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1 Introduction

There has been a lot of interest lately in evolutionary game theory. In particular,
there have been some attempts to use evolutionary concepts in order to make a
selection among the set of Nash equilibria. One of these concepts was introduced
by Foster and Young (1990) and is known as stochastic stability. Unlike the
concept of evolutionary stability, which requires from a population to be immune
to isolated random mutations, stochastic stability requires immunity against
persistent random mutations. This concept was successfully applied by Kandori
et al. (1993) in the analysis of symmetric 2 × 2 games, by Young (1993a) for
weakly acyclic n person games, by Young (1993b) in the analysis of bargaining,
and by Vega-Redondo (1996) in the analysis of competition among firms.

As Young (1998) stresses, the stochastic stability approach can be applied
to the analysis of a variety of social interactions, and not only to the adaptive
playing of games. In this paper we are interested in applying the concept of
stochastic stability to the simple housing market introduced by Shapley and
Scarf (1974). A housing market consists of n traders, each of whom is charac-
terized by the only house he owns and by his complete, transitive and antisym-
metric preference relation over the set of houses. In order to apply the concept
of stochastic stability, we endow the housing market with a simple perturbed
stochastic dynamic process. The unperturbed process can be described as fol-
lows. At each period a pair of traders is matched randomly and they trade their
endowments if and only if the trade is mutually beneficial. The perturbation of
the process consists of allowing a small probability of trade when it is not mutu-
ally beneficial. We want to see whether there is any relation between the efficient
allocations in the economy and the set of stochastically stable outcomes of the
process. We show that the efficient allocations are always stochastically stable.
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Further, we find that in economies with three traders, the set of stochastically
stable states coincides with the set of efficient allocations. However, when there
are more than three agents, there might be stochastically stable states which
are inefficient.

We view the analysis of the simple housing market as a first step into the
analysis of more general exchange economies. Our result though, gives little
hope of finding some evolutionary foundation of efficient allocations, not to
speak of Walrasian allocations.

2 The Model and Preliminary Results

A house allocation problem is a triple 〈N,H, (�i)i∈N 〉 where N = {1, . . . , n} is
a finite set of individuals, H = {h1, . . . , hn} is a finite set of houses and for each
individual i ∈ N , �i is a complete, transitive and antisymmetric preference
relations over H. The size of the problem is the number of agents in it.

Let P be a house allocation problem. An allocation in P is a one to one
function x : N → H that assigns one house to each agent.

An allocation x is efficient if there is no allocation y such that yi �i xi for
all i ∈ N and yi �i xi for some i ∈ N .

Let x be an allocation in P . We say that individual i envies individual j at x
if and only if xj �i xi. Define the envy-graph of allocation x to be the directed
graph whose vertices are the agents in the housing problem and there is an edge
from agent i to agent j if and only if i envies j. It is clear that allocation x is
efficient if and only if the corresponding envy-graph is acyclic.

The efficient allocations can also be characterized by means of the serial
dictatorship mechanisms. Let π : {1, . . . , n} → N be an ordering of the traders,
i.e., π(1) is the first trader, π(2) is the second trader and so on. We say that
allocation x is the outcome of the serial dictatorship mechanism with respect to
π or that x is induced by π, for short, if

• xπ(1) is agent π(1)’s most preferred element in H

• for t ∈ {2, . . . , n}, xπ(t) is agent π(t)’s preferred element in H \
{xπ(1), . . . , xπ(t−1)}.

It is known that allocation x is efficient if and only if it is the outcome of the
serial dictatorship mechanism with respect to some ordering of the traders.

We shall define a dynamic process according to which agents perform bilat-
eral trades. These bilateral trades will allow us to transit from one allocation
to the other. Clearly, it is not always possible to go from one allocation to
another by means of a single bilateral trade. When it is possible, we say that
the allocations are pairwise connected. More formally, we say that allocations
x and y are pairwise connected if there is a pair i and j of agents such that
xi = yj , xj = yi and xk = yk for all k /∈ {i, j}. A (x, y)-path is a finite sequence
of allocations (z0, z1, . . . , zk) such that z0 = x, zk = y and for t = 0, 1, . . . , k−1,
zt and zt+1 are pairwise connected. The following lemma shows that the set of
efficient allocations is “connected”.
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Lemma 1 Let P = 〈N,H, (�i)i∈N 〉 be a house allocation problem and let x
and y be two efficient allocations in P . Then, there is an (x, y)-path composed
exclusively of efficient allocations.

