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Abstract

This paper considers testing that an economic time series follows a martingale dif-

ference process. The martingale di¤erence hypothesis has been typically tested using

information contained in the second moments of a process, that is, using test statistics

based on the sample autocovariances or in the periodograms. Tests based on these

statistics are inconsistent since they just test necessary conditions of the null hypoth-

esis. In this paper we consider tests that are consistent against all …xed alternatives

and against Pitman´s local alternatives. Since the asymptotic distributions of the

tests statistics depend on the data generating process, the tests are implemented using

a modi…cation of the wild bootstrap procedure. The paper justi…es theoretically the

proposed tests and examines their …nite sample behavior by means of Monte Carlo

experiments. In addition we include an application to exchange rate data.
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1 Introduction

In Economics it is frequently assumed that an economic time series follows a martingale

di¤erence sequence (MDS) given some information set. For instance, it is a common impli-

cation in Rational Expectations models (see, for instance, Hall (1978)). A MDS process is

de…ned as a process that has constant mean (usually zero) given some information set (that

typically includes just its past values). Testing the MDS assumption is rather challenging.

In Econometrics the common way of testing this property has been testing that the process

is uncorrelated. Hence, in the time domain the test statistics typically employed have been

based on the sample autocorrelations while in the frequency domain they have been based

on the periodograms. The test statistic most commonly employed has been the Box and

Pierce (1970) Q statistic for testing that a process is uncorrelated of a given order p (that is,

the …rst p autocorrelations are equal to zero). For the general case of testing that a process

is uncorrelated of any order, alternative statistics have been proposed by Durlauf (1991),

Anderson (1993) or Hong (1996).

Notice that all these procedures do not test that the considered process is a MDS but

that it is uncorrelated. This distinction is crucial when nonlinear dependence is present, as

it commonly happens with …nancial data. For processes with bounded second moment, a

MDS is an uncorrelated sequence, but an uncorrelated sequence is not necessarily a MDS.

An uncorrelated process cannot be forecasted using linear functions of lagged values, while

a MDS cannot be forecasted using either linear or nonlinear functions of past values. Hence,

for uncorrelated non-MDS processes the previous tests have no asymptotic power (see, for

instance, examples in Section 4). The fact that these tests are inconsistent can be under-

stood since they only employ information contained in the second moments of the process.

Contrary to these commonly employed tests, this paper provides consistent tests for the

null hypothesis that the process has zero conditional expectation given the information set

composed by the current value of some exogenous variables and some …nite numbers of lags

of both the own process and some exogenous variables.

Consistent tests for the MDS assumption can be established using recently developed sta-

tistical theory on speci…cation testing. There are basically two approaches to constructing

consistent tests. First, to employ tests based on checking an in…nite number of orthog-

onality conditions (see, for instance, Bierens (1984, 1990), Stute (1997), Andrews (1997),

Bierens and Ploberger (1997) and Koul and Stute (1999)). Second, to employ tests based on

smoothed nonparametric estimates of the conditional expectation function (see, for instance,
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Härdle and Mammen (1993), Hong and White (1995), Zheng (1996) and Li (1999)).

Test statistics based on the …rst approach do not demand the selection of user-chosen

tuning parameters. However, they have the disadvantage of (typically) having non-standard

asymptotic null distributions. This is not a serious drawback, though, since critical values

can be estimated by the bootstrap. In addition, these tests are consistent against Pitman´s

local alternatives but inconsistent against certain local alternatives to the null, see Rosenblatt

(1975) or Horowitz and Spokoiny (1999).

Tests based on the second approach have the advantages of having standard asymp-

totic null distributions and being consistent against Rosenblatt’s (1975) local alternatives,

but three inconveniences. First, they require stronger smoothness assumptions on the data

generating process (DGP). Second, they have asymptotically no power against Pitman´s

alternative hypotheses tending to the null at the parametric rate. Third, their main disad-

vantage is that they require a user-chosen smoothing parameter and, in practice, statistical

inference is quite sensitive to the selection of this number.

For these reasons, in this paper we employ a test based on the …rst approach. Since

the asymptotic distribution of the considered test statistic depends on the speci…c DGP,

standard asymptotic inference procedures are not feasible. In this paper we propose and

justify rigorously to estimate the distribution of the test statistic by using a modi…cation of

the wild bootstrap.

The organization of the paper is the following. In Section 2 we review the di¤erent

approaches to construct consistent tests, and motivate the selection of our test statistics

which are introduced in Section 3. Section 4 analyzes the bootstrap tests and in Section

5 we present a Monte Carlo study of their …nite sample performance. Section 6 reports

an empirical application to exchange rates and Section 7 concludes and establishes some

directions of further research. Proofs are in the Appendix.

2 Consistent Hypothesis Testing

Let yt be an ergodic and strictly stationary process of which a sample of n + p observa-

tions, (y¡p+1; :::; y0; y1; :::; yn); is available. Let ext = (x1;t,..., xK;t)’ be a K £ 1 ergodic

and stationary stochastic vector process of conditioning variables. We employ the super-

script to denote vectors. Notice that no assumptions are made about the moment structure

of ext and, in particular, all their moments could be unbounded. Of each variable fxi;tg,
i = 1; :::K, a sample of size n + pi is observed. Denote the whole observed sample by
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Xn = (y¡p+1; :::; y0; y1; :::; yn; x1;¡p1+1; :::; x1;n; ..., xK;¡pK+1; :::; xK;n). The null hypothesis of

interest that we consider in this paper is testing mean independence with respect to the

information set ezt; eP = fyt¡1; :::; yt¡p; x1;t; x1;t¡1; :::; x1;t¡p1 ; :::; xK;t; xK;t¡1; :::; xK;t¡pKg where
eP = (p; p1; :::; pK)0 and p; p1; :::; pK are any natural numbers. Notice that the conditioning

information set includes the past p values of the considered process and current and past

values of the other conditioning processes.

Thus, the considered null hypothesis is

H0 : E(yt=ezt; eP ) = ¹ a:s: (1)

for some unknown ¹ 2 R, and the alternative

HA : E(yt=ezt; eP ) = ¹
³
ezt; eP

´
a:s:; (2)

where ¹ (¢) is some unknown measurable function of ezt; eP from RP into R, where P = p +

K +
PK

j=1 pj, such that Pr(¹
³
ezt; eP

´
= ¹) < 1: A process that veri…es (1) is said to be

a martingale di¤erence sequence of order p with respect to its past and of orders pi with

respect to xi; for i = 1; :::;K, (more brie‡y, we say that yt is a MDS of orders eP ). In Sections

5 and 6 we consider the special case of testing that a process is just a martingale di¤erence

sequence of order p with respect to its own past. We establish the theoretical results for the

general case since economic theory establishes the orthogonality with respect to the agent

information set that typically includes a set of additional explanatory variables.

In order to obtain consistent tests of the null hypothesis (1) there are two approaches:

the use of tests based on empirical processes indexed by classes of functions and the use of

tests based on nonparametric estimates. Both approaches are nonparametric in spirit. For

simplicity, we call the integrated approach to the …rst (since the corresponding tests require

the selection of an integrating measure) and the smoothing approach to the second (since

the corresponding tests require the selection of a smoothing number). Both are based on

the following equivalence which is based on the de…nition of conditional expectation (see,

for instance, p.63 in Brockwell and Davies (1993))

H0 , E((yt ¡ ¹)W (ezt; eP )) = 0 a:s:

for any bounded measurable weighting function W (¢) with respect to ezt; eP . The tests are

based on evaluating the discrepancy of the sample analog of E((yt ¡ ¹)W (ezt; eP )) to zero.

Notice that any such test involves testing an in…nite number of orthogonality conditions.

