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Abstract
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1 Introduction

This paper presents a new method for estimation and testing in (co)integrated
processes of order 1. Compared to the most widely used Johansen (1988,
1991, 1995) procedure our approach allows estimation and testing for coin-
tegration for more general integrated processes of order 1 by including, in
terms of an ARMA representation of the underlying system, an MA part.
We however exclude unit roots at other points than 1, so e.g. seasonal unit
roots and seasonal cointegration are not handled by our method so far.
Cointegration analysis has become one of the most widely used techniques in
econometrics. The majority of analyses is carried out by using the methods
and procedures that have been developed by Johansen and his co-authors.
This method, despite its advantages like elaborate possibilities to test for a
variety of hypotheses on the cointegrating space and also on the short-run
dynamics, has one limitation. It is restricted to the case where the data
generating process is a pure autoregression. Although this assumption may
be a good approximation in many cases, the possibility of more general data
generating processes deserves some attention. There are already a couple of
results available in the literature dealing with this issue. Yap and Reinsel
(1995) derive the maximum likelihood estimator for the cointegrating space
of cointegrated Gaussian ARMA processes integrated of order 1. They also
show that the asymptotic null distribution of the test statistic is the same
as for pure autoregressions. Saikkonen (1992) and Saikkonen and Liitkepohl
(1996) derive consistency of Johansen type estimators for the case, when
the data generating process is given by an infinite order vector autoregres-
sion, but one approximates this by a finite order VAR. More precisely, it is
shown that the Johansen procedure delivers consistent estimates of the coin-
tegrating space, if the order of the VAR approximation is increasing with
the sample size at a sufficient rate. This is a generalization of the Said and
Dickey (1984) result to the multivariate case. Also in the Saikkonen and
Liitkepohl (1996) case the asymptotic null distribution is the same as in the
case of a pure (finite order) autoregression. Wagner (1999a) shows that the
Johansen procedure delivers consistent estimates of the cointegrating space,
when one estimates a VAR with a fixed lag order, but the data are generated
by a vector ARMA system. In that case however the short-run dynamics are
not estimated consistently anymore.

Another method that is related in some sense to our approach in terms
of its applicability is the non-parametric cointegration analysis developed by



Bierens (1995, 1997). This procedure derives consistent estimates of the coin-
tegrating space and a test for its dimension on the basis of a non-parametric
approximation of ARMA systems integrated of order 1. Due to the non-
parametric nature of this method one obtains estimates of the cointegrating
space only and does not obtain estimates of e.g. short-run coefficients. In
terms of results however our method is more comparable to the already above
mentioned method of Yap and Reinsel (1995), because our method derives a
consistent estimator of the transfer function of the system as well.! Given an
estimate of the transfer function it is then possible to derive e.g. an ARMA
representation of the system.

Subspace algorithms have up to now mainly been used in a stationary con-
text, with the exception of the work of Aoki (1990). However, the Aoki
approach has never been given a thorough statistical foundation including
the issues of estimating the integer parameters like the order of the system
and the dimension of the cointegrating space. Subspace methods have been
developed in the engineering literature in the last couple of years, see e.g.
Larimore (1983), Van Overschee and DeMoor (1994) or Verhaegen (1994).
The asymptotic properties of the estimates obtained by these procedures
in a stationary setting are established in a number of papers: Deistler et al.
(1995) and Peternell (1995) treat the consistency of the methods, Viberg et al.
(1993) derive asymptotic normality of the estimated poles of the system for
one class of methods usually denoted by MOESP type of methods, Bauer (1998)
and Bauer et al. (1998) establish a central limit theorem for the estimates of
the system as well as consistent order estimation algorithms. For stationary
stochastic processes the subspace estimates have the usual limiting behavior,
i.e. consistency and asymptotic normality. Up to now no optimality or sub-
optimality results for the asymptotic covariance matrices of the subspace esti-
mators have been derived. Also a consistent estimate of the system order may
be obtained in a simple fashion (see Peternell 1995, Bauer 1998). Approxi-
mation properties of the transfer function estimates are known (Bauer 1998).
In this paper the consistency of the estimates of the transfer function for a
special class of algorithms due to Larimore (1983) is derived also for processes
integrated of order one. Furthermore estimation procedures for the number
of unit roots and therefore for the dimension of the cointegrating space are

!E.g. for an ARMA system a(L)y; = b(L)e;, where the matrices a and b are left
co-prime, the transfer function is given by k(z) = a=!(2)b(z), where L denotes the lag
operator and z a variable in the complex plane.



provided. As indicated above, the analysis is restricted to the case, where the
unit roots are located at z = 1 and where the highest geometric multiplicity
(in the state space representation, see below) of the unit roots is equal to
one, thus excluding e.g. processes with seasonal unit roots or I(2) processes.
The analysis uses similar techniques as have been used in Huang and Guo
(1990), Liitkepohl and Saikkonen (1997) and Saikkonen and Luukkonen (1997).

The organization of the paper is as follows: In the next section the pro-
cedure is described and the theoretical results are stated. In Section 3 the
estimation of the cointegrating rank and of the system order are discussed
and in Section 4 results of a simulation study to assess the performance of our
method are presented. In this section we also compare the performance of
our method to the performance of the Johansen method. Section 5 summa-
rizes and concludes. In Appendix A all proofs are given and in Appendix B
the simulated systems are described.

2 The subspace method

In this paper we consider finite dimensional, time invariant, discrete time,
state space systems of the form

Tip1 = A.’L‘t + K&ft
Y = C.’Et + E&ft

(1)

where 7; denotes the s-dimensional observed series, which is observed for
t=0,1,...,T. g denotes an s-dimensional white noise sequence. Through-
out the paper ¢; is assumed to be an ergodic strictly stationary martingale
difference sequence for which the following equations hold:

E{e.|Fi 1} = 0 (2)
E{eie)| P} = Eleei} (3)
E{gt,agt,bgt,c ft—l} = Wab,c (4)
Esia < 00 (5)

where €, , denotes the a-th component of the vector ¢; and F;_; denotes the
o algebra spanned by the past €;_1,€¢-9,+,€0,29. These conditions will be
referred to as the standard assumptions throughout the paper. The matrix
E' is assumed to be nonsingular and lower triangular with positive entries
on the diagonal. This restriction is necessary to ensure the identifiability of
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E and ¢;. Furthermore it is assumed, that the system is strictly minimum-
phase, i.e. that the eigenvalues of the matrix (A — K E~'C) have an absolute
value smaller than 1. Corresponding to the eigenvalues of the matrix A,
i.e. the system poles, we assume, that they are inside the open unit disc or
at z = 1, where the geometric multiplicities of the eigenvalues at z = 1 are
restricted to be equal to one. This corresponds to the assumption of the order
of integration to be equal to one. A companion paper Bauer and Wagner
(1999a) develops a canonical form for state space systems of the form (1)
containing unit roots. The results derived in that paper are used extensively
in the following discussion of the properties of the system estimates. Note
that in the special case treated in the present paper the canonical form has
the following structure:

{4 0 | Ky B
A‘[O Ast}’K‘[Kst]’C_[Cl Cor |

Here 0 < r < s denotes the number of common trends, I, € R™" denotes
the identity matrix and (Ag;, Ky, Cy;) denotes a state space realization of the
stationary subsystem. From the structure of the state space representation

it follows that s

vy = C1 K4 Z et + ksi(L)ey (6)
j=1

where kg (L) = FE + LCy(I — LAy) ' K,. This representation makes clear,
that the system depends only on the product C; K; and not on the two factors
C; and K, directly, in the sense that (Cy, K;) and (C,T, T 'K) result in the
same system for any nonsingular matrix 7" of compatible dimensions. The
same is true for (A, Ky, Cy) and (SAuS™', SKy, CpS™') for nonsingular
S. In other words for a given system only certain products are identified,
but not the system matrices themselves. Therefore additional restrictions
are introduced in order to achieve identifiability, leading to a canonical form.
In the canonical form presented in Bauer and Wagner (1999a) C} is chosen
to be part of an orthonormal matrix, i.e. C; € R**" C|C, = I,. Therefore
there exists a matrix Cy with C4Cy = I, , and C5Cy = 0, i.e. Cy is in the
orthogonal complement of C;. Let C' = [C}, Cs]. Since all the eigenvalues of
Ay are by construction restricted to be inside the unit circle it is easily seen,
that ks (z) is analytic in the closed unit disc. Note that the representation
given in equation (6) coincides with Granger’s. It is immediate that the first
component in (6) corresponds to the common trends and that the columns of
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Cs span the space of the cointegrating relations. Therefore the cointegrating
rank is equal to s — r and the number of common trends is equal to the
number of eigenvalues of A at one. In the case of processes of higher order
of integration matters get more complicated, but also then it is the structure
of the eigenvalues at 1 (i.e. their algebraic and geometric multiplicities) of
the corresponding matrix A, that determines the order of integration and
the number of components of the process with different orders of integration;
i.e. the number of common trends with different orders of integration (for a
detailed discussion see Bauer and Wagner, 1999a).

Subspace algorithms originated in the engineering literature in the 1980ies.

They provide an alternative to classical maximum likelihood estimation of
linear time invariant systems, like e.g. ARMA systems. In the meantime a
variety of algorithms is available, see e.g. Larimore (1983), Van Overschee
and DeMoor (1994), Verhaegen (1994). In this paper we restrict attention
to the algorithm described in Larimore (1983), which is well suited for the
analysis of multivariate time series, where no exogenous observed variables
are present.
The main idea of this algorithm lies in the interpretation of the state: Con-
sider the problem of predicting ;1,7 > 0 from its finite past up to time
t—1,i.e. from y; 1,y 9, -,y and x¢.2 From the system equations (1) it
follows, that

j—1
_ j i
Yryj = CAlzy + E CA'Kepyj i1+ €yj-
i=0
Now, since
_ t t—1 1
Ty = .7)0 + Zz 0 AZKEt_Z'_l

= $0+Zt , A'E E7'K(yi—i1— Cxy_iq)
= (A-KE~ 10) 20+ Y _(A—KE'O)'KE 'y, ; 4

one obtains y(t + j|t) = CAlz;, where y(t + j|t) denotes the best linear

predictor of v, ; from the knowledge of y; 1,---, %0, zo. Thus the state x; is

a basis for the predictor space and is contained in the past of the time series.
Next define for given positive integers f and p

}/;j} = [yllfﬂ y:H—I’ .- ’y£+f_1],

2Tn the case, that z is not known, the prediction is performed using the Kalman filter.
This, however, does not change the asymptotic properties.



Yip = [Yie1s Yi2s - - - ayé_p]l
and
Efe = [e, €415 26t p ]
Furthermore let
O =[C",A'C',..., (AT C)
=K, (A- KET'O)K,...,(A— KE"'C)" K]

and let £ denote the matrix, whose ¢-th block row is equal to the matrix
[CA™'K,--- CK, F,0].> Then it follows from the system equations, that

Yf = OfICth;,—i-Of(A—KE’lC)”:rt,p—i—SfE;,Lf (7)

Here for notational simplicity 4, = 0, < 0,2, = 0, < 0.* Now the subspace
algorithm can be described as follows:

1) In a first step regress Y, on Y, to obtain an estimate ﬁf,p of O;K,.

2) Typically Bf,p will be of full rank, whereas O¢K, is of rank n for f,p >
n. Thus approximate Bf,p by a rank n matrix with decomposition
O,K,

3) Use the estimate ICp to estimate the state as 7, = ICApY;;,. Once the
state has been estimated, the system equations can be used to obtain
estimates of the system matrices (A, K, C, F) by ordinary least squares:

First regress y; on T; to obtain an estimate C’T and residuals £;. Then
Q= T Zt L €€} is an estimate for the innovation variance. Thus Er

can be calculated as the lower triangular Cholesky factor of Q and
& = EL '&,. Finally regress T;11 on Z; and &; to obtain estimates Ar
and K respectively.

The approximation in step 2 of this procedure i is performed by using the
singular value decomposition of Wf ﬁpr Here Wf and W are weighting

matrices, which in this paper are restricted to be W = (F+) /2 and W—

3Note e.g. that the matrix O is a truncation of the observability matrix O =
[C',A'C, (A%)'C,. . ).

4The asymptotic results also hold for a nonzero initial state vector.



)'/2 respectively.® Here FA+ =3, Y5 (V) and Ff Zt 1Yo (Vi)'

where unobserved values are replaced with zeros, such that F+ and F have
a block Toeplitz structure 6 This amounts to estimating the Canonlcal corre-
lations of YJ} and Y, . This explains the name canonical correlation analysis
(CCA) for this algorlthm

In the literature several different weighting schemes have been proposed and
analyzed in the stationary case. Up to now it has not been analyzed under
which properties of the weighting matrices consistent estimates in the case
of unit root processes are obtained. Therefore the weighting matrices are
restricted as mentioned above. Thus let Wf ﬁf W= =USV' = U, %, V! +R,

where U, € RI**" V, € R*" 3%, € R, 3, contains the n dominant
singular values ordered decreasmg in size. U, contains the corresponding
left singular vectors and V,, the respective right singular vectors. The re-
maining singular values contribute to R and are neglected. Now the rank
n approximation to (;, is given by O;K, = [(W+) LUV, )~'] and
thus K, = Vn’(Wp )~L

In this step of the algorithm usually the order of the system is estimated,
see e.g. Bauer (1998). In the stationary case one possible order estimation
procedure is obtained by considering the size of the first neglected singular
value. Define the following criterion:

SVC(n) =62, + 2nsCr/T (8)

(T,

p

Here Cr > 0,C7/T — 0 denotes a penalty term, which determines the
asymptotic properties of the estimated order. 2ns is the number of parame-
ters in a model with state dimension n, excluding the parameters in E, see
e.g. Hannan and Deistler (1988), Theorem 2.6.3. The estimated order is the
minimizing argument of the criterion function SV C(n).

Let U(n) denote the set of all transfer functions k£ € M (n), such that the a.s.
limit for T'— oo and p = p(T) — o© (Whlch exists under the assumptions

of Theorem 1 below) WJ?L BW~ of W)T ,6 pr has n distinct nonzero singular
values. It can be shown, see e.g. Bauer et al. (1999) that U(n) is a generic

5Here X'/2 denotes any square root of the positive definite matrix X such that
X1/2(X1/2)' = X. Note that the choice of the square root is of no importance for the es-
timation. Different choices lead to numerically identical estimates of the system matrices.
However we will use the Cholesky factor since it proves to be convenient in the derivations.

6This corresponds to a special choice of the initial values, which however does not
influence the asymptotic properties under investigation.



subset of M(n). Finally the estimate &; = I@I,Yt;, is used to obtain estimates
of the system matrices. Then the following result, which clarifies the asymp-
totic properties in the stationary case, has been shown in Bauer et al. (1999)
and Bauer (1998)

Theorem 1 Let y, be generated by a system of the form (1), where the white
noise ;¢ fulfills the standard assumptions. If f > n is a user supplied integer
and p(T) > _%1;550\: where py is an eigenvalue of A— KEC of mazimum
modulus and d > 1 is some real value, and if p(T) = o((logT)*) for some

a > 0, then:

o for ky € M(n)Athe estimate of the transfer function is almost sure
consistent, i.e. k — kg a.s.

o forky € U(n) the estimate of the system matrices is a.s. consistent, i.e.
there ezists a realization (Ag, Ky, Cy, Ey) of the true transfer function
ko € U(n), such that ||vec|Ar — Ay, Kp — Ko, Cp — Cy, Ep — Eq]|| — 0
a.s. Here vec denotes the operator stacking the vectorizations of the
various matrices.

e for ko € U(n) a central limit theorem for the system matriz estimates
holds, 1i.e.

