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Abstract

In this paper a likelihood-based multi-variate unit root testing framework is uti-
lized to test whether the real exchange rates of G10 countries are non-stationary.
The framework uses a likelihood ratio statistic which combines the information
across all involved countries while retaining heterogeneous rates of mean reversion.
This likelihood ratio statistic has an asymptotic distribution which can be typified
as a summation of squared, univariate Dickey and Fuller (1979) distributions. Our
multi-variate unit root tests indicate that bilateral G10 real exchange rates are sta-
tionary, irrespective of the numeraire country. On the other hand, the choice of the
numeraire country seems to be of importance for the issue whether mean reversion
rates across G10 real exchange rates are heterogeneous or homogeneous.

Keywords: Multi-variate unit root testing, maximum likelihood estimation, PPP,

real exchange rates.
JEL classification: C12, C23, F31.

1 Introduction

Purchasing power parity (PPP) is a main building bloc for open-economy macroeconomic
models and it implies that the competitiveness between two countries is equalized. A
practical implication of PPP is that real exchange rates are stationary and it has given
impetus to a whole literature on testing for stationary real exchange rates. In general,
applying conventional augmented Dickey and Fuller (1979) (ADF) unit root tests on

*Tinbergen Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The
Netherlands; E-mail: groen@few.eur.nl.



real exchange rates relative to the United States (U.S.) could not reject the null of non-
stationary real exchange rates. For example, Mark (1990) is not able to reject the null
of non-stationarity for monthly real exchange rates relative to the U.S. and the United
Kingdom (U.K.) for the 1973-1988 period whereas Papell (1997) has the same result for
both monthly and quarterly U.S. real exchange rates over the 1973-1994 period. With
respect to Germany-based real exchange rates both Mark (1990) and Papell (1997) pro-
vide more positive estimation results, albeit that they still do not significantly reject the
hypothesis of non-stationarity for a majority of their real exchange rates.!

Since the Monte Carlo analysis in Shiller and Perron (1985) it is well known that the
power of ADF unit root tests depend on the time span of the sample utilized in testing.
As the time span of the post-Bretton Woods floating rate sample is rather short, 1973 up
to the present, one can be doubtful that conventional ADF unit root tests are capable of
detecting persistent, but stationary patterns in real exchange rates. One possible remedy
for this problem is to look at panel data sets of real exchange rates. One can discern
two groups of panel-based unit root tests of real exchange rates. Studies like Frankel and
Rose (1996), MacDonald (1996), Oh (1996) and Papell (1997) have conducted panel unit
root testing on real exchange rates using a version of the Levin and Lin (1992) panel
unit root test. In general these studies find evidence for stationary real exchange rates in
panels for 6 to 100 real exchange rates relative to both the U.S. and Germany on post-
Bretton Woods samples. However, the evidence within panels of less than 10 countries is
weak. Also, Papell (1997) fails to find evidence for stationarity within several samples of
quarterly U.S.-based real exchange rates.

A major disadvantage of panel unit root testing based on the Levin and Lin (1992)
approach is the assumption of cross-sectional independence between the different real ex-
change rates within the panel. Monte Carlo experiments in O’Connell (1998) indicate
that panel unit root tests that neglect cross-sectional dependence yields severely biased
test results on cross-sectionally correlated data. Given the fact that real exchange rates
relative to the same base country are contemporaneously correlated, one should be doubt-
ful with respect to test results based on Levin and Lin (1992) approach. A second group
of panel-based studies, most notably Abuaf and Jorion (1990) and O’Connell (1998), uti-
lize panel unit root test regressions where they allow for cross-sectional correlation across
the included real exchange rates. On a monthly sample of G10 real exchange rates over
the period 1973-1987 Abuaf and Jorion (1990) only rejects the null of non-stationarity
marginally at a 10% significance level. O’Connell (1998) in panels of 12 to 64 countries
with quarterly data over the period 1973-1995 cannot reject the null of non-stationary
real exchange rates at all.

When properly conducted, that is allowing for cross-sectional dependence, panel unit
root tests give mixed results on the issue whether or not real exchange rates are stationary.
However, the bulk of panel-based studies are based on the assumption of identical rates
of mean reversion and the weak panel-based evidence in favor of PPP could very well
be caused by inappropriately assuming homogeneous speeds of mean reversion across
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countries, as suggested by O’Connell (1998, p. 18). For example, bilateral real exchange
rates behave differently when monetary shocks in the bilateral relation ship are dominant
than when real shocks are dominant. It is known from the literature that deviations from
PPP are of short duration for high inflation countries. Also, when the home country has
linked its monetary policy to that of the base country, based for example on a target zone
regime, PPP deviations do not last long. On the other hand, when productivity growth in
the home country is for a long period higher than in the base country Balassa (1964) argues
that the corresponding bilateral real exchange rate will exhibit a sustained appreciation,
implying a low rate of mean reversion. Finally, the mean reversion of real exchange
rates can be slowed down by the existence of transportation costs (see Dumas 1992) and
when these transportation costs differ across countries they could lead to differing speeds
of adjustment. Hence, in order to profit from the extra information in multi-country
samples it could be worthwhile to conduct multi-country tests of PPP based on cross-
sectional heterogeneity of mean reversion parameters.

Multi-country tests of PPP under parameter heterogeneity have up to now not been
applied on a frequent basis. Coakley and Fuertes (1997) test the validity of PPP for
U.S.-based real exchange rates of G10 countries over the 1973-1995 period within the
heterogeneous panel unit root testing framework of Im et al. (1997)) and they can reject
the null of non-stationary real exchange rates. But, the results of Coakley and Fuertes
(1997) should be treated with suspicion as the Im et al. (1997) framework, like the Levin
and Lin (1992) framework, is based on the assumption of cross-sectional independence.
Hakkio (1984) does allow for cross-sectional dependence as he estimates a system of four
U.S.-based real exchange rates with generalized least squares (GLS), and his estimation
results does not provide evidence for PPP. However, the Hakkio (1984) results are not
explicitly based on the non-stationarity of real exchange rates under the null and are
therefore unreliable. The most reliable results available in case of heterogeneous panels are
provided by Engel et al. (1997), who use dollarized price levels over the period 1978-1994
for two cities in each of the U.S., Canada, Germany and Switzerland. Engel et al. (1997)
construct three panel models comprising intra-national real exchange rates, national real
exchange rates and continental (North-America versus Europe) real exchange rates, and
they simultaneously estimate these three panel models with GLS. Based on parametric
bootstrap distributions they test if each of the three panels are composed of non-stationary
real exchange rate data and these tests reject the validity of PPP. Yet, Engel et al. (1997)
only allow for a limited degree of parameter heterogeneity: across the three panels there
is heterogeneity and within each of the three panel models the mean reversion speeds are
homogeneous. This particular specification could very well be the cause of their negative
results on the PPP hypothesis.