Proof : The proof is by induction on the size of the problem. If the problem
consists of one agent, there is nothing to prove because the only allocation
is efficient. Assume that the claim holds for all problems of size K, let E =
〈N,H, (�i)i∈N 〉 be a problem of size K + 1 and let x and y be two efficient
allocations in it.
Case 1: There is an agent, k ∈ N , who gets his most preferred house both at
x and y. Namely, xk = yk �k h for all h ∈ H. Then, there are orderings π and
σ of the traders, both with trader k on top of them, which induce allocations
x and y, respectively. Let N ′ = N \ {k}, H ′ = H \ {xk} and consider the
subproblem E ′ = 〈N ′,H ′, (�i |H′)i∈N ′〉, where �i |H′ is the restriction of i’s
preferences to H ′. The allocations x|N ′ and y|′N are efficient in E ′ since they
are induced by the orderings π and σ respectively, restricted to the agents in
S. Since E ′ is an economy of size K, by the induction hypothesis, there is a
path (x̂0, . . . x̂m) of efficient allocations in E ′ from x|N ′ to y|N ′ . Define now the
allocations (x0, . . . , xm) in E by

xti =
{
x̂ti if i ∈ S
xk if i = k

for t = 0, . . . ,m. The sequence (x0, . . . , xm) is a (x, y)-path of efficient allo-
cations in E since they are induced by the orderings that induce (x̂0, . . . x̂m),
respectively, after adding agent k to the top.
Case 2: There is no agent that gets his most preferred house both at x and at
y. There are orderings π and σ of the traders which induce allocations x and
y, respectively. Let k the first agent in the order σ, namely σ(1) = k. Clearly,
k is not the first agent in the order π. Without loss of generality assume that
π is the natural order, π(t) = t. Therefore π(1) = 1 6= k. Since k does not get
his most preferred house in x, there must be an agent ` < k who has k’s most
preferred house. Namely, x` = yk.
Case 2.1: ` > 1. In this case, agent `’s and agent k’s respective most preferred
houses differ. This implies that there is an allocation z, which is efficient in E ,
and at which both agent ` and agent k get their respective most preferred houses.
Since agent ` gets his most preferred house both at efficient allocation x and
at efficient allocation z, by case 1, there is a (x, z)-path of efficient allocations.
But since k gets his most preferred house both at z and at y, by case 1 again
there is a (z, y)-path of efficient allocations. Joining both paths, we conclude
that there is a (z, y)-path of efficient allocations.
Case 2.2: ` = 1. In this case x awards agent ` the house that is most preferred
by both ` and k. Consider an ordering µ of the agents in which agent ` is first
and agent k is last and let z be the efficient allocation induced by that ordering.
Since agent ` gets his most preferred house both at x and at z, by case 1, there
is a (x, z)-path of efficient allocations. Let z′ be the allocation that is obtained
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from z after agents ` and k switch houses. Allocation z′ is efficient because it
is induced by the ordering that is obtained from µ after ` and i∗ switch places.
Therefore, z and z′ are two pairwise connected efficient allocations. Clearly,
z′ awards agent k his most preferred house. Therefore, by case 1 again, there
is a (z′, y)-path of efficient allocations. We have built then a path of efficient
allocations that connects x with y. 2

3 The Dynamic Process

Given a house allocation problem we want to define a perturbed Markov process
as defined in Young (1998) where the states are the allocations of the housing
problem. In each period one pair of agents is selected at random, where all
pairs are equally likely to be chosen. Consider a pair of individuals, say i and
j. The probability that they trade depends on the degree of advantageousness
of the trade. If the trade is mutually beneficial, then it takes place with high
probability, say 1. If the trade is not mutually beneficial, then it takes place with
a very low probability. Specifically, assume that if the trade is advantageous for
only one trader, the trade takes place with probability ε and if the trade is
disadvantageous for both traders, it takes place with probability ε2.

It can be checked that a state of the unperturbed process is absorbing if and
only if there is no pair of agents that envy each other. It turns out that the
absorbing states constitute the only recurrent classes of the process.

Proposition 1 The recurrent classes of the unperturbed process are the sin-
gletons containing the absorbing states.

