxi; xj; x2i = x2j) = F (x0i°0 ¡ ®ok1 jx2i) + F (x0j°0 ¡ ® ok2 jx2j ) > 1 (4.2)

if and only if (xi + xj)0°0 ¡ (® k1 + ®k2) > 0. Let ® o = (® o1; ®o2; :::; ® oK )0. Then following the

discussions in the binary case, we can estimate (°0; ®o) by (°̂ ; ®̂ o), which maximizes

Hon(°; ® ) =
X

k1;k2

X

i 6=j
K1(

x2i ¡ x2j
a1

)[ho1(wi;wj; °1; ®k1; ®k2) + ho2(wi;wj ; °; ® k1 ; ® k2)]
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with respect to (°; ® ), where

ho1(wi;wj; °1; ®k1 ; ®k2) = (di ¡ dj)[2L(
(xi0 ¡ xj0) + (xi1 ¡ xj1)°1 ¡ (®k1 ¡ ®k2)

a2
) ¡ 1]

and

ho2(wi;wj; °; ® k1 ; ® k2) = (di + dj ¡ 1)[2L(
(xi + xj)0° ¡ (®k1 + ®k2)

a2
) ¡ 1]

4.2 Sample Selection Models with Endogenous Regressors and Heteroscedas-

ticity

For sample selection models we here only focus on endogenous regressors in the binary selection

equation since endogenous regressors in the outcome equation can be dealt with by the usual

instrumental variables approach to the linear regression model,

To ¯x ideas, let x2 denote the endogenous regressors with a reduced form x2 = ¿(xu) + e;

where xu is a vector of exogenous variables, the disturbance term e is allowed to be correlated with

(v1; v2). Assume that conditional on xhu, (x0; x
0
1; x

0
u)
0 is independent of (e; v1; v2). Furthermore,

the conditional distribution of (e; v1; v2) given xhu is symmetrically distributed around origin. An

special case is when xhu is a subvector of (x01; x
0
u)
0. Let x¤ = (x0; x

0
1; x

0
u; x

0
hu)

0. Similar to (2.5) and

(2.6), we can show that

E(di ¡ djjx¤i ; x¤j ; xhui = xhuj)

= F (xi0 + x0i1°10 + ¿0(xui)°20jxhui) ¡ F (xj0 + x0j1°10 + ¿0(xuj)°20jxhuj ) > 0 (4.3)

if and only if

xi0 + x0i1°10 + ¿0(xui)°20 > xj0 + x0j1°10 + ¿0(xuj)°20

and

E(di + djjx¤i ; x¤j ; xhui = xhuj)

= F (xi0 + x0i1°10 + ¿0(xui)°20jxhui) + F (xj0 + x0j1°10 + ¿0(xuj)°20jxhuj ) > 1 (4.4)

if and only if

xi0 + x0i1°10 + ¿0(xui)°20) + xj0 + x0j1°10 + ¿0(xuj)°20 > 0

Then the unknown parameters in the selection equation can be estimated by a solution maximizing

X

i 6=j
K(

xhui ¡ xhuj
a1

)f(di ¡ dj)[2L

µ
xi0 ¡ xj0 + (x1i ¡ x1j)0°1 + (¿̂(xui) ¡ ¿̂(xuj))0°2

a2

¶
¡ 1]

+(di + dj ¡ 1)[2L

µ
xi0 + xj0 + (x1i + x1j)0°1 + (¿̂(xui) + ¿̂(xuj))0°2

a2

¶
¡ 1]g
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with respect to °, where ¿̂(xu) is a ¯rst-step nonparametric estimator for ¿(xu).

For the estimation of the outcome equation, similar to (2.11) we have

yi ¡ E(yij ¡ zui; xhui) = [dix
0
i ¡ E(dix

0
ij ¡ zui; xhui)]¯ 0 + »i (4.5)

where zui = x0i+x01i°10 +¿0(xui)°20, and E(»ijx¤; xhu) = 0. Consequently, Equation (4.5) suggests

an instrumental variables estimation approach to estimating ¯0 as in Section 2.