The smoothing approach reduces the problem of testingH0 to testing a unique, appropriately
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chosen, orthogonality restriction. Namely, it employs W S(ezt; eP ) = E((yt ¡ ¹)=ezt; eP ). Hence,

this methodology is based on the following equivalence

H0 , E((yt ¡ ¹)W S(ezt; eP )) = 0:

Notice that this approach, although implicitly, involves testing an in…nite number of orthog-

onality restrictions as well, as we show now. First, express WS(ezt; eP ) as a linear combination

of a basis fwig = fwi(ezt; eP )g of the space of functions with …nite second moment

W S(ezt; eP ) =
X

i

®iwi;

where ®i = E[W S(ezt; eP )wi]: Second, apply the law of iterated expectations to obtain ®i =

E[E((yt¡¹)=ezt; eP )wi] = E[(yt¡¹)wi]. Finally, testing E((yt¡¹)W S(ezt; eP )) = 0 is equivalent

to testing E((yt ¡ ¹)
P

i ®iwi) =
P

i ®iE((yt ¡ ¹)wi) =
P

i ®
2
i = 0, that is, testing that

®i = 0 for all i:

Since the functionW S(ezt; eP ) is unknown, evaluating its sample analog will require the use

of nonparametric estimation techniques, that is, the introduction of a user-chosen smoothing

number. This approach presents three drawbacks. First, its main problem is that statistical

inference is sensitive to the selection of the smoothing parameter. There has been consider-

able research on how to select this parameter automatically from the sample for estimation

problems (see Marron (1988) for a survey). Unfortunately, there is not any completely sat-

isfactory answer yet and furthermore, most of this research has focused on estimation rather

that hypothesis testing. Second, tests based on the nonparametric approach have no power

against alternative hypotheses tending to the null hypothesis at the n¡1=2 rate. Third, this

literature needs to impose strong smoothness conditions on the function ¹
³
ezt; eP

´
, see, for

instance, Zheng (1996) or Li (1999).

The integrated approach tests H0 by selecting a family of functions W so that H0 holds

if and only if (yt ¡¹) is orthogonal to every member of W almost surely. Depending on the

choice of W the corresponding test resembles certain classical goodness of …t tests employed

in the statistical literature as we see now. There are two types of integrated tests. The …rst

type has been employed by Bierens (1984, 1990), De Jong (1996), Bierens and Ploberger

(1997) and Stinchcombe and White (1999). They proposed testing procedures based on

families of analytic functions W = fW (y;e¿ ); e¿ 2 ¨, ey 2 RPg and prove that

H0 , RW (e¿ ) = E((yt ¡ ¹)W (ezt; eP ;e¿)) = 0; for any e¿ 2 ¨,
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where, in general, the set ¨ is an in…nite dense set, for instance, any neighborhood of

0 2 RP . In particular, Bierens (1990) considers W = fexp(ie¿ 0ey); e¿ 2 ¨; ey 2 RPg: Hence,

for this choice these tests resemble goodness of …t tests based on the characteristic function.

Note that under both the null and the alternative hypotheses, RW (e¿) 2 C[¨], the space of

continuous functions on ¨: We have called [A] the closure of A and, in case the function

is not de…ned for every ea in the frontier of A, we extend the process by considering that

RW (ea) = limean!ea RW (ean) : The dependence of the nuisance parameter vector e¿ is avoided

by applying a norm of the space C[¨] onto the function RW (e¿ ) : Recall that a norm Á, that

is a positive continuous functional, veri…es that for any f 2 C[¨]; Á(f) = 0 () f = 0: A

main problem with this approach is that, the application of the norm requires the selection

of an arbitrary measure on ¨:

The second type of integrated tests has been employed by Brunk (1970), Su and Wei

(1991), An and Bing (1991), Delgado (1993), Andrews (1997), Stute (1997) and Koul and

Stute (1999). They have considered the family W1=fI(ezt; eP � e¿);e¿ 2 RPg where I (A) is

the indicator function of the event A and ea � eb denotes that each element of ea is less or

equal that the corresponding of eb for any ea;eb 2 RP : For this family, the nuisance parameters

are evaluated in the support of the conditioning vector, ezt; eP , and hence, the natural inte-

grating measure is the joint empirical distribution function of the vector ezt; eP . Therefore, the

corresponding tests resemble goodness of …t tests based on the distribution function, such

as, the Cramer-von Mises test and the Kolmogorov-Smirnov test. Hence, the advantage of

this family is that the arbitrariness involved in selecting an integrating measure disappears.

In fact, Koul and Stute (1999) have shown that this family can be used to build consistent

tests for H0 for the case p = 1 and K = 0:

Since both the smoothing approach and the …rst type of integrated tests present the

problem of arbitrarily selecting the smoothing number and the integrating measure, respec-

tively, the test procedure proposed in this paper belongs to the second type of integrated

tests.
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3 A Consistent Test for the Martingale Di¤erence Hy-

pothesis of order eP
We assume that Ey4+±t <1, for some ± > 0, and that yt given ezt; eP has a continuous bounded

density function. The proposed test is based on the following equivalence

H0 , R (e¿ ) = 0 for almost all e¿ 2 RP ;

where

R (e¿ ) = E((yt ¡ ¹)I(ezt; eP � e¿ )) =
Z
(s¡ ¹)I(et � e¿ )dF (s;et) 2 C[R]P ; (3)

where F (s;et) is the joint distribution function of the vector (yt; ezt; eP ). In order to evaluate

the distance of R (e¿) to zero, a norm has to be chosen. Denote the general norm by

T eP = Á(R (e¿)): (4)

The two norms considered in this paper are the Cramer-von Mises norm, that is,

Á2(R (e¿)) =
µZ

[R (e¿)]2 dF (1;e¿)
¶1=2

(5)

where F (1;e¿) = lims!1 F (s;e¿), and the Kolmogorov-Smirnov norm, that is,

Á1(R (e¿ )) =sup
e¿

jR (e¿)j : (6)

A general consistent test would be based on the sample analog of (4). In particular, the

tests considered in this paper are based on the empirical versions of (5) and (6). Next, we

provide explicit formulae for these two test statistics.

Denote by Fn the empirical distribution function of
³
yt; ezt; eP

´0
and by y the sample

mean y =
R
s dFn(s;et) = n¡1

Pn
t=1 yt: Notice that y = yC + op(n

¡1=2) where yC is the

usual de…nition for the sample mean that takes into account all the available observations

(yC = (n + p)¡1
Pn

t=¡p+1 yt). We estimate the function R (e¿) given in (3) by its sample

analog

Rn (e¿) =
Z
(s¡ y)I(et � e¿)dFn(s;et) =

1

n

nX

t=1

(yt ¡ y)I(ezt; eP � e¿ ): (7)

Notice that Rn (e¿ ) 2 D[R]P , where D[R]P is the natural extension of the cadlag space

D[R] considered by Koul and Stute (1999). Also, for a …xed e¿ ; under the null hypothesis,

Rn (e¿) = Op(n
¡1=2); but under the alternative

p
nRn (e¿) diverges to in…nity for some e¿
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(as we will show in Theorems 1 and 2). Hence, test procedures are based on
p
nRn (e¿ ).

The general test statistic considered is the empirical analog of (4) and we denote it by

T eP ;n = Á(
p
nRn (e¿ )). The two particular test statistics considered here are the Cramer-von

Mises test statistic

C eP ;n =

Z £p
nRn (e¿ )

¤2
dFn(1;e¿ ) = n

Z �Z
(s¡ y)I(et � e¿)dFn(s;et)

¸2
dFn(1;e¿)

where Fn(1;e¿ ) = lims!1 Fn(s;e¿); and the Kolmogorov-Smirnov statistic

K eP;n = maxi=1;:::n

¯̄
¯
p
nRn(ezi; eP )

¯̄
¯ = max

i=1;:::n

¯̄
¯̄
¯
1p
n

nX

j=1

(yj ¡ y)I(ezj; eP � ezi; eP )
¯̄
¯̄
¯ :

In order to consider the asymptotic distribution of the test statistic T eP ;n, we need …rst

to consider the asymptotic probability law of the process
p
nRn (e¿). It turns out to be

Gaussian with the asymptotic covariance matrix depending on the DGP as the following

Theorem shows.