VT[vec(Ar — Ay, K1 — Ko, Cr — Co, Er — Ey)] 57

d e . .
where — denotes convergence in distribution and Z is a Gaussian ran-
dom variable with zero mean and variance V.

e if Cr/(p(T)loglogT) — oo then the order estimated using SV C' is a.s.
consistent.

This clarifies the asymptotic properties in the stationary case to a large ex-
tent. One question that still remains to be answered is whether the asymp-
totic variance covariance matrices of subspace estimators achieve the Cramer
Rao lower bound. Up to now it is only known that for a couple of cases the
asymptotic variance of the estimator described above is at least close to op-
timality.

To the best of the authors knowledge the nonstationary case has not been
discussed in the literature so far. The description of the algorithm does not



include any assumption concerning stationarity, thus one might hope to ap-
ply the algorithm in a straightforward way also for the case of integrated
processes. It is the aim of this paper to show that from a theoretical point
of view this leads to a reasonable procedure. For the actual implementation
however, some steps might have to be adapted in order to avoid numerical
problems. This is mainly due to the different orders of magnitude of the
stationary and the nonstationary part of the data.

The algorithm as it has been presented above does not necessitate any in-
formation concerning the dimension of the cointegrating space. If this in-
formation is known somehow (one way to estimate the cointegrating rank
is discussed below), the procedure could be adapted in the following way:
Note that in the final step, after @, ¢, and C, E have been estimated, Tpy1
is regressed on Iy, £, in order to obtain estimates A, K. This is based on the
observation that x;,1 = Az; + Ke; according to the system structure (1).
Since r eigenvalues of A are equal to one, the matrix A — I is of rank n — r.
Thus if the number of common trends r is known, a different way to estimate
fl, K would be to consider a reduced rank regression of x4, —x; = Az, + Ke,
under the constraint rank(A) = n — r. This leads to an estimate A, which
corresponds to an exactly cointegrated system, whereas the unrestricted re-
gression approach only leads to an estimated transfer function, which is close
to a cointegrated system in the sense given by the next theorem, which con-
stitutes the main result of this paper. The proof is given in Appendix A.

Theorem 2 Let y; be generated by a system of the form (1), where the
ergodic noise ; fulfills the standard assumptions. Assume, that the or-
der n of the true transfer function ko is known, and that p = p(T) =
o((logT)*) for some 0 < a < oo, f > n fized. Furthermore assume, that
diag((I — 2), I)Cko(z) lies in the generic neighborhood of the echelon canomi-
cal form. Then the estimate ET + C’T(ZI — AT)_lffT converges in probability
to the true transfer function, if the unrestricted regression approach is used.

If in addition the multiplicity r of the unit root is known, then the same
result holds, if the reduced rank regression is used to obtain estimates Ar and
[A(T.

The cointegrating space (which is equal to the orthogonal complement of
the column span of C1, the first r columns of C) is estimated at rate T, i.e.
Ta[CA'T,l — C1] = 0 in probability for 0 < a < 1.

It is remarkable that the estimates obtained by using the subspace proce-
dures, are consistent without using any prior knowledge on the cointegration
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structure of the system, for any integer 0 < r < s, i.e. independent of whether
the true system is stationary, cointegrated or integrated without cointegrat-
ing relationships. This is a similarity to autoregression, which also results
in consistent estimates of the transfer function regardless if the true system
contains a unit root or not. Note also, that this is a difference to maximum
likelihood estimation, where the structure of the unit roots usually is built
in explicitly in the parametrisation and thus in order to achieve consistency
for all unit root configurations many different parameter sets have to be con-
sidered. Also note, that when the cointegrating rank is known indeed, this
knowledge can be used to obtain an estimate, which is in the desired model
set, i.e. which has the corresponding cointegrating rank. The natural next
question corresponds to the asymptotic distribution of the estimates. Note
at this point that the result states consistency for the transfer function es-
timates, whereas the actual system matrix estimates (flT, IA{T, C’T, E’T) need
not converge. This is in particular true for an implementation based on the
stationarity assumption, which estimates a state having a finite covariance
matrix, by choosing the estimate I@,, such that 1/T Zthl 2,2, is convergent.
Thus the estimated state Z; is not consistent for the true state x;, but rather
the nonstationary directions are downweighted by a factor 7-'/2. The im-
plication of this is that the estimate of the matrix C; has to compensate the
downweighting of the state estimate and tends to infinity at the rate 7/2
and thus does not converge. Proper rescaling of the estimates however leads
to an implementation of the subspace methods, which lead to consistent es-
timates of the system descriptions in generic cases, as can be seen from an
inspection of the proof.

3 Estimating the structure indices

By structure indices we denote the number of common trends r (or equiva-
lently the dimension of the cointegrating space s — r) and the order of the
system n. For the calculation of the estimates no knowledge of r is required.
However, if r and n were known, then the reduced rank regression could
be performed to obtain an estimate of A, which takes into account the spe-
cific cointegration structure. In this section it will be demonstrated, how
the integer r can be estimated using subspace methods. The central fact in
this respect is the observation, that the singular values, which have to be
calculated in the algorithm, provide easily accessible information for the as-
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sessment of the cointegrating rank. For the stationary case, Theorem 1 states
consistency for the particular estimates of the order obtained by using SV C
with a special penalty term Cr. In this section we also clarify the properties
of the order estimation techniques in the unit root case.

Let the process y; be generated by a system of the form (1). Then exactly r
singular values are equal to 1, the remaining n — r are smaller than one. It
is important to note, that this fact is only true, if no zeros on the unit circle
are admitted” and the unit roots are restricted to lie at z = 1. Any of the
other cases also introduces singular values equal to one. Thus all results in
this section are not robust against the presence of e.g. seasonal unit roots.
It is shown in the proof of Theorem 2 that the singular values are estimated
consistently. Moreover it has been derived, that the first r singular values
converge to one at rate 7', whereas the remaining n — r nonzero singular
values tend to their limits at rate T%/2. Therefore a procedure for estimating
the number of common trends can be obtained from the asymptotic distri-
bution of the estimates of the first r singular values, which is derived in the
following theorem:

Theorem 3 Let the process y; be generated by a system of the form (1),
where the true noise satisfies the conditions of Theorem 1. Let 6; denote
the estimate of the i-th singular value and let r denote the true number of

common trends. Then T(1 —1/rY7%_, 67) is (asymptotically) distributed as

%tr[qgcl( /0 W (w)W () dw) ] )

Here fol W (w)W (w)'dw denotes a mizture of Brownian motions, where the
covariance associated with W (w) is equal to K1 K. Q = EE' denotes the
imnovation covariance matriz.

This theorem provides an asymptotically valid test on the number of
common trends in the time series. One could use subspace algorithms to
estimate the system in a first step. The resultant estimates could then be
used to approximate the distribution given above. This in turn leads to a
test for the number of common trends. However, the distribution of the test
statistic depends on unknown quantities and also the finite sample approx-
imation seems to be unsatisfactory. Therefore we propose to estimate the

"Thus we exclude, in terms of an ARMA representation unit roots in the MA polyno-
mial.
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dimension of the cointegrating space rather than to test for it. An estima-
tion algorithm is easily derived from the above arguments. Since the singular
values corresponding to the nonstationary part converge to one at rate T', a
simple idea is to take the number of common trends to be equal to the largest
integer, r say, such that the r-th singular value is the smallest one to differ
from 1 by less than h(T")/T, where h(T) — oo as T — oo. This leads to a
consistent estimation of r. Note however, that the choice of a specific form of
the penalty h(7T') includes an element of arbitrariness and different thresholds
may be considered, as is done in the next section. Of course the choice of
h(T) influences the finite sample properties of the estimation procedure.