4.3 Sample Selection Models under Symmetry with a Nonparametric Selection

Mechanism

In the literature of semiparametric estimation of sample selection models, most attention has been

focused on estimating the parameters in the outcome equation while maintaining a parametric index

structure on the binary selection equation. Recognizing that misspeci¯cation of the parametric form

of the index function results in general in inconsistent estimators for the coe± cients in the outcome

equation, Ahn and Powell (1993) considered estimation of a sample selection model subject to a

nonparametric selection mechanism. However, their approach su®ers from the following drawbacks;

¯rst, estimation of the intercept term in the outcome equation is not considered in their approach;

second, without the cross equation exclusion restriction, identi¯cation for the outcome equation

will completely rely on the extent of the nonlinearity of the latent regression function in the binary

selection equation; furthermore, only limited form of unknown heteroscedasticity is allowed. To

overcome these drawbacks, in this section we extend our approach in the previous sections to the

case with a nonparametric selection mechanism.

Consider the following sample selection model

di = 1fm(xi) + v1i > 0g (4.6)

yi = dixi¯ + div2i (4.7)

where the distribution of (v1; v2) given x is symmetric around the origin and depends on x only

through a subset x2. Similar to (2.7), we have

yi = dix
0
i¯0 + ¸(m(xi); x2i) + »i

with

¸(m(xi); x2i) = ¸(¡ m(xi); x2i)

where ¸(m(xi); x2i) = E(div2ijm(xi); x2i) and E(»ijxi) = 0. Let

P (xi) = E(djxi) = F (mn(xi); x2i) =

Z m(xi)

¡ 1
f (v1jx2i)dv1 (4.8)
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where f (v1jx2i) is the conditional density of v1 given x. Suppose that f (v1jx2i) is always positive,

then Equation (4.8) implies that F (¢; x2i) is invertible for every x2. Thus m(xi) can be written as

±1(P (xi); x2i), which, in fact, has the property

¡ m(xi) = ±1(1 ¡ P (xi); x2i)

Hence we have

¸(m(xi); x2i) = ¸(±1(P (xi); x2i); x2i) = ±(P (xi); x2i)

with ±(P (xi); x2i) = ±(1 ¡ P (xi); x2i). Consequently, we have

yi = dix
0
i¯ 0 + ±(P (xi); x2i) + »i

and

E(yij1 ¡ P (xi); x2i) = E(dix
0
ij1 ¡ P (xi); x2i)¯0 + ±(P (xi); x2i)

Thus

yi ¡ E(yj1 ¡ P (xi); x2i) = (dix
0
i ¡ E(dix

0
ij1 ¡ P (xi); x2i))¯0 + »i (4.9)

Therefore, similar to the approach in Section 2 an instrumental variables estimator for ¯ 0 can be

proposed based on Equation (4.9) by replacing the expectation terms and the selection probabilities

by some nonparametric estimates.

4.4 Nonparametric estimation of a censored regression model

The binary choice sample selection model reduces to the censored regression model when the two

latent regression functions coincide. Parametric and semiparametric estimation of the censored

regression model has received a great deal of attention in the literature. Due to the sensitivity of

the existing parametric and semiparametric estimators to misspeci¯cation of the functional form of

the latent regression function, it is of interest to consider nonparametric estimation of the censored

regression model.