Theorem 1. Under the null hypothesis (1)

p
nRn (e¿) ) B (e¿) ; (8)

where ) denotes weak convergence and B (e¿ ) denotes a centered continuous Gaussian pro-

cess in D[R]P with covariance given by

§(e¿ ; eÀ) = E[¾2(ezt; eP )It(e¿ ^ eÀ)]¡ F (1;e¿)E[¾2(ezt; eP )It(eÀ)] (9)

¡F (1; eÀ)E[¾2(ezt; eP )It(e¿ )] + ¾2F (1; eÀ)F (1;e¿ );

where ¾2(ezt; eP ) is the unknown variance of yt conditional on ezt; eP , which is known to be …nite,

It(e¿) = I(ezt; eP � e¿ ) and e¿ ^ eÀ denotes the vector whose i¡th component is the minimum of

the i-th components of the vectors e¿ and eÀ:
Since Rn (¡1) = Rn (1) = 0; the asymptotic distribution is a tied-down Gaussian

process. Notice, however, that the covariance structure depends on the DGP. Theorem 1 is

a natural extension of Theorem 2.2 in Koul and Stute (1999), see their Remark 2.4.

When the interest resides in testing that a process is a MDS with respect to the past p

values of the process, Theorem 1 particularizes to the following corollary.

Corollary 1. Let ­t¡1;p = fyt¡1; :::; yt¡pg and the null hypothesis of interest be

H0 : E(yt=­t¡1;p) = ¹ a:s: (10)
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for some unknown ¹ 2 R and the alternative

HA : E(yt=­t¡1;p) = ¹y (eyt¡1) a:s:; (11)

where ¹y (¢) is some unknown measurable function of eyt¡1 = (yt¡1; :::; yt¡p) from Rp into R

such that P (¹y (eyt¡1) = ¹) < 1: Let
p
nRy;n (e¿) = n¡1=2

Pn
t=1(yt ¡ y)I(eyt¡1 � e¿ ). Then,

under the null hypothesis
p
nRy;n (e¿) ) By (e¿ ) ;

where By (e¿ ) denotes a centered continuous Gaussian process in D[R]p with covariance given

by

§y(e¿ ; eÀ) = E[¾2(eyt¡1)Iyt¡1(e¿ ^ eÀ)]¡ F (1;e¿)E[¾2(eyt¡1)Iyt¡1(eÀ)]
¡F (1; eÀ)E[¾2(eyt¡1)Iyt¡1(e¿)] + ¾2F (1; eÀ)F (1;e¿ );

where ¾2(eyt¡1) is the unknown variance of yt conditional on eyt¡1 and Iyt¡1(e¿) = I(eyt¡1 � e¿ ).
Next we provide three remarks about Theorem 1.

Remark 1. Notice that under the assumption of conditional homoskedasticity, that is

¾2(ezt; eP ) = ¾2, the asymptotic covariance matrix (9) reduces to

§(e¿ ; eÀ) = ¾2[F (1;e¿ ^ eÀ)¡ F (1; eÀ)F (1;e¿ )]: (12)

If, in addition, the conditioning set ezt; eP includes only one variable (either one own lagged

value or one contemporaneous or lagged value of a conditioning variable), using the classical

quantile transformation, equation (12) simpli…es to §(¿ ; À) = ¾2[(¿ ^ À)¡ (À¿)], and so, the

process B(e¿ ) follows a standard Brownian Bridge. Hence, for this restrictive case, inference

is straightforward since the critical values are already tabulated, see Shorack and Wellner

(1986, pp. 143-147).

Remark 2. A Gaussian process similar to (8) has been previously discussed in Koul

and Stute (1999), see their equation at the end of p.211. The null hypothesis considered

by Koul and Stute (1999) is di¤erent to (1). They considered the case where ezt; eP only

includes one past value of the process (hence, no additional conditioning variables or lagged

values of the process are allowed), but allow for a general functional form for the conditional

expectation function. For the even more speci…c case of conditional homoskedasticity (in

which ¾2(eyt¡1) = ¾2), they proposed a transformation of
p
nRn (e¿) to obtain a pivotal test

statistic. However, as we have seen in the previous remark, for this special context, we do

not need to transform the statistic since we already have a pivotal distribution. Koul and
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Stute (1999) only justi…ed the transformation for this restrictive case and the extension to

the general case does not appear to be feasible.

Remark 3. The functional central limit theorem (8) can be obtained under alternative

sets of assumptions. Here we have followed Koul and Stute (1999) and assumed ergodicity

and strict stationarity with …nite fourth moment. Some of these assumptions could be

weakened at the cost of strenghtening others. For instance, the strict stationarity assumption

could have been removed at the cost of strengthening to strong mixing the condition on the

dependence of the process (see, for instance, Andrews and Pollard (1994) and references

therein). Continuity of the density of yt given ezt; eP could also be weakened by assuming

that the conditional second moment E(y2t =ezt; eP ) is a continuous function, see Koul and Stute

(1999, p.219).

Next, we provide two Theorems about the behavior of the process
p
nRn (e¿) under the

alternative hypothesis.

Theorem 2. Under the alternative hypothesis (2), there exists a T ½ RP such that

Pr
³
ezt; eP 2 T

´
> 0 and for all e¿ 2 T ; Rn (e¿) ) R (e¿) 6= 0: Hence, under the alternative

hypothesis (2),
p
nRn (e¿ ) diverges.

The next Theorem shows the behavior of the process
p
nRn (e¿) under a sequence of

alternative hypotheses tending to the null at the rate n¡1=2. Consider the following sequence

of alternative hypotheses

HA;n : E(yt=ezt; eP ) = ¹+
g(ezt; eP )p

n
a:s: (13)

for any function g(:) such that Pr(g(ezt; eP ) = constant) < 1:

Theorem 3. Under the sequence of alternative hypotheses (13)

p
nRn (e¿) ) B (e¿) +G(e¿ );

where G(e¿ ) = E(g(ezt; eP )wt(e¿)) 6= 0, where wt(e¿) = It(e¿) ¡ F (1;e¿) and §(e¿ ; eÀ) is given in

(9).

Using the previous three theorems and the Continuous Mapping Theorem the following

corollary establishes the asymptotic behavior of the general test statistic T eP ;n:

Corollary 2. Under the null hypothesis (1), T eP ;n ) Á(B (e¿)); under the alternative

hypothesis (2), T eP ;n diverges; and under the sequence of alternative hypotheses (13), T eP ;n )
Á(B (e¿ ) +G(e¿)):

Notice that the asymptotic null distribution of T eP;n is given by Á(B (e¿)) that depends

on the speci…c DGP. Hence, standard asymptotic inference procedures cannot be applied.
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4 The Bootstrap Test

Since the asymptotic distribution of
p
nRn (e¿) depends, in general, on the DGP, the one

corresponding to T eP ;n also depends on the DGP. Hence, the theory in the previous section

cannot be automatically applied for statistical inference: In this section we propose to esti-

mate this unknown distribution using a modi…cation of the wild bootstrap. Notice that our

solution is valid for the general case, that is, when additional conditioning variables or more

than one lagged value of the process are included in the conditioning set, and conditional

heteroskedasticity is present. These generalizations are important because economic theory

typically includes additional explanatory variables and conditional heteroskedasticity is a

well-known feature of …nancial data.

Next, we explain and justify theoretically the proposed bootstrap-based test procedure.

Let "t = (yt ¡ ¹) and notice that uniformly in e¿

p
nRn (e¿ ) =

1p
n

nX

t=1

"tIt(e¿)¡
1p
n

nX

s=1

1

n

nX

t=1

"tIs(e¿)

=
1p
n

nX

t=1

"t [It(e¿)¡ Fn(1;e¿ ))]

=
1p
n

nX

t=1

"t [It(e¿)¡ F (1;e¿))] + o(1) a.s.

=
1p
n

nX

t=1

"twt(e¿) + o(1) a.s.;

where in the third equality we have used a Glivenko-Cantelli type Strong Law of Large

Numbers for stationary ergodic processes. The main idea is to estimate the distribution of
p
nRn (e¿ ) by the distribution of

p
nR¤n (e¿ ) =

1p
n

nX

t=1

b"t bwt(e¿)Wt;

where b"t = (yt ¡ y); bwt(e¿) = It(e¿ )¡ Fn(1;e¿) and Wt is a sequence of independent random

variables with zero mean, unit variance and bounded support. This procedure has been

called a wild bootstrap (see Wu (1986) or Mammen (1993)).