As an alternative to existing studies, our paper proposes to estimate a system of N
ADF test regressions with iterative seemingly unrelated regression estimation (SURE)
where the parameters differ for each equation. Likelihood ratio statistics are constructed
to test the null hypothesis that all N series are non-stationary versus the alternative
hypothesis that all N series are stationary. Compared to the existing literature our



framework has several advantageous features. First, the set-up of our multi-variate unit
root testing framework is such that it allows for different rates of mean reversion under the
alternative of stationary series. Next, the estimates and tests within our likelihood-based
framework are robust to any contemporaneous correlation across the series in our system.
In fact, our likelihood-based framework actually utilizes the presence of contemporaneous
correlation to enhance the power of the multi-variate unit root test. Existing studies of
panel unit root tests on contemporaneously correlated data use (parametric) bootstrap
distributions, as they claim that “.if there is cross-correlation in the data (...) the
distributions of the statistics are not the same as before and are not known.” (Maddala
and Wu 1996, p. 14). Yet, for our multi-variate likelihood ratio unit root test we are able
to determine the distribution even if the data are cross-correlated.

The multi-variate unit root test is used to test for the validity of PPP under cross-
sectional heterogeneity for G10 real exchange rates within the 1973-1996 post-Bretton
Woods period. In contrast to the existing literature, we not only use the U.S. as the
numeraire country. Both within pure time series data (Frenkel 1981, Mark 1990) and
within panel data sets (Jorion and Sweeney 1996, Papell 1997) there is more evidence
for stationary real exchange rates when instead of the U.S. Germany is used as the base
country. Therefore, we use Germany as one of our base countries. Also, like Mark (1990)
we use the United Kingdom (U.K.) as numeraire country. Finally, we use Japan as a
base country for our G10 bilateral real exchange rates as this is the second largest non-
European country within the set of G10 countries and because the Japanese economy has
undergone several structural changes during this period. The multi-variate unit root test
results indicate that irrespective of the base country G10 bilateral real exchange rates are
stationary. We also test whether mean reversion speeds are homogeneous across the G10
real exchange rates, and this does seem to depend upon the choice of numeraire country.

The remainder of this paper is organized as follows. In section 2 we provide a short
overview of existing panel unit root tests. The likelihood-based multi-variate unit root
testing framework is described in section 3. Multi-variate tests on the stationarity of G10
real exchange rates are reported in section 4. Section 5 concludes the paper.

2 Existing Panel Unit Root Tests

In order to improve upon the negative results of standard time series unit root tests, unit
root testing on real exchange rates has recently been conducted within panels of N real
exchange rates. Most studies base their analysis on the Levin and Lin (1992) framework
which utilizes a test regression like?

p
Az = 0 + azip g + Z’YijAIEi,t—j +e, t=1,... , Ny t=1,....,T, (1)

i=1

2The most appropriate specification for unit root tests on real exchange rates is the specification with
a constant included in the test regression.



where Az = ;4 — %41, 0; is a constant which can differ across the cross-sections, ¢
is the cross-section index and ¢ is the time series index. Levin and Lin (1992) assume
in (1) cross-sectionally unrelated disturbances: €; ~ N(0,02) for i = 1,...,N, and p
lagged first differences are added to guarantee that the ¢;’s are not autocorrelated. The
non-stationarity of z; for s = 1,... , N can now be tested in (1) through a t-statistic ¢,
for Hy: « =0 versus H;: « < 0. Levin and Lin (1992) derive that for T — oo, N — oo
and v/ N/T — 0 a proper transformation of £, converges in the limit to a standard normal
distribution:?

V1.25t, + V1.875N = N(0, 1). (2)

A drawback of panel unit root testing based on (1), is the assumption of a homogeneous
adjustment speed under the alternative hypothesis. Such an alternative hypothesis implies
two things:

(a) ;<0fori=1,...,N;
(b) and conditional on (a): oy = -+ = an.

When in reality only (a) is valid, assuming a common « in (1) can be too restrictive and
could decrease the power to reject the null in favor of a true alternative hypothesis. A
possible solution is to base multi-country unit root testing of real exchange rates on the
framework of Im et al. (1997). This framework is based on the estimation of the ADF

test regression for each x4, ...,z y: separately:
Pi
Az = 6; + i1 + Y Vi Aig—j + i, (3)
j=1

and constructing N conventional ADF t-statistics £,; under the null @; = 0 for ¢ =
1,...,N. Assuming Cov(e;y, €:) = 0 for 4,5 = 1,... ,N with ¢ # j, Im et al. (1997)
propose to test Hy: o; = 0 versus H;: o; < 0 through

I; = \/N(E_ E(ta,i|ai = 0)) = N(O, 1), (4)

\/Var(ta,i|ai = 0)

where I = Zf\i 1 ta,i and the asymptotic distribution is valid for N — oo and T' — oc.
In (4) E(tales = 0)) and Var(t,4/c; = 0) are the cross-sectional mean and variance of
the ¢,;’s under the null which are calculated through Monte Carlo simulations.

Both the Levin and Lin (1992) and the Im et al. (1997) approaches suffer from a
number disadvantages which makes them inappropriate for testing the empirical validity
of PPP across NV real exchange rates. Firstly, both approaches are based on cross-sectional
independence between the involved real exchange rates and we argued before that this
is a very unlikely assumption. As a consequence the asymptotic distributions in (2)

3A symbol “=” indicates convergence in distribution.



and (4) are invalid. Also, the set of testable hypotheses within the Im et al. (1997)
framework are economically invalid. The Im et al. (1997) framework tests Hy: oy = 0
versus Hy: o; < 0fors=1,...,N and as such the alternative hypothesis is consistent
with non-stationarity in a sub-sample of cross-sections. As the PPP hypothesis implies
that each real exchange rate in the sample is stationary, the Im et al. (1997) hypothesis
set-up is not compatible with the PPP hypothesis as one could still reject the null while a
fraction of the real exchange rates are non-stationary. In the next section we propose an
alternative framework, which allows for both heterogeneous rates of mean reversion and
cross-sectional dependence. In contrast to the Im et al. (1997) approach, our multi-variate
framework can be used to test the null of non-stationary real exchange rates versus the
alternative that all N real exchange rates are stationary.

3 A Multi-Variate Framework for Unit Root Testing

In this section we propose a likelihood-based framework in which we simultaneously test
for non-stationarity across NV series. We first discuss in section 3.1 the involved estimation
issues. Next, we construct in section 3.2 our multi-variate likelihood ratio unit root test
statics and discuss the corresponding asymptotic distribution. Results of a Monte Carlo
analysis of our test statistics can be found in section 3.3.

3.1 Maximum Likelihood Estimation

In order to conduct a unit root test on an individual variable z; one can run a ADF test
regression

Azy =02 + axp1 +ywp +6&; t=1,...,T. (5)

In (5) Azy = x; — 24—1, the m X 1 deterministic components vector z; either contains a
constant: z; = 1, or a constant plus a linear time trend: z; = (1 ¢)’ with the 1 x m
coefficient vector 6, and wy = (Azy_y -+ - Azy_p)" with the 1 X p coefficient vector . The
unit root test is a test if in (5) a = 0.