Consider the censored regression model

y = maxfm(x) + v; 0g

Nonparametric estimation of the censored regression model has been considered by Fan and Gij-

bels (1996) and Chaudhuri (1991) based on nonparametric quantile regression (typically, median

regression). The median regression, however, can only estimate m(x) at points where the censoring

is less than ¯fty percent. Recently, Lewbel and Linton (1998) considered the estimation of the

derivatives of the regression function through solving a partial di®erential equation system. In this

section, we consider nonparametric estimation of the latent regression function under the condition

that the conditional distribution of v given x, depends on x only through x2, a subset of x, and

symmetric around the origin.
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To motivate our approach, Let d = 1fy > 0g. Following the discussions in Section 4.3, we have

E(dyjx) = P (x)m(x) + ¸(m(x); x2)

= P (x)m(x) + ±(P (x); x2)

where P (x) = E(djx), ¸(m(x); x2) = ¸(¡ m(x); x) and ±(P (x); x2) = ±(1¡ P (x); x2). Consequently,

we have

E(dyjP (x); x2) = P (x)m(x) + ±(P (x); x2) (4.10)

and

E(dyj1 ¡ P (x); x2) = (1 ¡ P (x))(¡ m(x)) + ±(1 ¡ P (x); x2)

= (1 ¡ P (x))(¡ m(x)) + ±(P (x); x2) (4.11)

Then subtracting (4.10) from (4.11) gives

m(x) = E(dyjP (x); x2) ¡ E(dyj1 ¡ P (x); x2) (4.12)

Consequently, estimation of m(x) can be based on Equation (4.12) by replacing the unknown

expectation terms by nonparametric estimates.

4.5 A Panel Data Sample Selection Model under Symmetry

Consider the following panel data sample selection model

yit = dit(xit¯p + ® fi + uit) (4.13)

dit = 1fg¤(xit) + ´i + v¤it > 0g (4.14)

where

´i = ½(xfi) + v¤¤i (4.15)

for i = 1; :::; n and t = 1; 2, ¯p is the parameter of interest, ® f i and ´i are unobservable time

invariant individual speci¯c e®ects. We assume that the individual speci¯c e®ect ´i in the selection

equation has the weak functional restriction ´i = ½(xfi) + v¤¤i ; where ½(¢) is an unknown function,

xf represents a set of variables entering into individual e®ects, as determined by decision process

of individual economic agents. Let xi = (x0i1; x
0
i2; x

0
fi; xhfi)

0. We assume that the conditional

distribution of the error term (v¤it; uit; v
¤¤
i ) depends on xi only through xhfi, and symmetric around

the origin. Thus we allow for heteroscedasticity over time for each panel member and across

individuals.

By specifying g¤(xit) = x0it°p, Chamberlain (1993) has shown that
p

n-consistent estimation of

°p is not possible if no restriction is imposed on the ¯xed e®ects ´i unless v¤it has logistic distribution

given (xit; ´i). Newey (1994) considered
p

n-consistent estimation of °p by imposing (4.15) and
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normality. We extend Newey's model by relaxing the normality and the linear speci¯cation for

g¤(xit); in addition, we allow for heteroscedasticity across individuals. Note that Newey's focus

is on the binary selection equation, whereas we are concerned with the estimation of the outcome

equation. The individual e®ect ® ¤i in the outcome equation is left unspeci¯ed.

Semiparametric estimation of panel data sample selection models has been considered by Kyri-

azidou (1997). By leaving the ¯xed e®ects terms unspeci¯ed, Kyirazidou (1997) considered estimat-

ing the parameter vector ¯p under a conditional exchangeability condition. However, Kyriazidou's

(1997) approach requires a linear speci¯cation for g¤(xit), a cross-equation exclusion restriction and

homoscedasticity over time for each panel member; furthermore, her estimator converges at a rate

slower than
p

n:

We now extend our estimation approach to the cross sectional case to the panel data model .To

¯x ideas, let git = ½(xfi) + g¤(xit); for i = 1; 2; : : : ; n, t = 1; 2: Let Di = d1id2i; ¢ ui = ui1 ¡ ui2;

¢ yi = yi1 ¡ yi2 ¢ xi = xi1 ¡ xi2 and ±¢ u(gi1; gi2; xhf i) = E(D¢ ujxi). First di®erencing yields