Next, we justify the bootstrap test procedure by providing a Theorem that establishes

the consistency of the bootstrapped process
p
nR¤n (e¿). This means that asymptotically

the probability law of
p
nR¤n (e¿) given the data Xn is the null asymptotic distribution of

p
nRn (e¿ ).
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Theorem 4. Under either the null hypothesis (1) or under the alternative hypothesis

(2) or under the sequence of alternative hypotheses (13),
p
nR¤n (e¿) )¤ B (e¿ ) a:s:,

where )¤ a:s: denotes weak convergence almost surely under the bootstrap law, that is,

P (
p
nR¤n (e¿) � s j Xn) !a:s: P (

p
nRn (e¿) � s) as n ! 1:

Therefore, the asymptotic distribution of
p
nRn (e¿ ) can be estimated with that of

p
nR¤n(e¿ ).

Hence, de…ning T ¤eP;n = Á(
p
nR¤n (e¿ )); the asymptotic distribution of T eP;n can be estimated

with that of T ¤eP ;n that is given by Á(B (e¿ )) as the following corollary (that is a straightforward

application of the Continuous Mapping Theorem) shows.

Corollary 3. Under (1) or (2) or (13), T ¤eP;n )¤ Á(B (e¿)) a:s::
Corollaries 2 and 3 justify that the asymptotic critical values of T eP ;n can be estimated

with those of T ¤eP ;n: In practice, the critical values of T ¤eP;n are approximated by simulations.

Hence, the proposed general bootstrap test consists in the following steps:

a) Calculate the test statistic T eP;n:

b) Generate fWtg a sequence of n bounded independent random variables with zero

mean and unit variance. This sequence is serially independent and is also independent of

the original sample Xn:
c) Compute

p
nR¤n (e¿) = 1p

n

Pn
t=1b"t bwt(e¿)Wt: Then compute T ¤eP;n = Á(

p
nR¤n (e¿)).

d) Repeat steps b) and c) B times where in step b) each sequence fWtg is independent

of each other. This produces a set of B independent (conditionally in the sample) values of

T ¤eP ;n that share the asymptotic distribution of T eP;n.

e) Let T ¤eP [®] be the ®¡quantile of the empirical distribution of the B values of T ¤eP;n. The

proposed test rejects the null hypothesis if T eP ;n > T
¤
eP [®]:

Corollaries 2 and 3 establish that under the null hypothesis (1) T eP ;n and T ¤eP ;n share the

same asymptotic distribution for almost all samples. Hence, the rejection probability (RP) of

the bootstrap test converges to ® (the theoretical level). Besides, since under the alternative

hypothesis (2) T eP;n diverges while T ¤eP ;n remains bounded, the RP under (2) converges to 1.

Formally,

P (T eP ;n > T
¤
eP [®]) !

8
>><
>>:

® under (1);

1 under (2);

C under (13)

where ® < C < 1. Hence, the proposed bootstrap test has an ® asymptotic level, it is

consistent and it is able to detect alternatives tending to the null al the n¡1=2 rate.
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5 Finite Sample Performance

In this section we examine the …nite sample performance of the Cramer-von Mises and the

Kolmogorov-Smirnov test (for simplicity, Cp and Kp, respectively) for the case in which no

other explanatory variables are considered. Hence, the considered null hypothesis is (10) and

the alternative is (11). We employ two Data Generating Processes under the null hypothesis

and several uncorrelated and correlated processes under the alternative.

The two MDS uncorrelated processes are a sequence of independent and identically

distributed (i.i.d.) N(0,1) variates and a GARCH(1,1) process, that is, yt = ³t¾t where

¾2t = w + ®y2t¡1 + ¯¾
2
t¡1, and {³t} is a sequence of i.i.d. N(0, 1) random variables. We

have chosen three speci…cations. We employ w = 0:001 and the following combinations

for (®; ¯) : (0:01; 0:97); (0:09; 0:89); and (0:09; 0:90). These cases were employed in Lobato,

Nankervis and Savin (1999) to compare the …nite sample properties of the Box-Pierce Q

statistic and Q¤, a modi…ed Q statistic. Notice that the second and third GARCH models

have unbounded eight and sixth moment, respectively.

The non-MDS processes are a nonlinear moving average (NLMA) process, a chaotic

process and a bilinear process. The NLMA process is given by yt = ³ t¡1³ t¡2(³t¡2 + ³t + 1)

where {³t} is as above. The chaotic process is given by yt = 4zt¡1(1¡zt¡1) with z0 distributed

as a uniform in [0,1]. The bilinear process is given by yt = ³t + b1³t¡1yt¡1 + b2³t¡1yt¡2

where {³t} is as above. Two combinations for (b1; b2) were chosen, (b1; b2) = (0:15; 0:05)

and (0:25; 0:15). Notice that usual test procedures for uncorrelatedness, such as Box and

Pierce’s Q, or Q¤ or the statistics proposed by Robinson (1991), Durlauf (1991), Anderson

(1993) or Hong (1996) have asymptotic no power against the NLMA model or the chaotic

process.

We consider three values for p = 1; 2 and 3; one sample size n = 100 for the exper-

iments under the null hypothesis and three sample sizes n = 100; 500 and 1000 for the

experiments under the alternative. Notice that di¤erent values for p correspond to di¤er-

ent null hypotheses, and hence, the number p cannot be seen as a smoothing number. In

all replications 200 pre-sample data values were generated and discarded. The number of

Monte Carlo experiments is 3000 and the number of bootstrap replications is B = 500.

Random numbers were generated using the IMSL ggnml subroutine. Computations have

been carried out in Fortran 90. The code is available from the authors. In these …nite

sample exercises, as well as in the empirical application in the next section, we follow Mam-

men (1993) and Stute, Manteiga and Presedo (1998) and the employed sequence fWtg is

13



an i.i.d sequence of Bernoulli variates W where P (W = 0:5(1¡
p
5)) = (1 +

p
5)=2

p
5 and

P (W = 0:5(1+
p
5)) = 1¡ (1+

p
5)=2

p
5. Notice that the third moment of W is equal to 1,

and hence, this selection of fWtg guarantees that the …rst three moments of the bootstrap

series coincide with the …rst three moments of the original series. In the previous references

it was shown that this particular choice of W leads to very accurate …nite sample behavior.

In Tables 1 and 2 we report the empirical rejection probabilities (RP’s) associated with

three nominal levels 10%, 5% and 1%, for experiments under the null and the alternative,

respectively. Table 1 shows that for a sample size as small as 100 the empirical RP’s under

the null are very close to the nominal levels for all DGP’s considered. Notice that the

…nite sample behavior is very similar in all GARCH cases suggesting that the proposed test

procedures are quite insensitive to thick tails. Notice also that, in most of the cases (28 out

of 36), the Kp test rejects more often than the Cp test.

Table 2 shows that typically we need at least sample sizes of about 500 in order to have

reasonable power against a wide range of alternatives. Notice, however, than in some cases,

such as the …rst bilinear process for the p = 3 case, n=500 is not big enough. Also note

that the empirical power always increases with n but decreases with p: In general, it can be

expected that no test will dominate others in the sense of having more empirical power for

all cases. In our experiments the Kp test has typically more empirical power than the Cp

test for the NLMA and the bilinear cases, while the Cp test has more empirical power than

the Kp test for the chaotic process. Notice also that in the bilinear examples both tests are

comparable for the p = 1 case, but as p increases the Kp test has more empirical power than

the Cp test.

6 Empirical Application

In this Section we examine whether the daily log price changes of the British pound in terms

of the U.S. dollar (BP/USD) follows a martingale di¤erence sequence up to order p with

respect to its own past. We consider three values for p = 1; 2; and 3: This series has been

studied before in Hsieh (1989), Gallant, Hsieh and Tauchen (1991) and Bera and Higgins

(1997) among others. For the sample period 1974-1983, Hsieh (1989) and Gallant, Hsieh and

Tauchen (1991) found that GARCH models were not satisfactory. On the contrary, Bera

and Higgins preferred a GARCH model rather than a bilinear model for the period 1985-

1991. Recently, Brooks and Hinich (1999) have reported evidence (based on bicorrelations)

against the MDS property of exchange rate returns.
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Results for the Cramer-von Mises and the Kolmogorov-Smirnov tests are reported in

Table 3 for both periods. Notice that, in order to facilitate interpretation, p-values are

reported. The number of bootstrap replications, B, is 500.