To conduct unit root testing on a variable z;; of the i** individual within a panel of
N individuals, we can stack N ADF regressions like (5) into one system,

(51 (67] 0---0 0 Y1 0---0 0
AXt: 2y + 0 0 Xt_1+ 0 0 Wpt+5t ()
(SN 0 0---0 anN 0 0---0 YN

= SZt + q)Xt—l + FWpt + Et,

where «; relates Az to z;; 1 and 7; relates Azy to Aziy 1,...,Az;s " The model
in (6) consists of the N x 1 vectors Xi—1 = (T14-1-"-Zne-1), AXe = Xy — Xi—1 and

4Note that the number of lagged first differences can differ across the equations of (6).



e = (€, -€y,)', and the (32N, p;) x 1 vector W, = (Wpyg1 - Wpyen) fort=1,...,T
andi=1,...,N. In (6) 2, Zit, wp;, 0;, &; and y; have an identical definition as in (5) for
i=1,...,N, and the coefficient matrices §, ® and I' have dimensions equal to N x m,
N x N and N x (Zf\il p;) respectively. We assume a multivariate normal distribution for
the disturbance vector &;: &, ~ N(Oy, ), with the N-dimensional vector of zeros Ox and
the N X N covariance matrix structure,

Wi o WIN
Q=+ -~ ] (7)

WN1 **+ WNN

In (7) wi; = Cov(ey, €;) fori,j=1,...,N.

Unit root testing across N individuals simultaneously within the restricted vector
autoregressive (VAR) model (6) involves testing the parameter restriction @y = --+ =
any = 0. The VAR model subject to general exclusion restrictions is adopted in (6) in order
to get an estimable model while still retaining a form of inter-dependency between the
individuals through the non-diagonal structure (7) of the disturbance covariance matrix.
Our restricted VAR hinges on the following assumption:

Assumption 3.1 There is no linear dependence between the variable z;; of individual
and lags of the variable z;; of individual j for i # j.

Proper estimation of the restricted VAR model (6) involves the usage of feasible GLS (or
SURE), see Liitkepohl (1993, Section 5.2).
The log-likelihood function for model (6) can be written as,’

_ NT T
ﬁ((s, @, F, Q) = —Tln(2ﬂ') + 51H|Q_1|

) i _
= gt (VHAX = 20 = X1 @' = WI') (AX = Z8' = X 19" = W,T)), (8)

where 6, ® and I" are defined in (6) and  has an identical structure as (7). The T x N
matrices AX, X_; and the T x (3~ | p;) matrix W, in (8) can be defined as:

AX] X Wzﬁl
AX = : , X = : and W, = : ,
AXrp Xy T

and the T X m matrix Z equals Z = 17 or Z = (¢ 7) with ¢7 is a T x 1 vector of ones and
the T x 1 vector 7 = (1---T)".

Maximum likelihood estimates of 6, ®, ' and the disturbance covariance matrix  in
(6) can be obtained through iterative SURE (ISURE). Essential for this ISURE procedure

5The determinant of Q! is indicated with |Q2~!| and the trace of a matrix is indicated with ¢r(---).




is proper estimation of 2, and based on (8) Q2 is estimated with the standard conditional
maximum likelihood estimator:%

~A 2

A A 1 ~ A~ ~N\/ ~f ~ ~
O3, 8,0) =~ (AX _Z5 - X_, &' - Wpr’) (AX _Z5 - X_, &' - Wpr’) . (9)
The ISURE procedure starts off with a consistent initial estimate of €.

N

T
A a oy A 1 A A
Q(@OLS) = (QZ])Z]—l NWlth QZ] = T Z eite;t. (10)
J=1,..., —1

In (10) € and é€;; are residuals resulting from N OLS regressions of Az, on 2, ;:—1 and
Aziy 1,...,Az;iy , as in (5). The initial estimate (10) is used to estimate §, ® and T
through SURE and these SURE estimates in turn can be used to construct a new estimate
of Q based on (9). Next, we can construct new SURE estimates of §, ® and T using the
estimate of (2 based on the old SURE estimates of 4, ® and I'. Magnus (1978) shows that
iterating in this manner until convergence of the estimators yields maximum likelihood
estimates of §, ®, T' and Q.

3.2 Multi-Variate Unit Root Testing

For unit root testing across NV individuals simultaneously based on a specification like (6),
we make use of SURE estimators as outlined in section 3.1. Hence, we can only consider
the cases where T' > N and the limiting behaviour of our test statistics are based on large
T asymptotics while assuming a fixed cross section dimension .

As the null hypothesis of N unit roots involves a restriction on N parameters simul-
taneously, we shall use a likelihood ratio test to test for non-stationarity in our SURE
system. One can straightforwardly show that the maximized value of (8) conditional on

the maximum likelihood estimates 8, ® and I in combination with disturbance covariance
matrix estimator (9) can be specified as”

A n A A A A NT T A A A A
lmax|0, @, T, Q(3, @, 1) = 41, = _T(l +1In(27)) — 5ln|Q(6, o, 1) (11)
Under the unit root restriction, i.e. @y = -+ = ay = 0 in (6), maximum likelihood
estimation is identical as in section 3.1 but without z,;_,...,zn1 included in our

restricted VAR model. The corresponding maximized log-likelihood function equals:

N - PN

bunsB, 7, 95, )] = 4 = — 21 (1 4+ In(2m)) — LInfQ2, D). (12)

6The number of time series T is identical for each equation as this greatly simplifies the estima-
tion of covariance matrix Q). Hence, we consider in this paper only systems with balanced times series
observations.

"Note that In|Q~!| = —In|Q)|.



The likelihood ratio test statistic for Hy: @y = - -+ = ay = 0 within (6) versus H;: «; # 0
fors=1,...,N is now identical to:

_—yy

LRo—p = 2(Chax — Lrx) = T[|(6, 1)] — I|2(3, &, 1)) (13)

max

The asymptotic behaviour of the multi-variate unit root test statistic in (13) can be
typified as

Proposition 3.1 Let,

(a) the estimates of 81,... ,0n, Q1,... ,QN, V1,--- , YN and  be fully converged estimates
from the iterative estimation schemes of section 8.1 both under the null hypothesis
(v =--- = ay =0) and the alternative hypothesis,

(b) each of the N series gy, ... ,Tne be I(1),

(c) the cross-section dimension N be fized and the time series dimension T — oo.

Then the limiting distribution of LRs—q in (13) equals:

LRs— ég (/ BidBi>2 (/ Bi?) B

In (14) “= 7 denotes convergence in distribution, B;(u) is a scalar standard Brownian
motion for individual i on the interval u € [0, 1], [ BidB; = fol B;(v)dB;(u)du and
Bi(u) = B;(u) if in (6) 6, = --- = 0y = 0 or Bij(u) = B;j(u). When appropriate, B;(u)
equals for individual i B;(u) = Bi(u)—fo1 B(u)du if in (6) 2, = 1 or B;(u) = B;(u)—a;—b;t
if in (6) z = (1 t) with a; and b; resulting from regressing B;(u) on a constant and a
linear time trend.

Proof: See Appendiz A.

(14)

Expression (14) is identical to a summation of N squared Dickey and Fuller (1979) lim-
iting distributions for the univariate ADF unit root test. Appendix B describes how we
compute the critical values for test statistic (13) based on the asymptotic distributions
from proposition 3.1.

The finite sample properties of test statistic (13) can be improved through a degrees
of freedom correction as suggested by Sims (1980). It involves replacing 7" in (13) by the
average degrees of freedom per equation under the alternative hypothesis:

CLRs_q = (T — d)[In|2(3, T)| — In|Q2(3, &, )], (15)

where?

d=%<N(m+1)+;pi>.