Proof : It is clear that a singleton containing an absorbing state is a recurrent
class. Conversely, assume that x is an allocation where there are at least two
agents that envy each other. Then, with positive probability they will meet and
trade. The number of pairs of agents that envy each other will be reduced by at
least one as a result of the trade. If the resulting allocation is an absorbing state,
we are done. Otherwise, there is a positive probability that two individuals that
envy each other meet and trade, thus reducing the number of pairs that envy
each other. Continuing in this fashion, we see that there is a positive probability
that an absorbing state is reached which shows that x does not belong to a
recurrent class. 2

We are interested in the stochastically stable states of the perturbed Markov
process defined above. For any two allocations x and y, define the resistance
of the transition x → y as follows: if x and y are pairwise connected, then the
resistance is the number of agents (0, 1, or 2) that find the bilateral trade unprof-
itable. Otherwise define the resistance to be ∞. Similarly, let ξ = (zi, . . . , zj)
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be an (x, y)-path. The resistance of the path ξ is the sum of the resistances of
its transitions.

Let Z0 = {z1, . . . zn} be the set of absorbing states of the unperturbed
process and consider the complete directed graph with vertex set Z0, which is
denoted by Γ. We want to define the resistance of each one of the edges in
this graph. For this, let zi and zj be two elements of Z0. The resistance of
the edge (zi, zj) in Γ is the minimum resistance over all the resistances of the
(zi, zj)-paths. Let zi be an absorbing state. A zi-tree is a tree with vertex set
Z0 such that from every vertex different from zi, there is a unique directed path
in the tree to zi. The resistance of the zi-tree is the sum of the resistances of
the edges that compose it. The stochastic potential of the absorbing state zi is
the minimum resistance over all the zi-trees. The stochastically stable states are
those states with minimum stochastic potential. The following lemma will be
useful.

Lemma 2 Let x be a stochastically stable state and let y be an absorbing state
such that the edge (x, y) has resistance 1. Then, y is a stochastically stable state.

Proof : Let T be an x-tree with minimum resistance over all the x-trees. Let
s(y) denote the immediate successor of y in the unique path that connects y to
x. Build a new tree T ′ by deleting from T the edge (y, s(y)) and adding the edge
(x, y). It can be seen that T ′ is a y-tree. Indeed, if there was a directed path in
T from z to y, the same path connects z to y in T ′. And if there was a directed
path in T from z to x that did not go through y, now the path that is obtained
from that path by adding the edge (x, y), is a directed path in T ′ that connects
z to y. T ′ is a y-tree that is obtained from T by adding an edge of resistance 1
and deleting one edge of resistance greater or equal 1. Therefore, the resistance
of T ′ is less or equal the resistance of T . But since T is an x-tree with minimum
resistance over all the x-trees and since x is a stochastically stable state, the
resistance of T ′ equals the resistance of T and therefore y is a stochastically
stable state. 2

Corollary 1 If there is an efficient allocation that is stochastically stable, then
all efficient allocations are stochastically stable.

Proof : Let x be an efficient allocation that is stochastically stable and let
y be another efficient allocation. By Lemma 1, there is a (x, y)-path of effi-
cient allocations. Every edge along this path has resistance 1. By Lemma 2,
all the efficient allocations along this path, and in particular allocation y, are
stochastically stable. 2

We are now ready to state one of the main results of the paper.
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Proposition 2 Let P be a problem with 3 agents. The stochastically stable
states of the corresponding perturbed Markov process are all the efficient allo-
cations.

Proof : Let Z0 be the set of absorbing states. The set Z0 can be written as
Z0 = ZE ∪ ZI where ZE is the set of efficient allocations and ZI is the set of
absorbing states that are not efficient. It is known that ZE 6= ∅ but ZI may be
empty.

Case 1: ZI 6= ∅.
This means that there is an inefficient allocation at which no two agents envy
each other. Therefore the envy graph associated to this allocation must look as
follows:

i

j k-

I

	

Namely each agent envies one and only one agent and no two agents envy
each other. But in this case, by executing the advantageous trilateral trade,
each agent ends up with its most preferred house. Consequently, this resulting
allocation is the only efficient one. Therefore Z0 consists of 2 states: the efficient
one, ze and the inefficient one, zi.

In order to show that the efficient allocation is the only stochastically stable
state, we shall show a path from the inefficient state to the efficient one that has
resistance 1 and we shall show that every path from the efficient state to the
inefficient one must have a resistance of at least 3. Starting from the inefficient
allocation, execute the advantageous trilateral trade by letting agents i and k
trade first and then letting agents i and j trade. The first trade has a resistance
1 and the second has a resistance 0 (since it is mutually beneficial for both i and
j). Therefore the corresponding path from the inefficient state to the efficient
one has resistance 1 and since any path from one recurrent class to another
must have a resistance of at least one, the stochastic potential of the efficient
allocation is 1.