Finally also the estimation of the system order can be handled in this
framework. The estimation algorithm builds on the estimation procedures
proposed in Peternell (1995) and Bauer (1998) for the stationary case. In
Theorem 1 the consistency for the order estimation procedure in the station-
ary case has been stated. The next theorem ensures, that consistency carries
over to the nonstationary situation as well:

Theorem 4 Under the conditions of Theorem 2 the estimate of the order
obtained by SV C 1is weakly consistent, i.e. n — n in probability.

The proof of this theorem is also given in Appendix A.

4 A simulation study

In this section the theoretical results obtained in the last sections are tested
on simulated data. The performance of our procedure is analyzed with regard
to two aspects. The performance of the estimation of the system, and the
performance of the estimation of the cointegrating rank. Concerning the first
aspect we are especially interested in the quality of the approximation of the
true cointegrating space by the estimated cointegrating space. One measure
of quality employed in this paper is the Hausdorff distance, which is defined
as follows:

Let = and ¥ be two subspaces of R™. The intersection of a subspace © of
R™ with the closed unit circle in R™ is denoted by C(0), i.e.

CO ={zc0]l|z[<1},
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where || z || is the Euclidean norm of z. Using this notation the distance d
of = and V¥ is given by the Hausdorff distance dy of C(Z) and C(¥), i.e.

d(Z,¥) = dy(C(E),C(¥)) = maz(p(C(E), C(¥)), p(C(5),C(¥)))
where p(C1, Cy)is given by

p(Cy,Cy) = sup inf ||z —y].
zeCy YEC2

Let us start the analysis with a set of systems, which has already been
used in Saikkonen and Luukkonen (1997). A precise description of the sys-
tems can be found in Appendix B. All three systems generate 3-dimensional
outputs. The three scenarios include the cases of a 2-dimensional cointegrat-
ing space (Scheme 1), of a 1-dimensional cointegrating space (Scheme 2) and
of an integrated system without cointegration (Scheme 3). For each system
1000 time series of length 7" = 150 and T' = 1050 respectively have been
generated using Gaussian white noise with the covariance matrix as specified
in Appendix B. The first 50 observations are discarded in order to simulate
a nonzero initial state vector. For each time series the cointegrating rank
and the order of the system are estimated. In the algorithm the integers
f = p = 2parc are used, where p4rc denotes the order estimate obtained
by using AIC. The order estimation criterion is SV C(n) as described in the
previous section. The number of common trends is estimated as the number
of estimated singular values, which differ from 1 by more than log(7)?/T.
The true order is equal to n = 3 in all three cases and the true cointegrating
ranks are 2,1 and 0 respectively. Concerning the estimation of the number of
cointegrating relationships and the system order we obtain the results shown
in Table 1. For the case of a 2-dimensional cointegrating space the results
are best: For sample size T = 1000 the correct configuration of the structure
indices is estimated in almost each replication. For sample size 7" = 100
the number of cointegrating vectors is already estimated quite accurately,
whereas the order of the system is estimated only with a low degree of ac-
curacy. For Scheme 2 the results are also quite good, again for both the
large sample size T' = 1000 and also for the small sample size 7" = 100. For
Scheme 3 the performance is not as satisfactory as for the other two systems.
It has become clear from the theory presented above that the asymptotic
distribution of the estimated singular values depends on the true system.
Therefore it cannot be expected, that the simple estimation criterion used
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Scheme | Sample Size Dim. of coint. space System order
0 1 2 3 0 1 2 3
1 T =100 0 0.317 | 0.670 | 0.013 || 0.193 | 0.153 | 0.177 | 0.477
T = 1000 0 0 0.990 | 0.010 0 0 0 1
2 T =100 0 0.863 | 0.137 0 0.003 | 0.008 | 0.365 | 0.624
T = 1000 0 0.985 | 0.015 0 0 0 0 1
3 T =100 0.323 | 0.658 | 0.019 0 0 0.004 | 0.010 | 0.986
T = 1000 0.747 | 0.253 | 0.001 0 0 0 0 1

Table 1: Distributions of the estimated dimension of the cointegrating space
and the estimated system order for Schemes 1,2 and 3 and sample sizes
T =100 and T = 1000 respectively.

Scheme 1 2 3
Sample size || T=100 | T=1000 || T=100 | T =1000 || T =100 | T' = 1000
0.767 0.772 0.314 0.494 0.006 0.029

Table 2: Percentage of a correct estimation of the dimension of the cointe-
grating space when the threshold log(T')/T is used.

here shows good performance for all situations. For the first two examples
it happens to be the case, that log(T)? has the same magnitude as the 95%
percentile of the asymptotic expression. By bootstrapping this percentile can
be estimated to be approximately 34 for Scheme 1 with cointegrating rank
r = 2 and approximately 35 for Scheme 2 having cointegrating rank r = 1. A
comparison of these numbers with log(100)? = 21.20 and log(1000)? = 47.7
explains the performance in these cases. Table 2 shows the frequency of a
correct estimate of the dimension of the cointegrating space using the thresh-
old log(T)/T. It is still observed, that the estimation accuracy increases with
increasing sample size, although log(T)/T is by no means a good choice as
a threshold for the examples at hand. The simulations indicate, that the
estimation algorithms perform reasonably well for the case of a high dimen-
sional cointegrating space, whereas in the presence of many common trends
the performance deteriorates.

Corresponding to the order estimation procedure it is remarkable that for
T = 1000 in all cases the correct system order is detected. This demonstrates,
that the order estimation procedure works satisfactory for large sample sizes,
which can also clearly be seen from a plot of the estimated singular values.
Figure 1 shows two examples of such plots. It can clearly be seen, that for
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Figure 1: Estimated singular values for scheme 1 (left plot) and scheme 2
(right plot) for one example and sample size 7' = 100 (o) and 7" = 1000 (x)
respectively.

sample size T = 1000 the gap between the third and the fourth singular
value is very pronounced, which is reflected by the order estimates. The
graphical information presented in Figure 1 gives, especially for T' = 1000, a
clear indication about the number of singular values equal to 1, and therefore
about the dimension of the cointegrating spaces. Note however that the two
plots for sample size 7" = 100 are quite similar, indicating the difficulty of
estimating the cointegration rank for this sample size. Additional information
can be gained from a plot of the eigenvalues of the estimated matrix A. For
Scheme 1 this can be seen in Figure 2, which plots the eigenvalues of the
estimated matrices A for sample size ' = 100 (left plot) and 7" = 1000 (right
plot). The three eigenvalues are ordered in size and the largest eigenvalue
is indicated with '+, the second largest with 'o’ and the smallest with x’.
It can be clearly seen that the only possible unit root is located at z = 1.
It can also be seen, that the information at sample size T = 100 is quite
ambiguous, whereas for sample size 7" = 1000 the plot clearly shows the unit
root at z = 1. Note that the true eigenvalues are at z = 1,z = 0.8 and
z = 0.7 respectively.

Finally also the estimation of the cointegrating space is investigated. Ta-
ble 3 summarizes the results: For both systems with cointegration the mean
of the Hausdorff distance between the estimated and the true cointegrating
spaces is decreasing with sample size, which reflects the consistency of the
estimates. Again it can be seen that the subspace procedure performs satis-
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Eignevalues of A, T=100 Eignevalues of A, T=1000
T T T T T

Imaginary part
.

I . . 1 1 —0.08 I . 1 . I . 1 . I
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Real part Real part

Figure 2: Estimated eigenvalues for Scheme 1 and sample sizes T' = 100 (left
plot) and sample size T' = 1000 (right plot).