8The number of deterministic components per equation equals m (m = 0, m = 1 or m = 2), the
number of lagged first differences per equation equals p; and we have 1 lagged level z; ;1 per equation.
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Obviously, the corrected likelihood ratio test statistic (15) has smaller values than (13)
and in finite samples combined with a large number of parameters CLRg—g could very
well be much closer to the asymptotic distribution (14) than LRg—.

3.3 Monte Carlo Evaluation

To study the behaviour of our multi-variate unit root test statistics (13) and (15) we
conduct a Monte Carlo analysis on artificial samples with comparable dimensions as the
multi-country systems used in section 4. We report the rejection frequencies both for a
true null hypothesis and a true alternative hypothesis at a nominal size of 5%, based on
6,000 Monte Carlo experiments.

Within the Monte Carlo experiments the data generating process (DGP) of the arti-
ficial series y;; used in our tests equals:

yit:Ci+piyi,t—1+:uit7 Z:177N7t:177T (16)

A specification with a constant is chosen in (16) as we use this specification in section 4
and it is the most appropriate one for testing the PPP hypothesis. Also, we set 7' = 96 in
(16) which is comparable to the number of quarterly observations within the 1973-1996
sample used in section 4. The cross-section dimension is set at N = 9 as we have 9 real
exchange rates in the multi-country systems of section 4. We also set N = 3, 6 so that we
can determine how the sizes and power ratios react to increases in the number of variables
analyzed within the SURE system. The innovations p; in (16) are generated through

Mit = Aifig—1 + €it (17)
where (€15 - - €nt)’ ~ N(Oy, X) with®
=09, 0is N x N and O ~U(0, 1). (18)

Randomly generating the elements of the © matrix in (18) from an uniform distribution
U(0, 1) guarantees that the €;’s in (17) are positively cross-correlated, as in the historical
samples from section 4.

Sizes and power ratios are computed both with and without first order serially corre-
lated p;y’s in (17):

Size without serial correlation: for i = 1,... , N we have in (16) ¢; = 0 and p; = 1,
and in (17) A; = 0.

Size with serial correlation: for i = 1,..., N we have in (16) ¢; = 0 and p; = 1, and
in (17) A ~ U(=0.5, 0.5).

Power without serial correlation: for ¢ = 1,... , N we have in (16) ¢; ~ U(-1, 1)
and p; ~ U(0.9, 1), and in (17) A; = 0.

9The denomination U(k;, k2) indicates that we draw from an uniform distribution on the interval
between, but NOT including, k; and k.

10



Power with serial correlation: for ¢ = 1,... , N we have in (16) ¢; ~ U(-1, 1) and
pi ~ U(0.9, 1), and in (17) A ~ U(=0.5, 0.5).

For the power computations we have chosen to draw the mean reversion parameters from
U(0.9, 1) in order to have an ample amount of heterogeneity, comparable with the range
of estimated parameters in section 4, combined with a significant degree of persistence.
All other parameters were also drawn from uniform distributions for each i =1,... , N so
that we have heterogeneity across the IV cross-sections. As a benchmark we also calculate
the sizes and power ratios for the univariate ADF unit root test, based on the above
mentioned DGP’s only now with N = 1.

The results of the Monte Carlo experiments on our multi-variate unit root tests are
reported in table 1. When we have no serially correlated innovations we see that both the
LRs—¢ and the CLRg— statistics have a correct size at the 95% quantile from distribution
(14). In case of first order serially correlated innovations we have fitted our SURE system
(6) with a common lag order p equal to 1, 2 and 3. For p = 1 we have again in all cases
a correct size. When the utilized lag order increases from 1 to 2 and 3 we see in table 1
that at N = 9 the LRg—( statistics has a tendency to slightly overreject the true null
hypothesis. The CLRg—¢ statistic, however, retains a correct size when at N =9 the lag
order increases to 2 and 3. Overall, the CLRg—¢ statistic has better a size than the LRg—g
statistic when the number of parameters increase substantially.

When we look at the power ratios in table 1 we see that at NV = 3 we have for both
multi-variate unit root test statistics power ratios in the range of 60%-72%. When we
compare this to the univariate ADF test it becomes clear that already at very moderate
cross-section dimensions our LRg—g and CLRg— statistics have a superior power perfor-
mance relative to univariate tests. An increase in the number of series from 3 to 6 and 9
results in a substantial increase in the power ratios to levels beyond the 90% value. Given
these results it would be interesting to determine how much of the high power ratios of
our multi-variate unit root test statistics is due to the presence of positive cross-correlated
innovations. Therefore, we also compute power ratios based on Monte Carlo experiments
without contemporaneous correlation in the data, i.e. we set the off-diagonal elements of
¥ in (18) equal to 0. When the LRo—¢ and CLRg_ statistics are based on non-correlated
data the corresponding power ratios, reported in square brackets in table 1, are consider-
ably lower than in the case of correlated data. The presence of positive cross-correlated
innovations results in at least a 65% increase of the power of our multi-variate unit root
test statistics.

To further assess the importance of contemporaneously correlated data, we have also
employed our Monte Carlo experiments to compute the sizes and power ratios of the
Im et al. (1997) panel unit root test. In section 2 we stated that when we have cross-
correlated data the corresponding limiting distribution of the Im et al. test is incorrect.
This is confirmed by the fact that in table 1 the Im ef al. test at N =6 and N = 9 is
considerably oversized. Corresponding power ratios in table 1 indicate that the Im et al.
test has a low power relative to the LRs—¢ and CLRg—q statistics, despite the fact that
the Im et al. test is oversized under the null. This is caused by the fact that within the

11



Im et al. framework the N test regressions are separately estimated and not jointly as
in our framework. Therefore, next to the objections already mentioned in section 2 the
power calculations suggest another objection to the usage of the Im et al. test on real
exchange rate data: a relative lack of power in case of a moderate number of persistent,
stationary series. Hence, our likelihood-based multi-variate unit root test statistics are
the most appropriate for a multi-country analysis of real exchange rates.

4 New Multi-Country Unit Root Test Results of PPP

In this section we apply the multi-variate unit root testing framework from section 3 on
the real exchange rates of the G10 countries in order to test the validity of PPP for all
these countries. Section 4.1 contains an description of the data. Also, we conduct in this
subsection univariate unit root tests on bilateral G10 real exchange rates relative to the
U.S., Germany Japan and the U.K. Next, we report in section 4.2 multi-variate unit root
test results for our four sets of G10 bilateral real exchange rates.

4.1 The Data and Univariate Unit Root Test Results

In its logarithmic form the real exchange rate for the home country wversus a foreign
country is defined as

g=e+p' —p, (19)
where ¢, e, p* and p are the logarithm of the real exchange rate, the nominal exchange
rate, the foreign aggregate price level and the home aggregate price level respectively.
Long-run PPP is valid when the real exchange rate has a constant mean through time,
implying an equalized relative competitiveness in the long-run between two countries.
Thus ¢ in (19) must be stationary, i.e. one should reject the null hypothesis

Hy: Ag=¢, e~iid.(0,0%); t=1,...,T, (20)
in favor of the alternative hypothesis
Hi: Ag=0+aq_1+e, a<0. (21)

An intercept 0 is included in (21) to correct for measurement errors due to the fact that
we use in practice price indices and not actual price levels. Note that (21) allows for
short-run deviations from PPP.