Di¢ yi = Di¢ xi¯p + ±¢ u(gi1; gi2; xhfi) + ¢ u¤i

where ¢ u¤i = Di¢ ui ¡ ±¢ u(gi1; gi2; xhfi) such that E(¢ u¤i jxi) = 0: Let vit = v¤it + v¤¤i . Note that

in our setting (¢ ui; vi1; vi2) is jointly symmetrically distributed conditional on xhf , then we have

±¢ u(gi1; gi2; xhf ) + ±¢ u(¡ gi1; ¡ gi2; xhf ) ¡ ±¢ u(¡ gi1; gi2; xhf ) ¡ ±¢ u(gi1; ¡ gi2; xhfi)

= E[¢ ui1f¡ jgi1j < vi1 < jgi1j; ¡ jgi2j < vi2 < jgi2jjxi]
= 0

Thus,

±¢ u(gi1; gi2; xhfi) = ±¢ u(¡ gi1; gi2; xhfi) + ±¢ u(gi1; ¡ gi2; xhfi) ¡ ±¢ u(¡ gi1; ¡ gi2; xhfi) (4.16)

Therefore, analogous to Equation (4.9), we obtain

Di¢ yi ¡ ±¤¢ y (gi1; gi2; xhfi) = (Di¢ xi ¡ ±¤¢ x(gi1; gi2; xhfi))¯p + ¢ u¤i (4.17)

where

±¤¢ y(gi1; gi2; xhfi) = ±¢ y(¡ gi1; gi2; xhf i) + ±¢ y(gi1; ¡ gi2; xhfi) ¡ ±¢ y(¡ gi1; ¡ gi2; xhfi)

and

±¤¢ x(gi1; gi2; xhf i) = ±¢ x(¡ gi1; gi2; xhf i) + ±¢ x(gi1; ¡ gi2; xhfi) ¡ ±¢ x(¡ gi1; ¡ gi2; xhfi)

with ±¢ x(gi1; gi2; xhfi) = E(D¢ xjgi1; gi2; xhfi) and ±¢ y(gi1; gi2; xhf i) = E(D¢ yjgi1; gi2; xhfi): For

the selection probabilities p1 = E(d1jx) and p2 = E(d2jx), let ¸ ¢ y(p1; p2; xhf ) = E(D¢ yjp1; p2; xhf ),
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¸¢ x(p1; p2; xhf ) = E(D¢ xjp1; p2; xhf ). Then, with a similar invertibilitiy condition, arguing as in

the cross sectional case, we have

¸¢ u(pi1; pi2; xhfi) = ¸¢ u(1¡ pi1; pi2; xhfi)+¸ ¢ u(pi1; 1¡ pi2; xhf i)¡ ¸¢ u(1¡ pi1; 1¡ pi2; xhfi) (4.18)

Equation (4.17) can then be reformulated as

Di¢ yi ¡ ¸ ¤¢ y (pi1; pi2; xhfi) = (Di¢ xi ¡ ¸ ¤¢ x(pi1; pi2; xhfi))¯p + ¢ u¤i (4.19)

where

¸¤¢ y(pi1; pi2; xhfi) = ¸¢ y(1 ¡ pi1; pi2; xhfi) + ¸ ¢ y(pi1; 1 ¡ pi2; xhfi) ¡ ¸ ¢ y (1 ¡ pi1; 1 ¡ pi2; xhfi)

and

¸¤¢ x(pi1; pi2; xhfi) = ¸ ¢ x(1 ¡ pi1; pi2; xhfi) + ¸ ¢ x(pi1; 1 ¡ pi2; xhf i) ¡ ¸ ¢ x(1 ¡ pi1; 1 ¡ pi2; xhfi)

Finally, Equation (4.19) suggests an instrumental variables approach to estimating ¯0.

5 Conclusion

In this paper we have considered semiparametric estimation of the binary choice sample selection

model under a symmetry restriction, allowing for a very general form of unknown heterocedasticity.

Our procedure estimates the intercept and slope parameters in the binary choice selection equation

and the outcome regression equation. The estimators are
p

n-consistent and asymptotically normal.