Sample size | T'=100 | T"= 1000
Scheme 1 0.070 0.006
Scheme 2 0.196 0.015

Table 3: Mean of the Hausdorff distances between the estimated and the
true cointegrating space for the first two schemes and the two sample sizes
T =100 and T = 1000 respectively.

factorily especially in cases with few common trends. Problems seem to arise
for small sample sizes and low dimensional cointegrating spaces.

As already noted in the introduction, in the cointegration literature the
Johansen procedure is the by far most widely used method, therefore we also
compare our method with this method on the simulated data. The results
obtained by the Johansen method are documented in Table 4. The order of
the AR model is chosen using AIC in each trial. The results show, that for the
first two systems the subspace procedure results in more reliable estimates
of the dimension of the cointegrating space. The dominance of the Johansen
procedure is pronounced in the case of no cointegration.

Let us now analyze the results for eight 2-dimensional ARMA(2,1) sys-
tems given in equation (18) in Appendix B. These systems have already been
analyzed in Wagner (1999a) where it is shown that the Johansen procedure
derives consistent estimates of the cointegrating space also for ARMA sys-
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Sample size T =100 T = 1000

Coint. dim. 0 1 2 3 0 1 2 3
Sch. 1 0.187 | 0.484 | 0.294 | 0.035 0 0 0.93 | 0.07
Sch. 2 0.394 | 0.575 | 0.029 | 0.002 0 0.936 | 0.063 | 0.001
Sch. 3 0.962 | 0.035 | 0.003 0 0.942 | 0.035 | 0.003 0

Table 4: Frequencies of estimated dimensions of the cointegrating space for
Schemes 1 to 3 and sample sizes T'= 100 and 7" = 1000 using the Johansen
method.

tems, given that the moving average polynomial is regular at z = 1. In that
paper the systems have been used to investigate the finite sample implica-
tions of the theoretical robustness results. To assess the effect of the moving
average polynomials, the simulations are performed over a set of ARMA
systems where only the moving average polynomial is changed.

Here we use these systems to compare the performance of the subspace
procedure with that of the Johansen procedure, to see whether our method
produces possibly more reliable results in cases where the VAR based Jo-
hansen procedure operates on misspecified models. For the Johansen proce-
dure it has been shown that only the estimates of the cointegrating space are
consistent under the assumed form of misspecification, whereas of course our
approach derives consistent estimates of the whole system. The simulations
are performed for four different sample sizes 7" = 100, 200, 300 and 400.
Again the orders of the autoregressive approximation of the ARMA systems
are selected according to AIC, the orders are given in Appendix B in Table 6
for these systems. The number of replications is 1000. The threshold A(T)
for the subspace procedure in these simulations is chosen to be log(7)/T. In
Figure 3 the acceptance frequencies for a 1-dimensional cointegrating space
are shown for both procedures.’

The systems all have the same 1-dimensional cointegrating space. It can
be seen that the nominal size is closer to the actual size for the Johansen
procedure than for the subspace procedure only for systems MA1 and MA2.
For systems MA3 to MAS8 the performance of the two procedures is quite
identical, with the subspace method showing better results already for the

8 Time series with length 450 are generated, the first 50 observations are dropped, and
then the first 100, 200 and so on observations are used to compute the estimates and test
statistics.

9The labels MA1 to MAS8 indicate the different systems.
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Figure 3: Acceptance frequencies for the correct number of cointegrating
vectors for the 2-dimensional ARMA systems for all sample sizes. The left
picture corresponds to the Johansen procedure (using the trace test), the
right picture corresponds to the subspace procedure.

smaller sample sizes for these systems. The system MA4, the results for
which are drawn in black in Figure 3, is a pure autoregressive system. Also
for that system the performance of the subspace procedure is comparable to
the results for the Johansen procedure. So, at least for these 2-dimensional
systems the estimation of the dimension of the cointegrating space as de-
scribed in the last section turns out to work reasonably well.
In Figure 4 the quality of the approximation of the true cointegrating space
by the estimated cointegrating space is displayed. The measure of quality is
the mean of the log of the Hausdorff distances between the estimated and
true cointegrating space over all replications.'®

The logarithm is taken to increase the sample variability of the obser-
vations, since prior to this transformation all observations are very close to
0.! Looking at the figure it can be seen that the performance is first of all
very good for both methods, for all sample sizes and all moving average poly-
nomials, and that the performance of both procedures is very similar.'? In
Figure 4 the two dotted lines around the solid line corresponding to the Jo-

~9 ~D
. Gon Goub . ~D ~D .
hansen procedure are given by +24/ 7fe& + ¢t with 67, and 7}, denoting

the estimated variances of the distributions of the log Hausdorff distances for

10Tn Bauer and Wagner (1999b) more detailed results of simulation studies, including
e.g. the empirical densities of the log Hausdorff distances, are presented.

1 A Hausdorff distance of 0 means that the spaces are identical.

2Note the scale of the graphs, with a range between -7.3 and -6.6 for T = 100 and
between -8.50 and -8.06 for 7" = 400.
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Figure 4: Means of the empirical densities of the log of the Hausdorff
distances between the true and estimated cointegrating spaces for the 2-
dimensional ARMA systems. The densities are computed over all replica-
tions where in each replication the correct number of cointegrating vectors
is taken. The dashed line corresponds to the subspace procedure, the solid
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the Johansen and the subspace procedure respectively. These lines are graph-
ically indicating the acceptance and critical region for a test of equality of
the means of the two distributions, for all eight systems. The null hypothesis
of an equal mean is only rejected for systems MA1, MA6 and MA7. Thus for
the 2-dimensional systems the subspace procedure is almost perfectly compa-
rable to the Johansen procedure, with the advantage of obtaining consistent
estimates of all system parameters.

The results of the simulation study indicate that the estimated cointe-
grating spaces obtained by application of the subspace method are of high
quality, comparable to the ones obtained by the Johansen method. It is how-
ever required to gain further understanding of the properties of the methods
for systems that are not so well described by low order autoregressions. At
this point it may be worthwhile to mention that Wagner (1999b) compares
the Johansen and the Bierens procedure amongst other systems on the same
2-dimensional systems. It is found that for these systems the performance
of the Bierens procedure is much worse than for the Johansen or the sub-
space procedure. A more detailed account of the results of simulations of
the various methods and also of applications to interest rate data is given in
Bauer and Wagner (1999b). Especially the choice of the penalty term in the
estimation of the cointegrating rank deserves some further investigations.

5 Summary and conclusions

This paper establishes consistency for subspace methods in the context of
cointegrated time series. Also methods for estimating the dimension of the
cointegrating space and the system order at the same time are developed and
analyzed. The significance of these results lies in the fact, that the algorithm
provides consistent estimates in the case of general ARMA systems and is
thus not limited to AR processes such as the Johansen approach. The com-
putationally cheap subspace estimates can e.g. also be used as consistent
initial values to obtain efficient estimates of the parameters performing one
Newton step for maximum likelihood estimation.

The simulation evidence shows results for the subspace procedure that are
mostly comparable to the results for the Johansen method. However, fur-
ther understanding concerning the choice of an optimal penalty in deciding
about the number of singular values equal to one, which equals the number
of common trends, has to be gathered. One advantage of the algorithm is
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that it provides useful information on the structure of the cointegration and
on the order of the system, which is easily accessible via the estimated sin-
gular values. Note that also the estimated eigenvalues of the matrix A can
be used to decide on the order of cointegration. Thus the user obtains a
variety of easily accessible information on the dimension of the cointegrating
space. In Bauer and Wagner (1999b) it is demonstrated that the subspace
procedure gives sensible results also on real world, in that particular case,
interest rate data. Thus by application of subspace methods on cointegrated
processes one may be able to gain additional insights in the properties of
observed possibly cointegrated time series. Especially the applicability of
our method for general integrated processes of order 1 allows for at least a
“cross-validation” of the results obtained with more standard tools like e.g.
the Johansen method.