We consider real exchange rates for 10 of the most important industrialized countries
(G10), i.e. Canada, France, Germany, Italy, Japan, The Netherlands, Sweden, Switzer-
land, the U.K. and the U.S. Quarterly observations from 1973.1 through 1996.4 are used
in the estimation of our systems of real exchange rates. Logarithms of real exchange rates
are constructed as in (19), where we use the consumer price index (CPI) as a proxy of
the aggregate price level. Data on the CPI’s and exchange rates are obtained from the
IMF’s International Financial Statistics (IFS).'® G10 real exchange rates are constructed

10The CPI data are from IFS line code 64.
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relative to four numeraire countries: the U.S., Germany, Japan and the U.K. In con-
structing real exchange rates relative to the U.S. we use quarterly average U.S. dollar
exchange rates as the CPI data are also quarterly averages.!! In case of real exchange
rates relative to Germany, Japan and the U.K., the nominal exchange rates are calculated
through cross-rates based on the U.S. dollar exchange rates.

To get a feel of the degree of persistence within bilateral G10 real exchange rates,
we conduct univariate ADF unit root tests for G10 real exchange rates relative to our
four base countries. We use the ADF unit root test with a constant included in the test
regression, that is we conduct a t-test for « = 0 in

p
Aqt =0+ Qg1 + Z ’Yqut_j + €. (22)

j=1

The lag order for the ADF test regressions is selected as follows. First, we determine an
optimal lag order through the Akaike Information Criterion (AIC), based on a comparison
of AIC criteria computed for lag orders ranging from 0 to 8 in (22). Next, we used
Lagrange-Multiplier (LM) serial correlation tests at 1, 4 and 8 lags to determine whether
the residuals of (22) at the optimal AIC lag order are white noise. If that is not the case,
we increase the lag order until the LM serial correlation tests indicate that the residuals
of (22) are indeed white noise.

From table 2 it becomes clear that irrespective of the base country univariate unit root
tests are in general not able to reject the null of non-stationary real exchange rates. The
ADF tests for Germany-based real exchange rates provide the most favorable evidence
for the PPP hypothesis, as we can reject the null of non-stationarity for France, The
Netherlands and Switzerland. For the other base countries we are only able to reject the
null of noon-stationary real exchange rates in case of the real exchange rate of Switzer-
land relative to the U.K. The estimated measures of mean reversion seems to have more
favorable values when we use Germany and the U.K. as the base countries. All things
considered, the results in table 2 indicate that even if real exchange rates are stationary
their degree of persistence is such that univariate unit root tests are not able reject the
null of non-stationarity.

4.2 Multi-Variate Unit Root Test Results

The failure of univariate unit root tests to reject in section 4.1 the null of non-stationary
real exchange rates could be due to slow rates of mean reversion such that one only can
find evidence for stationarity within samples of data with a long time span. One possible
solution is the usage of panel techniques described in section 2, but these techniques are
based on the possibly invalid assumption of homogeneous cross-country rates of mean
reversion. As an alternative we apply in this subsection the multi-variate framework of
section 3. The power analysis in section 3.3 indicates that when we have cross-correlated

1 The exchange rate data are from IFS line code “rf’.
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data, our multi-variate framework has ample power to reject the null when the data
are stationary but persistent in nature. On average the cross-correlations of the relative
changes in real exchange rates with respect to the U.S., Germany, Japan and the U.K.
equals 0.56, 0.33, 0.69 and 0.61 respectively. Hence, a priori we would expect that our
multi-variate unit root test statistics yield more positive results with respect to the PPP
hypothesis than the univariate unit root tests, especially for the base countries the U.S.,
Japan and the U.K.

For G10 bilateral real exchange rates relative to the U.S., Germany, Japan and the
U.K. we conduct ISURE estimation on a system like (6) with z; = 1, i.e.

Agy = 6 + g + Z?lzl Y1;Aq -5 + €
: : : : : (23)

Agne = Oy + angng-1 + Z?Zl YN AGNe-; + €ne
and N = 9. Next, after we have estimated (23) under the restriction oy = --- = ay =0
we construct our likelihood ratio unit root test statistics (13) and (15). We analyze (23)
both with individual specific lag orders and a common lag order, i.e. py =+ = py = p.

For the case of heterogeneous lag orders we use in each equation of system (23) the same
lag order as in the corresponding equation in table 2.'2 In case of a common lag order
the optimal lag order p in (23) equals the lag order at the minimum of the AIC criteria
for the whole system computed over the range p = 0,...,5. An upper bound lag order
equal to 5 is chosen as this is the maximum lag order in the univariate test regressions in
table 2. The selected common lag orders are reported in table 3.

The results of our multi-variate unit root tests for our G10 bilateral real exchange
rates based on a common lag order are summarized in table 3. The likelihood-based
test statistics are able to reject the null of non-stationary real exchange rates for all four
sets of G10 real exchange rates. When Germany and Japan are used as the numeraire
country we can reject the null comfortably at the 1% significance level. In case of the base
countries the U.S. and the U.K. the p-values of the test statistics indicate that we easily
can reject the null at the 5% significance level. Test results based on individual specific
lag orders in (23) can be found in table 4, and we see that the usage of a heterogeneous
lag order do not significantly change the results for the rates relative to Germany; again
we reject at very low significance levels. With respect to the U.S., Japan and the U.K. the
uncorrected LRs—¢ statistic indicates a rejection of the null at the 5% significance level,
whereas the results for the CLRg—g statistic indicates a rejection at the 10% significance
level with p-values very close to 5%.

Although the usage of individual specific lag orders does not seem to influence the
strength of rejections of the null in case Germany-based real exchange rates, this seems
to be the case for the other sets of real exchange rates especially relative to Japan. The
Monte Carlo experiments in section 3.3 showed that at N = 9 the LRg_g statistic becomes
slightly oversized when the total number of parameters becomes large. This result could

12For the validity of this approach, see Liitkepohl (1993, pp. 182-183)
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explain the difference in tables 3 and 4 for the p-values of the rates relative to the U.S.,
Japan and the U.K., as the number of parameters in case of a common lag order is
larger than for the heterogeneous lag order (see table 2). On the other hand, we saw
in section 3.3 that the CLRg—( statistic still has a correct size when we have a large
amount of parameters and the results in table 3 based on the CLRg—¢ statistic are for the
rates relative to the U.S., Japan and the U.K. not different than for the LRs_( statistic.
Moreover, the selection procedure for a common lag order in (23) is based on system-wide
information in contrast to the selection of the heterogeneous lag orders which are based on
country-specific information only. Therefore, the common lag order selection procedure
could very well provide extra information with respect to the dynamic behaviour of the
real exchange rates relative to the U.S., Japan and the U.K. resulting in the lower p-values
for these base countries in table 3 compared to table 4. Given this and the fact that the
rejections in table 4 are still quite strong, we can safely say that for all our G10 real
exchange rates we have strong evidence for stationary real exchange rates.

In tables 3 and 4 the cross-country variability of maximum likelihood estimates for
the mean reversion coefficients seems to depend on the choice of the numeraire country.
Even though this cross-country variability is low when the U.S. and the U.K. are the
base countries, for real exchange rates relative to Germany and Japan the mean reversion
speeds per country are quite heterogeneous in nature. For example, rough measures for
the half life of shocks'® indicate that in table 3 Germany-based rates of Canada, Japan
and the U.S. have a half-life somewhere between 14 and 19 quarters, whereas France, The
Netherlands, Sweden and the U.K. exhibit a half-life between 3 and 7 quarters. Note also
that for the real exchange rates relative to both Germany and Japan we have the result
that the adjustment speeds relative to European countries are much higher than with
respect to non-European countries.