In the …rst column of Table 3 we report the results for the period January 2nd, 1974 to

December 31st, 1993. For p = 1; there is strong evidence against the MDS hypothesis what

agrees with the results found by Hsieh (1989) and Gallant, Hsieh and Tauchen (1991). No-

tice, however, that for p = 2 the Cramer-von Mises test does not reject the MDS hypothesis

(although the Kolmogorov-Smirnov rejects), while both test do not reject for p = 3, indi-

cating that a sensible model for this data should be a MDS process of order 3 with respect

to its past and not necessarily a MDS process of order 1 with respect to its past.

In the second column of Table 3 we consider the data from December 12th, 1985 to

February 28th, 1991. For this sample, Bera and Higgins considered two alternative models:

a GARCH(1,1) model (an example of a MDS) and a bilinear model (an example of a non-

MDS). Bera and Higgins computed formal tests to discriminate between both models such as

Cox (1961) and Vuong (1989) tests and also compared the two models using some measures of

out-of-sample predictive ability. They found that the general evidence favored the GARCH

(1,1) model in detriment of the bilinear model. The results in the second column of Table 3

agree with this result: for the sample period 1985-1991, the null hypotheses that the process

is a MDS of order p cannot be rejected for any of the considered values of p.

7 Conclusions and Further Research

In this paper we have analyzed consistent tests for the MDS assumption. Contrary to

the commonly employed tests, the proposed tests are able to detect failures of the MDS

assumption for uncorrelated processes. In fact, the proposed tests are consistent, that is,

whenever a process does not follow a martingale di¤erence of orders eP , the tests will have

asymptotic unit power. Since the asymptotic distribution of the test statistics are not

standard and, in fact, they depend on the speci…c data generating process, we could either

transform the test statistics to …nd ones whose asymptotic distributions were pivotal or

use the bootstrap to estimate the asymptotic distributions. The transformation proposed

by Koul and Stute (1999) is not valid for our case; alternative transformations, such as

the one proposed by Ming (1999) present several problems such as requiring conditional

homoskedasticity or demanding the selection of a user-chosen smoothing number. Hence,

we have proposed (and justi…ed theoretically) to implement the test using a modi…cation
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of the wild bootstrap procedure. We have also shown that the proposed test is very simple

to use in practice and performs remarkably well in …nite samples. Finally, we have applied

the proposed tests to the British pound vs. the U.S. dollar exchange rate for two di¤erent

periods and found, in general, evidence in favor of the MDS hypotheses. Of course, more

exhaustive studies for this and for other currencies are needed.

We …nish this section with some suggestions on further research. First, in this paper

we have considered the case of testing that a process is a martingale di¤erence sequence

of orders eP: However, the martingale hypothesis is typically stated involving an in…nite

number of lags. Analyzing this case is a challenging problem. De Jong (1996) presents a

consistent test (that belongs to the …rst type of integrated tests described in Section 2) for

this hypothesis. His Monte Carlo results indicate that his test has very low power except

for extreme cases. In fact, we have applied his test to the examples in Section 5 and we

have found that his test has no power for the considered cases. Our tests could be extended

to cover the p = 1 case but evidence in Table 2 suggests that the test may also present a

…nite sample power problem.

Second, in this paper we have employed the wild bootstrap, but alternative bootstrap

procedures, such as the naive bootstrap or some blocking bootstrap, could have been em-

ployed. For instance, in the simplest case where the information set only contains lagged

values of the relevant process, the naive bootstrap is based on resampling with replace-

ment from frtg = f(yt; yt¡1;:::; yt¡1;p)0g for t = 1; :::; n, to obtain fr¤t = (r¤t;1; ::::; r
¤
t;p+1)

0;

t = 1; :::; ng, so that the test statistics are based on

p
nR¤n (e¿) =

1p
n

nX

t=1

»¤t (e¿ )¡
p
nRn (e¿)

where »¤t (e¿) = (r¤t;1 ¡ r¤)I(r¤t;2 � ¿1; :::; r
¤
t;p+1 � ¿ p) and r¤ = n¡1

Pn
t=1 r

¤
t;1: Another alterna-

tive bootstrap procedure is to generate the bootstrap series using some blocking bootstrap

scheme, such as moving blocks bootstrap.

Third, in this paper we have considered testing that the conditional mean is constant,

but the more general null hypothesis

E[Ã(yt; ezt; eP=ezt; eP )] = 0

where Ã is a given function, could be tested using similar procedures to the ones considered

here (for instance, testing for conditional homoskedasticity).
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Tables
Table 1

Percentage of rejections at nominal 10%, 5% and 1% levels. The …rst DGP is an i.i.d

N(0,1) sequence. The others are GARCH(1,1) processes. The sample size is 100. The

number of replications is 3000. The number of bootstrap replications is 500:

IID GARCH1 GARCH2 GARCH3

p Cp Kp Cp Kp Cp Kp Cp Kp

10% 9.58 9.98 10.4 10.2 10.4 10.4 10.6 10.4

1 5% 4.74 5.08 4.80 5.70 5.17 5.83 5.08 5.50

1% 1.00 1.26 1.13 1.03 1.23 1.27 1.22 1.36

10% 10.1 10.3 11.2 12.0 11.2 11.3 11.1 11.4

2 5% 4.68 5.18 6.17 5.93 5.97 5.90 5.76 6.16

1% 1.34 1.12 1.37 1.33 1.37 1.60 1.20 1.32

10% 9.30 10.3 11.2 11.3 10.7 10.9 10.4 10.6

3 5% 4.62 5.22 5.60 6.10 5.33 5.83 5.04 5.26

1% 0.88 1.02 1.00 1.27 0.90 1.27 0.76 1.02
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Table 2

Percentage of rejections at nominal 10%, 5% and 1% levels. The …rst DGP is a non-linear

moving average model, yt = ³t¡1³ t¡2(³t¡2 + ³t + 1) where {³t} is an i.i.d N(0,1) sequence.

The second DGP is a chaotic process given by yt = 4zt¡1(1 ¡ zt¡1) with z0 distributed as

a uniform in [0,1]. The sample sizes are 100, 500 and 1000. The number of replications is

3000. The number of bootstrap replications is 500:

NLMA Chaotic

p/n 100 500 1000 100 500 1000

Cp Kp Cp Kp Cp Kp Cp Kp Cp Kp Cp Kp

10% 27.8 27.9 68.3 73.5 91.5 93.1 100 100 100 100 100 100

1 5% 16.8 16.7 53.5 60.0 83.9 86.7 100 100 100 100 100 100

1% 4.60 4.50 28.8 35.9 53.1 64.7 100 100 100 100 100 100

10% 20.0 19.7 53.0 61.9 76.1 87.3 96.5 90.2 100 100 100 100

2 5% 10.6 10.6 36.5 48.0 62.8 77.9 84.6 75.3 100 100 100 100

1% 2.70 2.90 15.7 25.1 30.0 52.5 46.2 42.2 100 100 100 100

10% 13.9 17.8 39.6 55.1 64.6 83.9 54.3 40.0 100 100 100 100

3 5% 6.30 9.67 24.4 40.7 46.1 74.3 35.8 24.8 100 99.9 100 100

1% 1.23 2.10 7.43 19.6 15.5 46.8 13.1 8.67 96.1 89.4 100 100

18



Table 2 (continued)

Percentage of rejections at nominal 10%, 5% and 1% levels. The …rst DGP is a bilinear

model, yt = ³t + 0:15³t¡1yt¡1 + 0:05³ t¡1yt¡2, where {³t} is as above. The second DGP is a

bilinear model, yt = ³ t + 0:25³t¡1yt¡1 + 0:15³ t¡1yt¡2, where {³t} is as above. The sample

sizes are 100, 500 and 1000. The number of replications is 3000. The number of bootstrap

replications is 500:

Bilinear 1 Bilinear 2

p/n 100 500 1000 100 500 1000

Cp Kp Cp Kp Cp Kp Cp Kp Cp Kp Cp Kp

10% 18.0 18.7 72.2 66.2 97.4 94.7 40.9 42.4 99.5 99.1 100 100

1 5% 8.73 10.8 50.6 47.8 92.9 86.3 23.8 27.7 98.1 96.4 100 100

1% 1.97 2.62 18.0 20.8 56.0 52.9 7.11 10.5 82.4 82.0 99.5 99.6

10% 13.2 13.3 38.9 41.5 76.0 77.1 20.6 25.3 88.6 90.8 100 100

2 5% 6.93 6.87 20.8 26.4 57.3 62.5 10.7 15.3 70.7 81.9 99.3 99.9

1% 1.60 1.80 4.63 9.97 14.9 29.2 2.77 4.92 26.5 56.9 78.1 95.5

10% 11.0 13.0 26.9 32.1 55.6 65.1 17.3 21.1 73.0 82.1 98.7 99.3

3 5% 5.23 7.00 13.8 21.1 35.0 50.1 8.72 12.5 50.2 70.8 93.5 98.5

1% 1.23 1.83 3.33 8.20 7.27 21.0 2.03 3.76 16.0 47.6 54.5 90.2
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Table 3

p-values for the Cramer-von Mises (Cp) and the Kolmogorov-Smirnov (Kp) tests for daily

returns of the exchange rate of the British pound vs. the U.S. dollar. The …rst sample period

is from January 2nd, 1974 to December 31st, 1983. The second sample period covers from

December 12th, 1985 to February 28th, 1991. The number of bootstrap replications is 500:

74-83 85-91

n 2557 1311

C1 0.014 0.322

K1 0.006 0.202

C2 0.218 0.788

K2 0.024 0.508

C3 0.594 0.842

K3 0.282 0.436
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Appendix

Proof of Theorem 1

We need to show that the …nite dimensional distributions of the process
p
nRn (e¿ )

are asymptotically normal with the appropriate covariance matrix and that the process
p
nRn (e¿ ) is tight. Both conditions hold in this multidimensional context using procedures

similar to those in Koul and Stute (1999). In this appendix K denotes some generic positive

…nite constant.

Convergence of …nite-dimensional distributions refers to the weak convergence of vectors

of the form (
p
nRn (e¿1) ;

p
nRn (e¿2),...,

p
nRn (e¿ k)); for arbitrary k 2 N and ~¿ i 2 RP ; i =

1; 2; : : : ; k: This result can be obtained using the Corollary 3.1 in Hall and Heyde (1980).

In order to prove tightness, some de…nitions are required. Let
©
Wn

¡et
¢
: et 2 RP ; n = 1; 2; ::

ª

be a sequence of stochastic processes on some set D. Then,
©
Wn

¡et
¢ª

is tight if and only if

for any ± > 0 there exists a compact set K ½ D such that

sup
n
Pr

¡
Wn

¡et
¢

2 K
¢
> 1¡ ±: (14)

Let D1 = (es1;et1] = £P
k=1(s

1
k; t

1
k]; and D2 = (es2;et2] = £P

k=1(s
2
k; t

2
k] be two intervals of RP :

Then, D1 and D2 are neighbor intervals if and only if for some j 2 f1; 2; :::; Pg, (s1j ; t
1
j ] 6=

(s2j ; t
2
j ] and £k 6=j(s1k; t

1
k] = £k 6=j(s2k; t

2
k]; that is, if and only if they are next to each other and

share the j-th face. The stochastic process indexed by the intervals is de…ned as

Wn(Dj) =
1X

e1=0

¢ ¢ ¢
1X

eP=0

(¡1)P¡
P
j ej Wn

¡
sj1 + e1(t

j
1 ¡ sj1); ¢ ¢ ¢; sjP + eP (tjP ¡ sjP )

¢
:

In this proof we verify Chentsov´s criterion that is a su¢cient condition for (14), see Billings-

ley (1968) and Koul and Stute (1999).

In our case,

p
nRn (e¿ ) =

1p
n

nX

t=1

"tI(ezt; eP � e¿ )¡ F (1;e¿ ) 1p
n

nX

t=1

"t + o(1); a:s:.

The second term is tight since F (1;e¿ ) is continuous. The …rst term can be written as the

following process indexed by the intervals

p
nRn (Dj) =

1p
n

nX

t=1

["t It (Dj)] ;
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where It (Dj) = I
³
ezt; eP 2 Dj

´
: For instance, in the p = 2 case, It (Dj)= It(t

j
1; t

j
2)¡It(sj1; tj2)¡

It(t
j
1; s

j
2) + It(s

j
1; s

j
2). Then

E
³¡p

nRn (D1)
¢2 ¡p

nRn (D2)
¢2´

=
1

n2
E

(
nX

t=1

nX

s=1

nX

u=1

nX

v=1

["tIt (D1)] ["sIs (D1)] ["uIu (D2)] ["vIv (D2)]

)
:

Using that "t is a centered MDS, the non-zero terms are those such that the greater subindex

appears at least twice. Moreover, notice that when a subindex appears three times, the

corresponding term is zero using that D1 and D2 are disjoint sets. Therefore,

E
³¡p

nRn (D1)
¢2 ¡p

nRn (D2)
¢2´

=
1

n2
E

8
<
:

nX

t=1

£
"2t It (D1)

¤
Ã
t¡1X

s=1

["sIs (D2)]

!2
9
=
;

+
1

n2
E

8
<
:

nX

t=1

£
"2t It (D2)

¤
Ã
t¡1X

s=1

["sIs (D1)]

!2
9
=
; :

Under the assumptions of the Theorem, these expectations exist. Note that both terms are

analyzed similarly since the only di¤erence is the index set Dj. Using that
³Pl

i=1 ai

´2
�

2l
Pl

i=1 a
2
i ; the …rst term is bounded by

4P

n2

PX

s=1

E

(
nX

t=1

£
"2t It (D1)

¤ £
"2t¡sIt¡s (D2)

¤
)

(15)

+
2

n2
E

8
<
:

nX

t=1

£
"2t It (D1)

¤
Ã
t¡P¡1X

s=1

["sIs (D2)]

!2
9
=
; : (16)

First, consider any term in (15). For any s = 1; :::; P , using the law of iterated expectations,

and de…ning ­t¡1 = limeP!1ezt¡1; eP

E
©£
"2t It (D1)

¤ £
"2t¡sIt¡s (D2)

¤ª
= E

©£
¾2 (­t¡1) It (D1)

¤ £
"2t¡sIt¡s (D2)

¤ª

= E
©
E

£
¾2 (­t¡1) It (D1) "

2
t¡sIt¡s (D2) j ­t¡s

¤ª
: (17)

Note that It (D1) depends on two types of variables, namely ez(1)
t; eP = fyt¡1; :::; yt¡s; x1;t;

x1;t¡1; :::; x1;t¡s+1; :::; xK;t; xK;t¡1; :::; xK;t¡s+1g and ez(2)
t; eP = fyt¡s¡1; :::; yt¡p; x1;t¡s; :::; x1;t¡p1 ; :::;

xK;t¡s; :::; xK;t¡pKg: Notice that ez(2)
t; eP is ­t¡s measurable while ez(1)

t; eP is a¤ected by the integra-

tion of the inside conditional expectation. Let fs (ee j ­t¡s) be the density of ez(1)
t; eP conditional

on ­t¡s: Now, arrange the interval D1 in some way according with the decomposition of
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ezt; eP into ez(1)
t; eP and ez(2)

t; eP , and call D(1)
1 and D(2)

1 to those subsets. Then, equation (17) can be

rewritten as

= E

½Z
¾2 (ee;­t¡s) I(ee 2 D(1)

1 ; ez(2)
t; eP 2 D(2)

1 )(es ¡ ¹)2f (ee j ­t¡s) It¡s (D2) dee
¾

where es (=yt¡s) is the s-th coordinate of ee. Using Fubini´s theorem and Hölder´s inequality,

the last expression is bounded by
Z

D
(1)
1

E
³
¾2 (ee;­t¡s) I(ez(2)t; eP 2 D(2)

1 )(es ¡ ¹)2f (ee j ­t¡s) It¡s (D2)
´
dee

�
Z

D
(1)
1

µ
E

h
¾2 (ee;­t¡s) I(ez(2)t; eP 2 D(2)