Further research is concentrated on three important questions not dealt with
in this contribution. One is the treatment of deterministic components, like
constants and trends. The second is the derivation of test (statistics) of hy-
potheses on the cointegrating space, which is closely linked to the derivation
of the asymptotic distribution of the estimates of the cointegrating space.
The third research field finally lies in the exploration of the applicability of
the subspace algorithms for processes arbitrary unit roots, i.e. processes with
seasonal unit roots as well as processes integrated of higher orders.

A Proofs

Theorem 2 Let y; be generated by a system of the form (1), where the ergodic
noise € fulfills the standard assumptions. Assume, that the order n of the true
transfer function ko is known, and that p = p(T) = o((logT)*) for some 0 <
a < oo, f > n fivred. Furthermore assume, that diag((I — z),I1)Cko(z) lies in
the generic neighborhood of the echelon canonical form. Then the estimate Er+
C’T(ZI — AT)_IK'T converges in probability to the true transfer function, if the
unrestricted regression approach is used.

If in addition the multiplicity r of the unit root is known, then the same result
holds, if the reduced rank regression is used to obtain estimates Ar and K.

The cointegrating space (which is equal to the orthogonal complement of the
column span of C1, the first r columns of C) is estimated at rate T, i.e. T® [C’T,l —
C1] — 0 in probability for 0 < a < 1.

Proof: The arguments developed below for integrated processes follow the
lines of Shin and Lee (1997), Liitkepohl and Saikkonen (1997) and Saikkonen and
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Luukkonen (1997). The key argument is the definition of transformations of Y;"}
and Y, defined in the main part of the paper, which separate the stationary and
nonstationary components of these random variables.

From the Granger representation theorem for cointegrated processes (of order 1)
it follows that y; = C1 Ky Zj-:l €1—j + kst(L)es, where kg (z) denotes the stable
part of transfer function and where C; € R**" K; € R™** C{Cy = I. In this
representation C] is not unique. Bauer and Wagner (1999a) show, how a unique
choice for C; can be obtained. Note, however, that the cointegrating space does
not depend on the choice of Cy. If Cy € R¥*(~7) where r is equal to the rank of
Ci, is such that C,Cy = I, C4Cy = 0, then, with C as defined in Section 1, in Cy;
the first 7 components are equal to 22:1 Kiei_j + 2, where z; = Clks(L)e; is
stationary. The remaining s — r components are stationary. Thus the dimension
of the cointegrating space is equal to s —r. Then there exists a selector matrix
Sy € R**/$ such that in Z;"f =SrI® C']Ytj} the first fr rows correspond to the
nonstationary part of the time series, whereas in the remaining f(s — r) rows the
stationary factors appear. Thus Z;L 7 is of the form

I Kier Clksi(L)es
; t—2 t;ffZ ! '
= I K (Z - 8') C k‘st(L)E -1
+ _ . 1 =t—-1°¢%j 1 t+f
Zt,f —lo (JE:O Kiej) + JO + Chkst(L)ey
| 0 ] i 0 1 L Coks(L)erip—1 |

Define Q; € R/™%IT to be the block Toeplitz matrix, whose (i,) block is equal to
I, the r x r identity matrix and the (i + 1,%) block equal to —I;, the remaining
blocks being zero. Then Z:' ;= diag(Qy, I f(s_r))Z:' 7> 80 it can be represented as

B ) ]
0 Kiei 1 Clkst(L)ey
Cikst(L)A8t+1
t—2 :
Zt—i,_f - (Z Kig;)+ | Kier—oqy | + | Clks(L)Aeiip
J=0 0 Cék’st(L)St
6 - 0 g L CékSt(L)et-f—f—l
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Here A =1 — L denotes the first difference operator. Analogously the vector Y;"}
can be transformed to Z; , = Qp5pY; ,, which is given by

! 0 [ Oikst(L)et 1
0 K18t72 C{kst(L)Ac‘ft,l
Zyp = O Kigj) + | Kievp | + | Clhat(L)Agy_pia
= 0 Cékst(L)&ftfl
L 0 . L 0 | L Cék‘st(L)Et_p

Let Dy = diag(Tfan,Tfl/?Ifs,r), where T denotes sample size. From the con-
struction of Z: rand Z, , it follows that only the first  components are nonstation-
ary, whereas the remaining components are stationary. Hence the normalization.
Let (at,bs) = Zthl aibi. Then Dy (Z; ez f)D'T converges in distribution to '},
where

f= +
0 I';

o | K [y W)W (r)drK} 0

Here fol W (r)W (r)'dr denotes the stochastic integral of the Brownian motion
W (r), which is the limit of ﬁ EtLT;J vy, where vy is i.i.d. with unit variance.!? f‘;{
denotes the covariance matrix of the stationary process composed of the last fs—

components of Z +f The convergence of these matrices is ensured by the condltlons
on the noise and the asymptotic results for nonstationary processes stated e.g. in
Phillips and Solo (1992), Davidson (1994) or Johansen (1995). The off-diagonal en-
tries converge to zero, since they consist of sums of products of nonstationary and
stationary processes, normalized by 73/2. In order to simplify the analysis of the
asymptotic distribution let &7 = 7 3°,(30"5 Kig;) (315 Kig;)'. Clearly &7 is
the (appropriately scaled) dominant term in the nonstationary component of both

Z:f and Z; ,,. Further let Dp = diag(@%l/QT_l, T='/21).'* Then 1~7T<Zt+f, Z f)DT

converges to diag([, f‘}') in probability. Thus consider the difference

I 0
Dr(Z},, 2} ) Dr - [o f?]

13| x| denotes the smallest integer equal or larger than z.
MTn order to simplify notation, the symbol Dy will be used for any matrix of the form
diag(®, e e Ve | ), irrespective of the dimension of the second block.
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Denoting n; = E;;% Kie; we obtain for the (1, 1) block of this expression

T T
—1/2pn— - ~1/2n— -
@ /12 Z(nt +v1)(ne + ) | (@ 1/2)' -5 /T ZZntni(‘I’ 1/2)'
Here v; stands for all stationary contributions. Thus we obtain 72 ZtT:o @;1/ 2 (nyvy+

vny + Ut’l)é)(@;l/ 2)' . This matrix converges, when multiplied by T, in distribution

to a random variable, since T~! Ztho nyvy converges in distribution, see e.g. The-
orem B.13 in Johansen (1995). The (2,1) (and the (1,2) block, which is the
transpose thereof) are of the form 7'—3/2 Z?:o <I>;1/ Zntvé. Here v; again stands for
a stationary variable (not the same as before, though). It follows, that 7'/ times
this expression converges in distribution. Finally the (2,2) term is the sample co-
variance of a stationary process and thus the error converges in distribution, when
multiplied by T'*/2. Taking the Cholesky factor as the square root of a matrix,
we obtain that DT(Z:f, Z{f)l/2 converges in probability to diag(Z, (f‘?)lﬂ), and
again the blocks are of the same order of convergence.

The same arguments apply to ﬁT(Zg o 2t p)ﬁ} — I'y, where T, has a block
structure analogous to F}'. Since I';; and F}' are nonsingular a.s. the same result
for the inverses of these matrices follows from the continuous mapping theorem.