It could therefore be worthwhile to test whether the mean reversion rates «; are
homogeneous across the equations of (23). To achieve this we construct likelihood ratio
statistics for the null hypothesis o; = -+ = «au, where the likelihood ratio statistic has
under the null a x?(8) distribution. We also calculate AIC criteria for both heterogeneous
and homogeneous «;’s in (23), where the minimum of these AIC criteria indicates which
case is empirically more appropriate. From the lower parts in tables 3 and 4 we see
that both the likelihood ratio statistic and the AIC criteria confirm our suspicions: mean
reversion rates for the base countries Germany and Japan are heterogeneous, while for
rates relative to the U.S. and the U.K. the ¢;’s are identical for all countries. Note that
estimates for the common apoy are identical or close to -0.06 for both U.S.-based and
U.K.-based real exchange rates. Apparently, shocks to the numeraire countries U.S. and
U.K. dominated all other shocks resulting in a common adjustment speed.

13These measures equal In(0.5)/In(1 + &;).
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5 Conclusions

The validity of long-run PPP implies that real exchange rates are stationary, i.e. in time
real exchange rates revert back to a constant mean. This paper proposes and employs a
multi-variate framework for unit root testing in multi-country systems of real exchange
rates, while retaining cross-country differences in mean reversion rates. By treating the
panel of data explicitly as a restricted, high dimensional VAR model we are able to de-
rive appropriate estimation and testing methods based on the corresponding log-likelihood
function. Utilizing time series-based asymptotics in combination with a fixed cross-section
dimension enables us to derive limiting distributions which are also applicable when the se-
ries in the panel are contemporaneously correlated. Monte Carlo experiments for systems
with empirically sensible dimensions show that our multi-variate unit root test statistic
behaves well both under a true null of non-stationarity and under a true alternative of
stationarity, especially when a degrees-of-freedom correction is employed. The Monte
Carlo results indicate that our multi-variate unit root test is not only robust to cross-
correlations in the data, the usage of cross-correlated data also improves the power of the
test significantly.

Our multi-variate unit root testing framework tests the null that all series in the panel
are non-stationary versus the alternative that all series are stationary. Because of this
set-up our framework is more appropriate for testing the validity of long-run PPP than
other available heterogeneous panel unit root tests. The empirical tests are conducted on
the bilateral real exchange rates of 10 large industrialized (G10) countries. We construct
four sets of G10 real exchange rates relative to four different numeraire countries. For
all the multi-country systems our multi-variate approach is able to reject the null of non-
stationary real exchange rates, both with a common lag order in the multi-country systems
and with country-specific lag orders. Test results with respect to the issue whether mean
reversion rates are homogeneous across countries yield conclusions which depend on the
choice of the base country. Real exchange rates relative to the U.S. and the U.K. exhibit
homogeneous adjustment speeds, whereas mean reverting patterns within real exchange
rates relative to Germany and Japan are highly heterogeneous in nature.

Homogeneous adjustment speeds in case of U.S.-based and U.K.-based real exchange
rates suggest that in these cases shocks in the base country seemed to have dominated all
other shocks. While in the case of the U.S. this is not surprising given the large relative
size of its economy, it is more puzzling for U.K.-based rates. Maybe the “boom-and-bust”
behaviour of British monetary policy in the 1970s and 1980s lead to such an amount
of economic variability that it dominated all foreign shocks. Also, our system-based
estimates for the base countries Germany and Japan suggests an asymmetric pattern
in mean reversion speeds: very high with respect to European countries and very low
with respect to non-European countries. It would be interesting for future research to
assess which part monetary and real shocks play in this asymmetric pattern. A further
research topic is to apply the framework of this paper on real exchange rates based on
disaggregated price data, e.g. city-based price indexes or sector-based prices. Finally,
based on an appropriately restricted disturbance covariance matrix our framework could

16



be extended to the case where we have both a large number of cross-sections and time
series observations.

Appendix

A Proof of Proposition 3.1

In the following proofs we discard the presence of lagged first differences in (6), and we
assume that we have 4 =--+ = vy = 0 combined with a vector of disturbances &; which
does not exhibit serial correlation. From Dickey and Fuller (1979) and Said and Dickey
(1984) we know that the inclusion of lagged first differences within ADF test regressions,
in order to guarantee white noise innovations, does not influence the asymptotic behaviour
of the ADF t-statistic relative to the case of no higher order dynamics. Johansen (1991)
has an identical result in the case of likelihood ratio cointegration rank statistics within
unrestricted VAR models of non-stationary variables. As (6) can both be considered as
a system of NV ADF test regressions and as a restricted VAR model of N non-stationary
variables, LRg—¢ is under the null asymptotically identical whether ornot vy =+ = vy =
0 in (6) as long as we have white noise disturbances. Hence, for notational convenience
we base all our proofs on the absence of higher order dynamics in (6). Also, our proofs
are at first based on the absence of deterministic components in (6) but we discuss at the
end of this Appendix the extension to the case of deterministic components.
In deriving the limiting behaviour of LRs—¢ we make use of the following results:

1. We make use of the properties of “vec”-operators and Kronecker-product operators
as summarized in Liitkepohl (1993, Appendix A.11 and A.12), we use in particular:

vec(ABC) = (C' ® A)vec(B),

(A® B)(C ® D) = (AC ® BD), (A1)

where A, B and C' are appropriate matrices and “vec” denotes vectorization of a
matrix by stacking the columns of this matrix.

2. For T — oo we have (see Hamilton 1994, chapters 17 and 18):

1 ,
XL X = Q2 (/ WNWZ’V> Qz
) (A.2)
FXLAX = (/ WNdw;v> Q3.
In (A.2) Wn(u) = (By(u)---By(u)) is a N-dimensional vector Brownian Motion with
covariance matrix Iy and u € [0, 1], B;(u) is a scalar standard Brownian Motion,
JWyndWy = fol Wi (u)dWx(u)du, and Q is the true non-diagonal disturbance covari-
ance matrix as in (7). Note that “=" indicates convergence in distribution, whereas in

the remainder of this Appendix “%” indicates convergence in probability.
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The Proof

For§; =.-- =0y =0, 7 = -+ = vnx = 0 and no serial correlation within the innovations
vector €; in (6), log-likelihood function (8) can also be written as

NT T

g(@, Q) = —Tln(2’ﬂ') + 51H|Q_1|
1

— 5vec(AX — X 1 ®) (' @ Ir)vec(AX — X_1®), (A.3)

with the T X T identity matrix Ir. We can write within the last part of log-likelihood
function (A.3)

vec(AX — X_1®) =
vec (AX) — vec (X1 104 ... XN —10n)
o (A.4)
=vec(AX)-(In®X_1)Fs | |,

N

where Iy is a N X N identity matrix and Fj is a N? x N selection matrix,

€1 ON N ON
On €2 On
I = . =((e1®e1) - (en®en)). (A.5)
Onv—3) Onav—s)y - On(v_3)
On On en