1 )(es ¡ ¹)2f (ee j ­t¡s)
i1+±¶1=(1+±)

dee ¢ (EIt¡s (D2))±=(1+±)

� ¹1;s (D1 [D2) [¹2 (D1 [D2)]±=(1+±)

with 0 < ± < 1,

¹1;s (D1 [D2) =
Z

D
(1)
1 [D(1)

2

µ
E

h
¾2 (ee;­t¡s) I(ez(2)t; eP 2 D(2)

1 )(es ¡ ¹)2f (ee j ­t¡s)
i1+±¶1=(1+±)

dee

and

¹2 (D1 [D2) =EIt¡s (D1 [D2) :

Second, consider (16). Applying the Law of Iterated expectation, for any t;

E

8
<
:

£
"2t It (D1)

¤
Ã
t¡P¡1X

s=1

["sIs (D2)]

!2
9
=
; = E

8
<
:¾

2 (­t¡1) It (D1)

Ã
t¡P¡1X

s=1

["sIs (D2)]

!2
9
=
;

= E

8
<
:

Z

D1

¾2 (ee;­t¡P¡1) f (ee j ­t¡P¡1) dee
Ã
t¡P¡1X

s=1

["sIs (D2)]

!2
9
=
; :

Using Fubini’s theorem and Hölder’s inequality, the last expression is bounded by

Z

D1

½
E

n£
¾2 (­t¡1)

¤2
f2

³
ee j ­t¡P¡1; eP

´o¾1=2

dee

2
4E

Ã
t¡P¡1X

s=1

["sIs (D2)]

!4
3
5
1=2

: (18)

Now, notice that the integral is bounded by ¹3 (D1 [D2) ; where

¹3 (D1 [D2) =
Z

D1[D2

½
E

n£
¾2 (ee;­t¡P¡1)

¤2
f 2

³
ee j ­t¡P¡1; eP

´o¾1=2

dee:

In addition, using that "sIs (D2) is a MDS, and applying Burkholder’s inequality, the ex-

pression in brackets in (18) is bounded by

KE

Ã
t¡P¡1X

s=1

£
"2sIs (D2)

¤
!2

� K (t¡ P ¡ 1)2E
¡£
"42I1 (D2)

¤¢
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� K (t¡ P ¡ 1)2 ¹4 (D1 [D2) ;

where ¹4 (D1 [D2) = E ["42I1 (D1 [D2)] : Hence,

E
³¡p

nRn (D1)
¢2 ¡p

nRn (D2)
¢2´

� 2

n2
(n

PX

s=1

¹1;s (D1 [D2) [¹2 (D1 [D2)]±=1+± +
nX

t=1

(t¡ P ¡ 1) [¹3 (D1 [D2)] (¹4 (D1 [D2))1=2)

� 2nP

n2
¹1 (D1 [D2) [¹2 (D1 [D2)]±=1+± +

2

n2

nX

t=1

n [¹3 (D1 [D2)] (¹4 (D1 [D2))1=2

� K
h
¹1 (D1 [D2) [¹2 (D1 [D2)]±=1+± + [¹3 (D1 [D2)] (¹4 (D1 [D2))1=2

i
; (19)

where ¹1 (D1 [D2) =
PP

s=1 ¹1;s (D1 [D2) : Equation (19) is a Chentsov´s inequality in the

multidimensional case (see Gaenssler and Stute, 1979, p 215) and the proof of tightness is

…nished.

Proof of Theorem 2

Using a Uniform Strong Law of Large numbers for stationary ergodic sequences as in

Koul and Stute (1999)

Rn (e¿) = E ("t [It(e¿)]) +O
¡
n¡1=2

¢
; a:s::

Under H1; there exists a T ½ RP such that E ("t [It(e¿)]) 6= 0 for e¿ 2 T with Pr
³
ezt; eP 2 T

´
>

0: Therefore, for e¿ 2 T ; Rn (e¿) ) R (e¿ ), and, hence,
p
nRn (e¿) diverges to in…nity almost

surely.

Proof of Theorem 3

p
nRn (e¿ ) =

1p
n

nX

t=1

(yt ¡ ¹¡
g

³
ezt; eP

´

p
n

)It(e¿ )¡
1p
n

nX

t=1

(y ¡ ¹¡
g
³
ezt; eP

´

p
n

)It(e¿)

and de…ning Àt = yt ¡ ¹¡ n¡1=2g
³
ezt; eP

´
;

p
nRn (e¿) =

1p
n

nX

t=1

ÀtIt(e¿)¡
1p
n

nX

t=1

((
1

n

nX

s=1

ys)¡ ¹¡
g

³
ezt; eP

´

p
n

)It(e¿)

=
1p
n

nX

t=1

ÀtIt(e¿) +
Ã
1

n

nX

t=1

g
³
ezt; eP

´
It(e¿)

!

¡1
n

nX

t=1

It(e¿ )
1p
n

nX

s=1

Às ¡ 1

n

nX

t=1

It(e¿)
1

n

nX

s=1

g
³
ezs; eP

´

=
1p
n

nX

t=1

Àt bwt(e¿ ) +
1

n

nX

t=1

g
³
ezt; eP

´
bwt (e¿)
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=
1p
n

nX

t=1

Àtwt(e¿ ) +
1

n

nX

t=1

g
³
ezt; eP

´
wt (e¿) + o(1) a.s..

Apply the functional Central Limit Theorem and the Strong Law of Large Numbers for

ergodic and stationary processes as in Koul and Stute (1999) to the …rst and second term

of the last expression respectively and the result follows.

Proof of Theorem 4

We need to show that the …nite dimensional distributions of the process
p
nR¤n (e¿ ) are

asymptotically normal and that the process
p
nR¤n (e¿ ) is tight, conditionally on the sample.

First, de…ne for any k 2 N and any ¸j 2 Rk such that k¸k = 1, L¤n =
Pk

j=1 ¸j
p
nR¤n ( e¿ j) =

n¡1=2
Pn

t=1Wtb"t bwt where bwt = bwt(e¿ 1; :::;e¿k; ȩ)=
Pk

j=1 ¸j bwt ( e¿ j). Also call b¾2 = n¡1Pn
t=1b"2t bw2t

and ¾2 = E(b¾2): Then rewrite L¤n as L¤n =
Pn

t=1Wt (
p
nb¾)¡1b"t bwtb¾ = I¤b¾ where I¤ =

Pn
t=1 ³

¤
nt with ³¤nt = Wt (

p
nb¾)¡1b"t bwt. Now, using standard bootstrap notation, call E¤

and V ¤ to the expectation and the variance taken given the sample. Then, E¤(I¤) =
Pn

t=1 (
p
nb¾)¡1b"t bwtE(Wt) = 0, while V ¤(I¤) =

Pn
t=1 (

p
nb¾)¡2 (b"t bwt)2 V (Wt) = 1: In addi-

tion, ³¤nt and ³¤ns are independent conditionally on the sample Xn, since Wt is independent

of Ws for t 6= s: Finally, using that Wt; bwt and b¾ are bounded and b¾ is bounded away from

zero almost surely,
nX

t=1

E¤(³¤
2

ntI(j³¤ntj > ±) � K

n

nX

t=1

b"2t I(jb"tj > ±0
p
n) a:s:

for some positive constants ± and ±0. This last expression converges almost surely to zero as

in Stute, Manteiga and Presedo (1998). Hence, the triangular array f³¤ntg satis…es the con-

ditions of the central limit theorem of Lindeberg-Feller, conditionally on almost all samples,

so that I¤ )¤ N(0; 1) a:s:, and consequently, using a Strong Law of Large numbers for b¾2,
L¤n )¤ N(0; ¾2) a:s:.