Our approach overcomes various serious drawbacks associated with existing estimators for the

binary choice selection equation and the outcome equation. As indicated earlier, the full symmetry

assumption used here could be relaxed to some extent. Also, we could test the validity of the

symmetry by following the arguments of Zheng (1998).

From both theoretical and practical point of view, it is desirable to have e± cient estimators for

parameters of interest. Like most existing procedures, our method is a two-step procedure. Typi-

cally e± cient estimation calls for a joint estimation of the binary selection equation and the outcome

equation. Recently, Ai (1997) and Chen and Lee (1998) proposed joint estimation procedures, and

their estimators achieve Chamberlain's (1986) semiparametric e± cient bound under homoscedas-

ticity. It is possible to derive the relevant semiparametric e± cient bound in our heteroscedastic

setting by following Cosslett (1987) and Chamberlain (1986). Furthermore, it is likely that the

e± cient procedures by Ai (1997) and Chen and Lee (1998) can be extended to the heteroscedastic

case. This is an important topic for future research.

Appendix
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Proof of Theorem 1: Recall °n maximizes

Hn(°) = H1n(°1) + H2n(°)

We prove the consistency by showing that (a) there exists a function H(°) such that jHn(°) ¡
H(°)j ! 0 in probability uniformly in ° 2 G; and (b) H(°) is continuous and has a unique

maximum at °0 (Amemiya, (1985)).

Since the treatment of H1n(°1) will be similar to that of H2n(°), we will only provide detailed

analysis for the latter. Notice that fH2n(°); ° 2 Gg is a second order U-process. For the random

sample fw1; w2; : : : ; wng, let Pn denote the empirical measure that places 1=n on each wi and Un

the random measure putting mass 1=n(n ¡ 1) on each ordered pair (wi; wj). Then as in Arcones

and Gin¶e (1993) and Sherman (1993), we have the following decomposition

H2n(°) = Eh2(wi; wj; °) + Pnh21(¢; °) + Unh22(¢; ¢; °) (A.1)

with

h21(w; °) = 2(Eh2(w;wi; °) ¡ Eh2(wi; wj ; °))

and

h22(w
1; w2; °) = h2(w

1; w2; °) ¡ Eh2(w
1; wi; °) ¡ Eh2(wi; w

2; °) + Eh2(wi; wj ; °)

where h21(w; °) and h22(w
1; w2; °) are ¯rst and second order degenerate U -statistics respectively

(see, e.g., Arcones and Gin¶e (1993) and Sherman (1993)).

We now analyze the individual terms in (A.1). De¯ne classes of functions Fn1 = fh21(¢; °):

° 2 Gg and Fn2 = f~h22(¢; °): ° 2 Gg where ~h22(w
1; w2; °) = aq21 h22(w

1; w2; °). Then similar

to Lemma 10A in Sherman (1994), we can show that Fn1 and Fn2 are Euclidean with a square

integrable envelop function. Then by Theorem 3 of Sherman (1993)

Pnh21(¢; °) = Op(
1p
n

)

Unh22(¢; ¢; °) =
1

aq21
Un~h22(¢; ¢; °) = Op(

1

na
q2=2+"
1

)

uniformly in ° 2 G for any small positive ". Therefore

H2n(°) = Eh2(wi; wj; °) + op(1)

uniformly in ° 2 G.

We now analyze Eh2(wi; wj ; °) For notational simplicity, we only treat the case E(djx) =

F (zjz2; x2) = F (z jx2),

Eh2(wi; wj; °) =

Z Z
1

aq21
K1

Ã
x2i ¡ x2j

a1

!
(F (x0i°0jx2i) + F (x0j°0jx2j) ¡ 1)
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[2L

Ã
(xi + xj)0°

a2

!
¡ 1]p(xi0; xi1; xi2)p(xj0; xj1; xj2)dxidxj

=

Z Z
K1(u)(F (x0i°0jx2i) + F (xj0 + xj1

0°10 + (xi2 ¡ a1u)0°20jxi2 ¡ a1u) ¡ 1)