In (A.5) e; is the 5 column of the identity matrix Iy and O, is a s-dimensional column
vector of zeros with s = N or N(N — 3). Substituting (A.4) in log-likelihood (A.3) and

maximizing (A.3) with respect to ® given Q, yields the following estimator of o, ... , ay:
a1

=(Fs('® X', X 1)Fs) 'Fp(Q' ® Ir)vec(X' |AX), (A.6)
an

which is a SURE estimator. The conditional maximum likelihood estimator of {2 given
the estimate ® equals:

A A 1 ~\/ ~

&) = (AX - X_1¢>) (AX - X_1¢>) . (A7)
Using (A.6) and (A.7) in the ISURE procedures from section 3.1 yields maximum likeli-
hood estimates but Magnus (1978) has shown that the estimates after one iteration have

the same asymptotic distribution as fully converged estimates. In the following we make
use of this property of the one-step SURE estimator.
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Based on log-likelihood function (A.3) for both the ¢y = --- = ay = 0 and o; # 0
specifications, and substituting the estimates &, ... ,dy from (A.6) and the true distur-
bance covariance matrix €2, we can write LRg—_g = 2[£(®, Q) — £(Q)] as

LRo_g = 2 [£(<i>, Q) — K(Q)]
= vec(AX)' (07! ® Ir)vec(AX) (A.8)
— vec(AX — X_1®)'(Q7! ® Ir)vec(AX — X_,®)
= vec(X_1 D) (Q7! ® Ir)vec(X_, ®).

Under Hy: 0y =--- = ay =0, Q(®) in (A.7) is a consistent estimate of 2. Hence, given

N

(A.8) and Q = Q(®) & Q we have
LRs—o = vec(X_1®) (07 @ Ir)vec(X_, )

!

~ ~

(67] (631
Fy(@ @ XL, X_)Fy | : (A.9)

dN N
= (Fpvec(X' | AXQO ) [Fa( ' @ X' | X_\)Fp)  Favec(X' ,AXQO™Y),

where Fp is defined in (A.5) and the third expression results from substituting estimator
(A.6).

Based on Q = Q(®) 5 Q, (A.1), (A.2) and the continous mapping theorem, we have
for T' — oc:

1 ~ 1 1/
—[FLOQ ' X' X_Fs]™' = [F! Q‘1®92/W Wz ) Fgl™!
T3l LX) = [Py Q7 ) Fo) (A10)

=[F(Q 2 ®Q7)(Iy® /WNW}V)(Q—é ® Q2) Fp ™!,
and

1 5 ,
7 Favec(X, AXQT) = Flvec(Qz / WxdWi Q2 )
(A.11)

1

= FL(Q ® QF)vec( / WdWh).

In order to manipulate the expressions in (A.10) and (A.11) we define the following:

O
Q

(U W), with ;is 1 x N,
(Y)Y, with T;is 1 x .

N|= D=

(A.12)

19



Utilizing (A.12) we can now write
[(1®T, T, ® T,

!

1

Fa( 7 @02)(Q72 @ Q3) Fy = : :
K Uy ®@ Ty Uy Tyw
( (T U) (1Y) - (T W) (T ) (A.13)

\ (TN (TNTY) - (TnT)(TaTh)
= PP

where PP’ is the Choleski decomposition of the N x N matrix in the second right hand
side expression in (A.13). Using (A.13), pre-multiplying the expression within square
brackets in (A.10) with P~ and post-multiplying with P~" yields

[PUFR(Q72 @ Q5)(Iy ® / WNWR)(Q 2 @ Q2) FpP] !

-1
( (W) (Y0 fWaWR YY) oo (B 0)(T0 [ WA WR T)
e P—l : . ] : P_ll
\ (UNT)(Tw [ WAWETL) - (UnTR) (T [ WyWRTY)
2 ) _1
:(fflo_o 8 (A.14)
\ 0 0---0 [B%
For (A.11) we have, based on (A.1) and (A.13), the following result:
T, [ WadW,
PUFL(Q @ QF)vec( / WydWl) = P! ;
Tw [ WhdWi Ty (A15)
[ BidB; '
[ BydBy

Substitution of (A.14) and (A.15) in (A.9) results in the following limiting expression
for LRe—g:

[BdB, \' [ [B2 0---0 0 \ [ [BidB
LRg—o = : 0 0 :
[ BxdBy 0 0---0 [B% [ BydBy
N 2 -1
£ [(f) (/) -
i=1
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Deterministic Components

We can concentrate log-likelihood function (8) with respect to the deterministic compo-
nents through OLS regressions of the elements of AX;, X;_; and W, on the deterministic
component vector z, as 2; has an identical content for each equation of (6).1* Hence, we
have after adjusting for the effect of the deterministic components:

AX; = MzAX; and AX = (AX, ---AXy),
Xi7_1 = Min7_1 and X_l = (Xl,t—l . 'XN,—I)y (A16)
VNpri = MZWp,i and Wp = (VNprl cee Wp,N):

with Mz = Ir—Z(Z'Z)"'Z'. Replacing AX, Z, X_; and W, with the variables of (A.16)
in the ISURE procedure from section 3.1 yields therefore identical maximum likelihood
estimates of ® and I' in (6) as in the original ISURE procedure. Under the null of
N non-stationary variables, i.e. 0, = --- = dy = a1 = --- = ay = 0, we now have
Bi(u) = Bi(u)— [ Bi(u)du or B;(u) = B;(u)—a;—bit, and dB;(u)— [, dB;(u)du = dB;(u)
or dB;(u)—a;—bjt = dB;(u).'"® Hence, we replace in all relevant formulae of the previously
described proof Wy (u) with Wy (u) = (By(u) - - - By(u))" while retaining dWy.

B Critical Values

The asymptotic distribution of our multi-variate likelihood ratio unit root test, as sum-
marized in proposition 3.1, is a functional of Brownian Motions. As these are continuous
time variables, one has to rely in practice on approximations to get proper critical val-
ues for our multi-variate unit root tests. Nielsen (1997) observes that within a single
equation model the asymptotic behaviour of a likelihood ratio unit root test is very well
approximated by a Gamma-distribution, especially for quantiles > 50%. The limiting dis-
tribution of a likelihood ratio unit root test within the single equation framework equals
a squared Dickey and Fuller (1979) distribution and the limiting distribution in proposi-
tion 3.1 equals a summation of N squared Dickey-Fuller distributions. Hence, we use a
Gamma-distribution to approximate our asymptotic distributions.
The Gamma-distribution can be written as

['(z;ra) = / a " lexp(—az)dz, z>0,7>0, a>0, (B.1)
o I'(r)

where I'(+) is the Gamma-function. When we can find proper values for the parameters a

and r, we can use (B.1) to approximate the distribution of our test statistic z under the

null. Following Doornik (1998), we can calibrate (B.1) through

m m?

a=" =" B.2
a o 7 s (B.2)

14See also the Frisch-Waugh-Lovell theorem in Davidson and MacKinnon (1993, pp. 19-24).
5Parameters a; and b; results from regressing B;(u) on an intercept and a linear time trend.
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where m is the approximated asymptotic mean of z under the null and v is the approxi-
mated asymptotic variance. Doornik (1998) shows in Monte Carlo experiments that the
above described procedures yields very accurate approximations of the asymptotic dis-
tributions of multivariate cointegration tests, which basically are squared multivariate
Dickey-Fuller distributions.