The remaining term, which has to be considered, consists of Dr(Z," Fx2y p)b'T.
Completely the same arguments as for the other terms show, that f)T(Z:' 2 Zy, p)f)} -
Hp, which is given by
I 0
Hin = [ 0 7:[f,p ]

Here again A f,p corresponds to the stationary part. Note, that the matrix, on
which the singular value decomposition is performed in the subspace algorithm is
equal to
+ vA\-1/2/yv4+ v - v—\—1/2
<Y;:,faY7-j,f> / <}ft,fay;t,p>(<}/;,pa}/;,p> / )I
The left singular vectors of this matrix are equal to the eigenvectors of the matrix

A~

Xro= (Y Vi) =Y Vg WY, Vi)™ (Y, Y (Y Vi) =2
= (Z 1 2,) / (Z 1 Ze g Z s Zg )~ <Zt,p’Z1i—f>(<Z:—f’Zt_i—f>71/2)l

where the second expression can be analyzed more easily due to the fact, that in
Z;, the increase of p(T') as a function of the sample size T" only occurs in the rows
corresponding to the stationary part and thus can be handled using the methods
developed for the stationary case in e.g. Bauer et al. (1999). From the results
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given above, it follows that this matrix converges to

I 0

0 (TF) VP H100(D) ™ HY oo (CF)7H2)
(10)

due to the continuous mapping theorem. Convergence is in distribution and since

the matrix is deterministic also in probability. Also the rate of convergence can be

investigated using the facts derived above. Let Xy denote the limiting expression.

Then XT—X():
= (284 2 )" N2 20 ) (2 Zy) " 20, 2 N2, 25 )
I 0
_[0 (O VP H 00 (Do) Hy oo (TF)12) ]

()™M 00 (T) ™ oo ()72 =

- {(M(zif,z:f)l/?)‘l—[é (f;? 12 ]}[é gf,w(fgo)_lﬁqm((m 2y ]+
o oy | a2 i 2 2 2D
r o0 I 0
o A ]Ho o )w]+
(6 e, S, (@O a = [ )

Here = has to be understood in the following sense: In the (1,1) sub-block
= denotes equality up to terms of order Op(T~!), in the remaining blocks =
stands for equality up to terms of order Op (T‘l/ 2). This follows from a repeated
application of the same reasoning as has been given above for ﬁT(Z N f)DT.
One technical complication lies in the fact, that p = p(T') has to tend to 1nﬁnity
at a certain rate of the sample size (see Theorem 1) in order to ensure consistency.
However the increase of dimensions only concerns the stationary part of the process
and thus can be treated with the same tools as used in the stationary case.

In subspace algorithms an eigenvalue decomposition is performed on Xr. For
the limit X the first r eigenvalues are equal to 1, the corresponding eigenvec-
tors span the space corresponding to the first r vectors of the canonical ba-
sis. With regard to the remaining eigenvalues and -vectors note that the term
(I‘+) 1/ 2’Hf (T,)~ 1/2)" corresponds to the stationary transfer function

zI O]Ck()

%(z):[IO
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as can be shown from the definition of Z," ; and Z; . The transfer function k(z) is
of order n. This can be seen by considering the non-minimal representation

[ 0 o] [KT N L
A= 0 Ast 0|,K= Kt aC:|:(O>aCCSta_<O):|7E:C
I ClCy 0 c!

of k(z) '°. Here the realization (A, K, C, E) of k(z) is used, where

{0 | Ki _ _
A_[O Ast:|,K—[Kst],C—[Cl,Cst],E—I

From the expressions for th,L f and Z; , and realization theory for the station-
ary case it follows, that H.o((T'5)~/?)" is equal to a part of the Hankel ma-
trix of the Markov parameters corresponding to k(z) times an orthonormal ma-
trix, which arises because of the specific choice for the square root of I' . If

k(z) € M(n) is in the generic neighborhood of the echelon canonical forms, then
it follows that ;o ((T's) /)" is of rank n — r, since it is, up to the orthonor-
mal transformation, essentially the Hankel matrix, where the first r rows have
been omitted. Therefore the number of nonzero singular values of the limit of
Xr = (<Y2},Y2})_1/2<Y5},Y;;)((Y&,,Yt;,)_lﬂ)’ will (generically) be equal to n,
the order of the system.

From equation (10) it thus follows, that the SVD leads to a factorization

—~1/2 —\—1/2y¢t I U I 0
TP ()2 = ()20, ] [0 Icp(f—)l/Q]

p

Here Oy and K, correspond to the decomposition of the stationary part. From
the definition of A and C it follows, that CA = [0,CCyAg — [ é ] C1Cs,0] and

thus only the n — r columns in the middle of O; contribute to ﬁf’p((f‘;)_lﬂ)'. It

follows from the definition of A and K, that the middle rows of ~C~ correspond to
the controllability matrix corresponding to ky. Therefore Coo((I'™)~1/2) Zyoo =

Koo (T7)Y/ ?Zi; s = T1,st, the stationary part of the state. Which particular realiza-
tion Ay, Ky is used, is determined by the SVD. Furthermore the convergence of
the matrix (¥;%, Y,5)"V2(Y,5, Y ) (Y, Vi) ™ (Y, Yih) (Y, Y1) ~1/2) implics
the convergence of the eigenvalues and also the eigenspaces. Thus let U,, denote
the matrix, whose columns correspond to the eigenvectors to the n dominant eigen-
values. Then the following lemma (see e.g. Chatelin, 1983) provides tools to assess

the estimation error.

15Non-minimal means that there exists a state space representation of lower state di-
mension, which corresponds to the same transfer function.
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Lemma 1 Let Xy denote a symmetric, positive definite compact linear operator
and let Xp denote a sequence of symmeltric, positive definite compact operators
converging to Xo. Let Ay > -++ > A > 0 denote the k, say, distinct non-zero
eigenvalues of Xo having geometric and algebraic multiplicities equal to k; say.
Further let P; denote the (orthogonal) projection onto the eigenspace corresponding
to the eigenvalue \; of Xo. Furthermore let Xi,j and If’Z denote the corresponding
approzimating quantities calculated from Xr. Then:

~

® )\ j — X\, i.e. the eigenvalues converge to the true eigenvalues.

e P, — P;, where convergence is in the gap metric

Furthermore the following first order approzximations hold:

k,
1 <= 1 N
E Z )\i,j = N+ Etr[(XT — X())]Dz] (11)
7 ]:1 3
R 1 .
b = P+ Y ——PXr—XP, (12)
XA A=A

From the lemma it follows that (for 7" large enough with probability one) there

. . . & = PSRN I 0 .
exists a nonsingular matrix St, such that U, = U,St = [ ~ ~ ], which
Un,l Un,2
. - I 0 A
converges in probability to Uy = o T | Here again Uj corresponds to the
0

stationary part. The results in gChatelin 1983, Proposition 3.25) further show,
that the entries of the matrix U, are analytic functions of the entries in X7p.
Consider the estimate

B = UL Y A Y)Y Y)Yy

6L 7S 6Lt t,p
T —~1/2 — — e\l
= U, <Z:f’Zt+,f> /<Z:f’Zt,p><Zt,p’Zt,p> Zt,p

= ﬁﬂztff’ Z;,rf>_1/2<(W;r)_1U0$t + EE:f’ thp)(ztjp’ ZI;I))_IZtTp

Here the limit of f);l(Z;'f,Z;Lf)_l/z is denoted with W;' Recall that z; =

I@thoo = I@,,Zttp + (A — KE'0)Pz4_,. Therefore ﬁ;lit — Ty =

— D;lﬁ,’lw;f, ztjf)—l/2<(Wf+)—1an;t + SE;jf, Zi N Zi s thp)—lztjp —

= (DF'UZ} 2y POV ) U = DKo Zips Zip W i Zi) 2y
+D; U2}, ng)—1/2<5fEtff, Zy N2y 2y ) 2, — (A= KE7'C)Pzyp +
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+D5' U Z, 2 )™ AW ) T Uo(A — KE™ OV (w1, Zip)(Ziys Zip) ™ 2y
— (BRUZ Z) W) Vo~ DRy 2y — (A= KE™CPayy +
+D, U Z, 2, )7 (W) ™ U (A — KE YOV 24—p, Zy ) 2y s 2y ) 2,

+D 1Ul< tfaZf> 1/2<gf tfa )<th,Z ) 1Zt?p

This fact is exploited to show that a regression of the system equations can be
used to obtain a consistent estimate of the transfer function. Consider therefore
the regression in the observation equation:

T
CrDr—Co = (Y (y:— CoD7':)21) (Y &) Dr

It follows from the definition of &, that (%, Z;) converges to a deterministic limit,
say P, which is nonsingular. It follows from standard arguments, that (e, Z;)
converges in distribution. Considering the expression given above one can show,
that (D 'd; — x4,%;) converges in distribution, if p = p(T) > _dlcl)_(;gho% Thus
we impose a stronger requirement on the increase of the integer p in order to
ensure, that ||(A — KE 'C)P|| tends to zero faster than 7 1. Therefore CrDr
converges in probability to Cy and furthermore (CTDT — Cy)D T converges in
distribution, establishing the familiar convergence of order T for the complement
of the cointegrating space (and thus also for the cointegrating space).