Second, we prove that under either the null hypothesis (1) or under the alternative

hypothesis (2) or under the sequence of alternative hypotheses (13);
p
nR¤n (e¿) is tight in

D[R]P : In this case, we can express the process indexed by the intervals as

p
nR¤n (Dj) =

1p
n

nX

t=1

[b"t wt (Dj)]Wt

where, for t = 1; :::; n; and for j = 1; 2; we de…ne wt (Dj) = I
³
ezt; eP 2 Dj

´
¡Prn

³
ezt; eP 2 Dj

´
,

and Prn
³
ezt; eP 2 Dj

´
= n¡1#fezt; eP 2 Djg: For instance, for the p = 2 case, wt (Dj)=¡

bwt(tj1; tj2)¡ bwt(sj1; tj2)¡ bwt(tj1; sj2) + bwt(sj1; sj2)
¢
. Then

E¤
³¡p

nR¤n (D1)
¢2 ¡p

nR¤n (D2)
¢2´

(20)
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=
1

n2

nX

t=1

nX

s=1

nX

u=1

nX

v=1

[b"twt (D1)] [b"sws (D1)] [b"uwu (D2)] [b"vwv (D2)]E¤ (WtWsWuWv)

=
1

n2

nX

t=1

nX

s=1

b"2tb"2sE¤
¡
W 2
tW

2
s

¢ ¡
w2t (D1)w

2
s(D2) + 2wt(D1)wt(D2)ws(D1)ws(D2)

¢

since the expected value of the rest of the terms is zero (notice that E¤ fWtWsWuWvg = 0 for

all values of t; s; u; v except when two pairs with the same subindex appear). Furthermore,

since 0 � w2t (Dj) � jwt(Dj)j, for j = 1; 2, expression (20) is bounded above by
Ã
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n

nX
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b"2t jwt(D1)j
! Ã
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n
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h
E
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¢
+ Pr

³
ez1; eP 2 D1 [D2

´i2
:

This is a Chenstov´s inequality in the multidimensional case and the proof of tightness

is …nished.

26



REFERENCES
AN, H.-Z. and BING, C. (1991), ”A Kolmogorov-Smirnov type statistic with application

to test for nonlinearity in time series”, International Statistical Review, 59, 287-307.

ANDERSON, T.W. (1993), ”Goodness of …t tests for spectral distributions”, Annals of

Statistics, 21, 830-847.

ANDREWS, D.W.K.(1997), ”A conditional Kolmogorov test”, Econometrica, 65, 1097-

1128.

ANDREWS, D.W.K. and POLLARD, D. (1994), ”An introduction to functional central

limit theorems for dependent stochastic processes”, International Statistical Review, 62,

119-132.

BIERENS, H. (1984), ”Model speci…cation testing of time series regressions”, Journal of

Econometrics, 26, 323-353.

BIERENS, H. (1990), ”A consistent conditional moment test of functional form”, Econo-

metrica, 58, 1443-1458.

BIERENS, H. and PLOBERGER, W. (1997), ”Asymptotic theory of integrated condi-

tional moment test”, Econometrica, 65, 1129-1151.

BILLINGSLEY, P. (1968), Convergence of Probability Measures, Wiley, New York.

BOX, G.E.P. and PIERCE, D. A (1970), ”Distribution of Residual Autocorrelations in

Autoregressive Integrated Moving Average Time Series Models”, Journal of the American

Statistical Association, 65, 1509-1526.

BROCKWELL, P. and DAVIES, R.A. (1992), Time series: theory and practice, Springer

Verlag, New York.

BROOKS, C. and HINICH, M.J. (1999), ”Cross-correlations and cross-bicorrelations in

Sterling exchange rates”, Journal of Empirical Finance, 6, 385-404.

BRUNK, H. D. (1970), ”Estimation for isotonic regression,” in Nonparametric Techniques

in Statistical Inference, Ed. M.L. Puri, pp. 177-197, Cambridge: Cambridge University

Press.

COX, D.R. (1961), ”Tests of separate families of hypotheses”, in Proceedings of the 4th

Berkeley Symposium, Berkeley: University of California Press, 105-123.

DE JONG, R. M. (1996), ”The Bierens test under data dependence”, Journal of Econo-

metrics, 72, 1-32.

DE JONG, R. M. and BIERENS, H.J. (1994), ”On limit behavior of a Chi-Square type

test if the number of conditional moments tested approaches in…nity”, Econometric Theory,

9, 70-90.

27



DELGADO, M. (1993), ”Testing the equality of nonparametric regression curves”, Statis-

tics & Probability Letters, 17, 199-204.

DURLAUF, S. N. (1991), ”Spectral based testing of the martingale hypothesis”, Journal

of Econometrics, 50, 355-376.

GALLANT, A.R., HSIEH, D.A., and TAUCHEN, G. (1991), ”On …tting a recalcitrant

series: the pound/dollar exchange rate, 1974-1983”, in Nonparametric and semiparametric

methods in econometrics and statistics, eds W.A. Barnett, J. Powell, and G. Tauchen, U.K:

Cambridge University Press, 199-240.

HALL, P. and HEYDE, C.C. (1980), Martingale Limit Theory and its Application, Aca-

demic Press, New York.

HALL, R.E. (1978), ”Stochastic umplications of the life cycle - permanent income hy-

pothesis: theory and evidence”, Journal of Political Economy, 86, 971-987.

HÄRDLE, W. and MAMMEN, E. (1993), ”Comparing nonparametric versus parametric

regression …ts”, Annals of Statistics, 21, 1926-1947.

HONG, Y. and WHITE, H. (1995), ”Consistent speci…cation testing via nonparametric

series regressions”, Econometrica, 63, 1133-1160.

HONG, Y.(1996), ”Consistent testing for serial correlation of unknown form”, Econo-

metrica, 64, 837-864.

HOROWITZ, J. and SPOKOINY, V. G.(1999), ”An adaptive, rate-optimal test of a

parametric model against a nonparametric alternative”, manuscript, University of Iowa.

HSIEH, D.A. (1989), ”Testing for nonlinear dependence in daily foreign exchange rates”,

Journal of Business, 62, 339-368.

KOUL, H. L. and STUTE, W. (1999), ”Nonparametric model checks for time series”,

Annals of Statistics, 27, 204-236.

LI, Q. (1999), ”Consistent model speci…cation tests for time series econometric models”,

Journal of Econometrics, 92, 101-147

LOBATO, I., NANKERVIS, J., and SAVIN, N.E. (1999), ”Testing for autocorrelation

using a modi…ed Box-Pierce Q test”, forthcoming, International Economic Review.

MAMMEN, E. (1993), ”Bootstrap and Wild Bootstrap for High Dimensional Linear

Models”, Annals of Statistics, 21, 255-285.

MARRON, S.J. (1988), ”Automatic Smoothing Parameter Selection: A Survey”, Em-

pirical Economics, 13, 187-208.

MING, X. (1999), ”One-One Transformation of Multidimensional General Distribution

to Multidimensional Uniform Distribution”, Econometric Theory, 15, 429-430.

28



ROBINSON, P. M. (1991), ”Testing for Strong Serial Correlation and Dynamic Condi-

tional Heteroskedasticity in Multiple Regression”, Journal of Econometrics, 47, 67-84.

ROSENBLATT, M. (1975), ”A Quadratic Measure of Deviation of Two-Dimensional

Density Estimates and A Test of Independence”, Annals of Statistics, 3, 1-14.

SHORACK, G.R. and WELLNER, J.A. (1986), Empirical processes with applications to

statistics, Wiley, New York.

STINCHCOMBE, M. and WHITE, H. (1998), ”Consistent speci…cation testing with

nuisance parameters present only under the alternative”, Econometric Theory, 14, 295-325.

STUTE, W. (1997), ”Nonparametric model checks for regression”, Annals of Statistics,

25, 613-641.

STUTE, W., MANTEIGA, W.G. and PRESEDO, M. (1998), ”Bootstrap approximations

in model checks for regression”, Journal of the American Statistical Association, 83, 141-149.

SU, J.Q. and WEI, L.J. (1991), ”A lack of …t test for the mean function in a generalized

linear model”, Journal of the American Statistical Association, 86, 420-426.

VUONG, Q. H. (1989), ”Likelihood ratio tests for model selection and non-nested hy-

pothesis”, Econometrica, 57, 307-333.

WU, C. F. J. (1986): ”Jacknife, bootstrap and other resampling methods in regression

analysis (with discussion)”, Annals of Statistics, Vol. 14 pp. 1261-1350.

ZHENG, X. (1996), ”A consistent test of functional form via nonparametric estimation

technique”, Journal of Econometrics, 75, 263-289.

29