[2L

Ã
xi0 + xj0 + (xi1 + xj1)

0°1 + (2xi2 ¡ a1u)0°2
a2

!
¡ 1]

p(xi0; xi1; xi2)p(xj0; xj1; xi2 ¡ a1u)dxidxj0dxj1du

= H2(°) + op(1) (A.2)

by the change of variable x2j = x2i ¡ a1u and the dominated convergence theorem, where

H2(°) =

Z
F ij[2¤1fxi0+xj0+(xi1+xj1)

0°1+2xi2
0°2 > 0g¡ 1]p(xi0; xi1; xi2)p(xj0; xj1; xi2)dxidxj0dxj1

with

F ij = (F (xi°0jx2i) + F (xj0 + xj1
0°10 + x0i2°20jxi2) ¡ 1)

Notice that F ij > 0 if and only if

xi0 + xj0 + (xi1 + xj1)
0°10 + 2xi2

0°20 > 0

So

H2(°0) =

Z Z Z
jF ij jp(xi0; xi1; xi2)p(xj0; xj1; xi2)dxidxj0dxj1

Thus H2(°) reaches maximum at °0.

If fact we can show that °0 is the unique maximum of H2(°). Following the arguments in

Lemma 3 of Manski (1985), we have for any °,

H2(°0) ¡ H2(°) > 0

if

Z Z Z
1f(xi1 + xj1)

0(°1 ¡ °10) + 2xi2
0(°2 ¡ °20) 6= 0gp(xi0; xi1; xi2)p(xj0; xj1; xi2)dxidxj0dxj1 > 0

which, in turn, holds if

P f(xi1 + x1)
0(°1 ¡ °10) + 2xi2

0(°2 ¡ °20) = 0g < 1 (A.3)

where, conditional on xi2, (xi0; xi1) and (x0; x1) are independent and identically distributed with

the conditional distribution being p(xi0; xi1jxi2). By assumption 3, there exist a positive "1 such

that either

Pfxi1
0(°1 ¡ °10) + xi2

0(°2 ¡ °20) > "1g > 0
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and

Pfx1
0(°1 ¡ °10) + xi2

0(°2 ¡ °20) > "1g > 0

or

P fxi1
0(°1 ¡ °10) + xi2

0(°2 ¡ °20) < ¡ "1g > 0

and

Pfx1
0(°1 ¡ °10) + xi2

0(°2 ¡ °20) < ¡ "1g > 0

Thus, (A.3) follows readily. As a result, we have shown that (1) jH2n(°)¡ H2(°)j ! 0 in probability

uniformly in ° 2 G; and (2) H2(°) is continuous and has a unique maximum at °0. Similarly, we

can show that there exists a function H1(°1) such that (1) jH1n(°1) ¡ H1(°1)j ! 0 in probability

uniformly in (1; °01; °
0
20)

0 2 G; and (2) H1(°1) is continuous and has a unique maximum at °10.

Consequently, the consistency of ~°n follows by combining the above results.

We now prove the asymptotic normality. Since °0 is an interior point of the compact set G,

thus °n satis¯es

@Hn(°n)

@~°
= 0

with probability close to one when n increases. A Taylor expansion yields

0 =
@Hn(°0)

@~°
+

@2Hn(¹°n)

@~°@~° 0
(~°n ¡ ~°0)

where ¹°n = (1; ¹° 01n; ¹° 02n)
0 lies between °n and °0. Therefore

p
n(~°n ¡ ~°0) =

"
¡ @2Hn(¹°n)

@~°@~°0

#¡ 1 p
n

@Hn(°0)

@~°

We ¯rst consider

¡ @2Hn(¹°n)

@~°@~°0
=

0
@ ¡ @2H1n(¹°1n)

@~°1@~°
0
1

0

0 0

1
A +

"
¡ @2H2n(¹°n)