Proposition 3.1 indicates that the asymptotic distribution of our test statistic is a
summation of N independent, squared Dickey-Fuller distributions. Therefore, the mean
and variance of these distributions equals N times the mean and N times the variance
of a single squared Dickey-Fuller distribution. Thus, we first approximate the asymptotic
mean and variance of a single squared Dickey-Fuller distribution through Monte Carlo
simulations. In these simulations we generate a discrete time random walk with 2,000
observations, compute the Dickey-Fuller t-value and take the square of this t-value. We
iterate 100,000 times and calculate the mean and variance across the 100,000 generated
squared t-values. These exercises are repeated for specifications with a constant or a
constant plus trend added to the test regression, where we use either a demeaned or a
detrended random walk. Based on the Monte Carlo mean and variance we determine in
table B.1 approximations for the mean and variance of our distributions. Using the values
from table B.1 we can now determine the values of 7 and a in (B.1) through (B.2). The
resulting calibrated Gamma-distribution can now be used to compute asymptotic critical
values or p-values for our multivariate unit root test.!®

Table B.1: Mean and variance of the limiting distri-
butions of Proposition 3.12

Deterministic Components:
None Constant  Constant + Trend

m 1.14x N 3.07xN 5.32x N
) 221xN 7.00x N 11.30x N

The values equal N times the mean or variance of a single
squared Dickey-Fuller distribution. The denomination N
indicates the cross-section dimension and m, v indicates
the approximations of the mean and variance respectively.

16 A GAUSS procedure for calculating the 90%, 95% and 99% quantiles or p-values based on the fitted
Gamma-distribution is available from the author.
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Table 1: Size and power of the multi-variate unit root test with constant terms for
a nominal size of 5%.2

No Serial Correlation Serial Correlation
p=1 p=2 p=3
Size  Power Size  Power Size  Power Size  Power

Augmented Dickey and Fuller (1979) Unit Root Test
0.050 0.170 0.047 0.153 0.048 0.132 0.044 0.129

Multi-variate Unit Root Tests

N =3 LRe—o 0052 0.718  0.058 0.693  0.054 0.669  0.056 0.647
[0.267] [0.239] [0.216] [0.213]

CLRg—o  0.047 0707  0.046 0.669  0.042 0.640  0.040 0.606

[0.245] [0.211] [0.176] [0.169)]

IPS 0072 0222 0073 0.8 0078 0187 0078 0.177

N=6 LRe—o 0064 0961 0077 0.954 0080 0948  0.086 0.930
[0.434] [0.417] 0.371] [0.362]

CLRg—o 0055 0957  0.060 0.948  0.061 0934 0060 0.913

[0.400] 0.372] [0.309] [0.291]

IPS 0.136 0378  0.142 0.330  0.147 0331  0.146 0.310

N=9 LRe—o 0078 0997 0082 0.996  0.097 0990 0102 0.988
[0.601] [0.575] [0.548] [0.501]

CLRg—o  0.067 0997  0.064 0995  0.067 0988  0.073 0.985

[0.565] [0.518] [0.458] [0.412]

IPS 0182 0472 0179 0.429  0.184 0419 0189 0.392

& The Monte Carlo experiments are based on T' = 96 and 6,000 simulations both with or without
first order serially correlated innovations, see the text. Denomination p indicates the used lag
order in (6). The statistics LRe=¢ and CLRg=¢ are defined in (13) and (15). Size and power
calculations are based on the asymptotic 95% quantile which in case of constant terms and
N =3 (N =6) [N =9] equals 17.807 (30.211) [41.848] (see Appendix B). Values within square
brackets are the power ratios computed when the data are not cross-correlated. The results for
the univariate ADF test are based on the appropriate 5% critical value from MacKinnon (1991).
Rows with “IPS” report the results for the Im et al. (1997) panel unit root test.
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Table 3: Multi-variate unit root test results for G10 real ex-
change rates, 1973.1-1996.4*

Relative to: U.S. Germany Japan U.K.
Lag order p: 3 4 3 3
&; &; &; &;
Canada —0.037 —0.039 —0.043 —0.051
France —0.067 —0.196 —0.083 —0.056
Germany —-0.076 — —-0.094 —0.066
Italy —0.081 —0.051 —0.100 —0.093
Japan —0.063 —0.035 — —0.057
Netherlands -0.077 —0.115 —0.083 —0.062
Sweden —0.064 —0.119 —0.070 —0.046
Switzerland —0.084 —0.066 —0.127 —0.086
U.K. —0.054 —0.095 —0.089 —
U.S. — —0.046 —0.047 —0.060

Likelihood Ratio Unit Root Tests

LRo—o 48.357 58.192 56.242 47.375
(0.013) (0.001) (0.002) (0.016)

CLRo—o 45.729 54.355 53.186 44.801
(0.022) (0.003) (0.004) (0.027)

Homogeneity Tests on q;

LRuowm 4.968 20.053 18.609 5.368
[0.761] [0.010] 0.017] [0.718]

AICHoMm —66.632 —65.573 —66.556 —66.676
AICHET —66.512 —66.834 —66.585 —66.560
aHOM —0.060 — — —0.060

& ISURE estimates of «; in (23) equal &;. “LRe=o” and “CLRe—¢” are
likelihood ratio statistics for the null of N unit roots, with the cor-
responding asymptotic p-values within parentheses (see Appendix B).
Corresponding 90%, 95% and 99% quantiles are equal to 38.164, 41.848
and 49.359 respectively. “LRpom” are likelihood ratio tests for the null
a1 = -+ = ay = agoM, the square brackets contain corresponding
p-values based on the x2(8) distribution, and “AICxom” (“AICHET”)
is the AIC criterion in case of homogeneous (heterogeneous) a;’s.
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Table 4: Multi-variate unit root test results for G10 real ex-
change rates with heterogeneous lag orders, 1973.1-1996.42

Relative to: U.S. Germany Japan U.K.

&; &; &; &;
Canada —0.040 —0.047 —-0.033 —-0.043
France —0.065 —0.238 —0.066 —0.048
Germany -0.071 — —0.078 —0.069
Italy —0.076 —0.050 —0.083 —0.085
Japan —0.059 —0.046 — —0.062
Netherlands —0.072 —0.091 —0.061 —0.054
Sweden —0.057 —0.105 —0.061 —0.036
Switzerland —-0.075 —0.069 —0.106 —0.090

UK. —0.058 —0.085 —0.070 —
U.S. — —0.049 -0.037 —0.043

Likelihood Ratio Unit Root Tests
LRs—o 42.412 56.610 42.501 42.315
(0.045) (0.002) (0.044) (0.046)
CLRg—g 40.824 53.745 41.079 40.899
(0.061) (0.004) (0.058) (0.060)
Homogeneity Tests on q;

LRuom 2.852 18.090 17.298 9.021
[0.943) [0.021) [0.027) [0.341)
AIChom —65.997 —66.755 —65.774 —65.933
AlChgT —65.854 —66.778 —65.788 —65.858
QHOM —0.058 — — —0.055

& See the notes of table 3. The individual specific lag orders are identical

to the lag orders of the corresponding equations in table 2.
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