We shall show now that any path from the efficient state to the inefficient
one has a resistance of at least 3. To see this, note that in order for each of the
three traders to end up with a house that is less preferred than the initial one,
each of them must execute at least one disadvantageous trade. Consequently,
the stochastic potential of the inefficient absorbing state must be at least 3. The
efficient state minimizes the stochastic potential over the absorbing states and
therefore it is the only stochastically stable state.
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Case 2: ZI = ∅. In this case, since the set of stochastically stable states is
nonempty, it must contain at least one efficient allocation. Then, by Corollary 1,
all the efficient allocations are stochastically stable. 2

Unfortunately, Proposition 2 cannot be generalized to economies with more
than 3 agents, as the following example shows. Consider the following four agent
economy:

h1P1h2P1h3P1h4
h1P2h3P2h2P2h4
h4P3h3P3h1P3h2
h1P4h2P4h4P4h3

In this economy there are six absorbing states, five of which are efficient alloca-
tions.

Agents
Allocation 1 2 3 4

z0 h1 h2 h3 h4
z1 h1 h3 h4 h2
z2 h2 h1 h3 h4
z3 h2 h1 h4 h3
z4 h2 h3 h4 h1
z5 h3 h1 h4 h2

Table 1: Absorbing states

We will show that the inefficient allocation z0 is stochastically stable by
showing a z0-tree with a resistance of 5, which is the minimum resistance that
a z-tree with 6 vertices can possibly have. This will mean that the inefficient
allocation has minimum stochastic potential and therefore it is stochastically
stable. One of the z0-trees with minimum resistance is the following:
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To see that each of the directed edges zi → zj in the above tree have a weight
of 1, note that one can move from allocation zi to allocation zj by means of one
bilateral trade with resistance 1.

We have seen that if an efficient allocation is stochastically stable, so are all
the efficient allocations. One may ask whether it is possible that no efficient
allocation is stochastically stable. The following proposition shows that this is
impossible.

Proposition 3 The set of stochastically stable allocations contains all the ef-
ficient allocations.

Proof : Given Corollary 1, it is enough to show that there is one efficient
allocation that is stochastically stable. Pick a stochastically stable allocation,
x. If x is efficient we are done, so assume it is not efficient. If we show that
there is a path from x to an efficient allocation, such that each of its transitions
has resistance less or equal 1, we are done, because by Lemma 2 the efficient
allocation will be stochastically stable. The existence of the required path is an
immediate consequence of the following:

Lemma 3 Let x be an absorbing state that is not efficient and let m ≥ 3 be
the number of agents that belong to some cycle of x’s envy-graph. Then, there
is an absorbing state y such that the edge (x, y) has resistance 1 and such that
the number of agents who belong to some cycle of y’s envy graph is less than
m.

Proof : Let A1 be the set of agents that are allocated their most preferred
house under allocation x and let B1 be the complement of A1:

A1 = {i ∈ A : xi �i xj ∀j ∈ N}
B1 = N \A1.

Define recursively the following set of agents: for k = 1, 2, . . .

Ak+1 = {i ∈ Bk : xiPixj ∀j ∈ Bk}
Bk+1 = Bk \Ak+1.

Let A = ∪∞k=1Ak. It is immediate that the agents in A do not belong to any
cycle of the envy-graph of x. Since x is not efficient, B = N \ A 6= ∅. B is the
set of agents that belong to a cycle of the envy-graph of x. Therefore m = |B|.
It is also clear that no agent in A envies anybody in B. Let i ∈ B. Then there is
an agent in B who is envied by i. Let j be the agent who owns the �i-maximal
house in the set of houses that belong to agents in B. That is, xj �i xt for
all t ∈ B. Let x′ be the allocation that is obtained from x after i and j trade.
At this allocation, no agent in A ∪ {i} envies anybody in Bk \ {i}. Therefore,
the number of agents that belong to a cycle in the envy-graph of x′ is less or
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equal |Bk \ {i}| which is less than |Bk| = m. If x′ is absorbing, then we are
done. Otherwise, there is a (x′, y)-path from x′ to some absorbing state y with
resistance 0. Clearly, the number of agents that belong to a cycle of the envy
graph of y is less that |Bk∗ | = m. 2

This completes the proof of the proposition. 2
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