@~°@~°0

#

Note that

¡ @2H2n(°)

@~°@~° 0
=

1

n(n ¡ 1)

X

i6=j
h3(wi; wj; °)

where

h3(wi; wj; °) = ¡ 2

aq21 a22
K1(

x2i ¡ x2j
a1

)(di + dj ¡ 1)l0(
(xi + xj)

0°

a2
)(~xi + ~xj)(~xi + ~xj)

0

Similar to the proof of (A.2), we can show that

¡ @2H2n(°)

@~°@~° 0
= Eh3(wi; wj; °) + op(1) = Eh3(wi; wj; °0) + op(1)
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uniformly for ° in a o(1) neighborhood of °0 if na
q2=2+"
1 a

3=2+"
2 ! 1 for a small positive number ".

Thus, from the consistency of ~°n, we obtain

¡ @2H2n(¹°n)

@~°@~°0
= Eh3(wi; wj; °0) + op(1)

With some algebraic manipulation, we can show that

Eh3(wi; wj; °0)

= 2

Z Z
[E(~x~x0j ¡ z; x2) + E(~xj ¡ z; x2)E(~x0jz; x2) + E(~xjz; x2)E(~x0j ¡ z; x2) + E(~x~x0jz; x2)]

@F (z jz2; x2)
@z

p(¡ z; x2)p(z; x2)dzdx2 + o(1)

= 2E [
@F (zjz2; x2)

@z
p(¡ z; x2)[E(~x~x0j ¡ z; x2) + E(~xj ¡ z; x2)~x

0 + ~xE(~x0j ¡ z; x2) + ~x~x0] + o(1)

= Q2 + o(1) (A.4)

Similarly, we can show that

0
@ ¡ @2H1n(¹°n1)

@~°1@~°
0
1

0

0 0

1
A = Q1 + op(1)

Therefore we have shown

¡ @2Hn(¹°n)

@~°@~°0
= Q + o(1) (A.5)

Next, we consider
p

n @Hn(°0)
@°

. Notice that

p
n

@H2n(°0)

@~°
=

2p
n(n ¡ 1)

X

i6=j

1

aq21 a2
K1(

x2i ¡ x2j
a1

)(di + dj ¡ 1)l(
(xi + xj )0°0

a2
)(~xi + ~xj)

Similar to Powell et. al (1989), we can show that

p
n

@H2n(°0)

@~°
=

4p
n

nX

i=1

(di + F (¡ zijz2i ; x2i) ¡ 1)(~xi + E(~xj ¡ zi; x2i))p(¡ zi; x2i) + op(1)

=
1p
n

nX

i=1

Ã 12i + op(1)

Analogously, we have

p
n

@H1n(°0)

@~°
=

1p
n

nX

i=1

Ã 11i + op(1)
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Hence

p
n

@Hn(°0)

@~°
=

1p
n

nX

i=1

Ã 1i + op(1) (A.6)

Theorem 1 follows readily from the asymptotic linear representation in (A.6).

Proof of Theorem 2: Write ¯n as

¯n = S¡ 1nxx(°n)Snxy(°n)

where

Snxx(°) =
1

n2(n ¡ 1)

X

j;l 6=i
hxx(w

¤
i ; w

¤
j ; w

¤
l ; °)

and

Snxy(°) =
1

n2(n ¡ 1)

X

j;l 6=i
hxy(w

¤
i ; w

¤
j ; w

¤
l ; °)

with

hxx(w
¤
i ; w

¤
j ; w

¤
l ; °) = ((1 ¡ dl)xi ¡ dlxl)

1

a2q23 a24
K3

µ
x2i ¡ x2j

a3

¶
K4

µ
xi° + xj°

a4

¶

(dixi ¡ djxj )
0K3

µ
x2i ¡ x2l

a3

¶
K4

µ
xi° + xl°

a4

¶

and

hxy (w
¤
i ; w

¤
j ; w

¤
l ; °) = (yi ¡ yj)

1

a2q23 a24
K3

µ
x2i ¡ x2j

a3

¶
K4

µ
xi° + xj°

a4

¶

((1 ¡ dl)xi ¡ dlxl)K3

µ
x2i ¡ x2l

a3

¶
K4

µ
xi° + xl°

a4

¶

for w¤
i = (di; xi; yi), w¤

j = (dj ; xj; yj ) and w¤
l = (dl ; xl; yl), i; j; l = 1; 2; :::; n. Therefore, we have

p
n(¯n ¡ ¯0) = S ¡ 1nxx(°n)

p
nSnxv2(°n)

where

Snxv2(°) =
1

n2(n ¡ 1)

X

j;l 6=i
hxv2(w

¤
i ; w

¤
j ; w

¤
l ; °)

with

hxv2(w
¤
i ; w

¤
j ; w

¤
l ; °) = (div2i ¡ djv2j)

1

a2q23 a24
K3

µ
x2i ¡ x2j

a3

¶
K4

µ
xi° + xj°

a4

¶

((1 ¡ dl)xi ¡ dlxl)K3

µ
x2i ¡ x2l

a3

¶
K4

µ
xi° + xl°

a4

¶
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For Snxx(°n), similar to the proof of (A.5), we can show that

Snxx(°n) = Sxx + op(1)

For Snxv2(°n), a Taylor expansion yields

Snxv2(°n) = Snxv2(°0) + S1nxv2(¹°
¤
n)(~°n ¡ ~°0)

where ¹° ¤n lies betwe n °n and °0,

S1nxv2(°) =
1

n2(n ¡ 1)

X

j;l 6=i
(div2i ¡ djv2j)[(1 ¡ dl)xi ¡ dlxl]

1

a
2q2
3 a24

K3

µ
x2i ¡ x2j

a3

¶
K3

µ
x2i ¡ x2l

a3

¶
K5(¹°)

with

K5(°) = K 0
4

µ
xi° + xj°

a4

¶
K4

µ
xi° + xl°

a4

¶ µ
~xi + ~xj

a4

¶ 0

+K4

µ
xi° + xj°

a4

¶
K 0
4

µ
xi° + xl°

a4

¶ µ
~xi + ~xl

a4

¶ 0
(A.7)

Again, similar to (A.5), we can show that

Snx1(¹°
¤
n)

= ¡ E(
@¸(z; x2)

@z
p2(¡ z; x)[F (zjz2; x2)x ¡ F (¡ zjz2; x2)E(xj ¡ z; x2)][~x

0 + E(~x0j ¡ z; x2)]) + op(1)

= Sx1 + op(1)

Finally, we consider Snxv2(°0). Following Arcones and Gin¶e (1993) and Sherman (1993), we have

the following decomposition for Snxv2(°0),

p
nSnxv2(°0) =

p
n

n(n ¡ 1)(n ¡ 2)

X

i 6=j 6=l
hxv2(w

¤
i ; w

¤
j ; w

¤
l ; °0) + op(1)

=
p

nEhxv2(w
¤
i ; w

¤
j ; w

¤
l ; °0) + Sn1 + Un2 + Un3 + op(1)

= Sn1 + Un2 + Un3 + op(1)

where

Sn1 =
1p
n

nX

i=1

E [hxv2(w
¤
i ; w

¤
j ; w

¤
l ; °0)jw¤i ]

and Un2 and Un3 are second and third order degenerate U-statistics, r ively. Similar to the

proof of Powell et. al (1989), we can show that

Sn1 =
1p
n

nX

i=1

Ã 2i + op(1)
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EU 2
n2 = o(1)

and

EU 2
n3 = o(1)

From the above results, we obtain

p
n(¯ n ¡ ¯ 0) = S¡ 1xx

1

n

nX

i=1

(Ã 2i + Sx1Ã 1i) + op(1)

Then, Theorem 2 follows readily from the asymptotic linear representation by applying the Lingerbeger-

Levy Central Limit Theorem.
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