Note that y; — CTCCt Cri+e— CTDTD Ty = (C CTDT)CCt + CTDT(:Bt
D;'ay) + . Since 1/T(e,e) — Q, where convergence is in probability, the
consistency of 1/T(é,€;) follows from application of the arguments given above,
the consistency for CTDT and the expression obtained for D 14, — 2;. Therefore
also the estimates ET are consistent.

It remains to consider the estimation of A and K. Concerning Ap note, that
the normalization of Z; implies, that D:F YA Dy is the relevant quantity. Note that
D;IAODT = Aj due to the block diagonal structure of Ay. Thus consider
DiYArDr — Ay = (Dp'@er — AoDptiy, i) (2, 44) " Dr
Dr'dir — To41, 80) (e, 80) "' Dr +
+(Ao(mr — D7) &, 24) (&1, @) "' Dr + (Koer, 8¢) (&, 8¢) ' Dr

It follows from standard arguments, that all these terms converge to zero in prob-
ablhty (using the expression for D 1%, — z; and the analogous expression for
D Y1 — z¢4+1). Note that the estimate Ap will have roots strictly inside the
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unit circle, as it is derived from an autoregression. However, usually the main
emphasis is put on the estimation of the cointegrating vectors, such that the fact,
that the eigenvalues of the estimate Ar are smaller than one might be thought
of as a minor problem. Alternatively the moduli of the eigenvalues of Ar contain
information about the cointegrating rank.

Finally also the consistency of Ky is shown: Note, that & = E~'(y, — Criy)
is uncorrelated with Z;, since €; denotes the residuals of the first regression, where
2 were used as regressors. The relevant quantity in accordance with the results
for Ay and Cr is equal to f);lffT. Therefore consider

Di'Kr = () Dp'aea&)(1/T) &)
t t
- (T—lz(D;%tH—(A—KE—lC)D Al T_IZété’ -

t
= 7! Z (Dy'dt1 — 1) E4(T th
t
+T~ 12[ (A— KE'C)(x — Dy'dy) + KegJef(T™1 ) &6
t

Tedious but straightforward calculations show, that also this expression converges
to Ky in probability. It remains to proof the result for the constrained procedure,
i.e. for the case, where the true number of common trends is known. The proof
of consistency follows from straightforward arguments usmg the consistency of the
state estimation as apparent from the equation for D 1%, — z; and the consistency
of e.g. the Johansen procedure, which is in fact a reduced rank regression problem.
This completes the proof.

REMARK: Note however, that the proof only shows the consistency for the
transfer function estimates. The system description (AT, KT, C’T, E’T) on the con-
trary will be divergent. One way to obtain also consistent estimates of the system
description is to transform the estimates to a canonical form, e.g. echelon canon-
ical form (see e.g. Hannan and Deistler, 1988), then the proof given above shows
the consistency for the estimated system matrices on a generic subset. Note that
the echelon canonical form can easily be transformed to an ARMA representation,
if this is the preferred system representation.

Theorem 3 Let the process y; be generated by a system of the form (1), where
the true noise satisfies the standard assumptions. Let &; denote the estimate of
the i-th singular value and let r denote the true number of common trends. Then
T(1-1 Z;-:l 6?) is (asymptotically) distributed as

1
Lot ac( /0 W (1) W () dw) ] (13)
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Here fol W (w)W (w)Tdw denotes a mizture of Brownian motions, where the co-
variance associated with W (w) is equal to K1 K. Q = EE' denotes the innovation
covariance matric.

Proof: The asymptotic properties of the eigenvalues (or equivalently singular
values) have already been investigated in equation (11) in the proof of Theorem 2
in this appendix. Thus we have to evaluate tr[P; (X — X)], which can easily be
seen to be equal to tr[X'ql:l - Xé’l], where the superscript 1! denotes the (1,1)
block of the respective quantities. Let 2z, = Zt_l Kiej + Clks(L)e; denote the
vector of the first r components of Z e Then it is straightforward to see, that the
relevant quantity is equal to

(I —(Zy s Zy )~ (Zpy 2 ?)(z'?,z?) 1<ZfaZ£p)]=

—tr{(z, %)~ 1{<zt ) = Zy N Zr s Zig) ™ Zy s )]

Let the first r rows of Z, , be denoted by 2, = E;;% Kiej+ Ciks(L)et—1. Then
it follows that z;" = z; + Kigi—1 + Cikg(L)(1 — L)y = z; + CF Ay;. Denote
ay = CiAyta then <Z£|_,Z )<thaZ ) 1Zt?p = Z;_ —ag+ <ataZ )(th7Z ) 1Z15_p7
which shows that we have to cons1der

bl 25 ) T Han 25) + ae Zip(Zip, Ziy) ™ 2 200 )

The essential term in the second summand is seen to be equal to {(at, 2,7 ) — (at, a;) +

(at, Zy, "“)(met,Zt Sty YZ;, 5t ar), where Z, p’St denotes the stationary part of

Zy - Therefore up to first order approximation we obtain
. 3 t ) t ] t ) t
T(1-- Z = —tr (' 20) e, ar) = ar, 2" N2, 2,7 2,5 an))]

Now the result follows from the facts, that 1/72(z;", z;") A fol W (w)W (w) dw, a;
and Z; p’St are stationary and &; are the innovations of the process, whose com-

ponents form Zy, p’St and on which a; is a linear transformation. The claim then
follows from the continuous mapping theorem.

Theorem 4 Under the conditions of Theorem 2 the estimate of the order obtained
by SV C is weakly consistent, i.e. . — n in probability.

Proof: Consider the matrices XT and the corresponding limit X, defined

in the proof of Theorem 2. Since the rank of X, is equal to n and Xr = X,
in probability, the probability that # < n tends to zero. It remains to proof
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that the probability of over-estimation of the order tends to zero. Overestimation
occurs, if the decrease of the criterion function SV C(n) for 71 > n is higher than
the increase due to the inclusion of more parameters, which is penalized by the
amount Cr for each parameter. Thus consistency is established by showing that
the maximal estimation error in the elements of the matrix, which is decomposed
in the SVD, tends to zero quicker than 1/Cr/p(T)T in probability. It follows from
the proof of Theorem 2 and the proof in the stationary case that for each element
of X7 — X the probability that the error is bigger than ey/C7/p(T)T tends to zero
for all € > 0 uniformly in the elements. Here we have used the fact that if a; and
b; are stationary processes with rational spectral density and innovations having
finite fourth moments, then there exists a constant M such that the probability
that max; <z, /T/loglog T|| 7 S atby_; — Eatb, ;|| > M tends to zero for
Hr = o(logT?%) for some constant a < oo. Therefore the probability that the
square of the Frobenius norm of this matrix is larger than €7'/loglog T'p(T) tends
to zero for Cr/ploglog T — oo as it is the sum of fps? terms of the specified order,
which proves the conjecture.

B Simulated systems

In this appendix the simulated systems are described.
The systems taken from Saikkonen and Luukkonen (1997) are the following 3-
dimensional VARMA(1,1) processes:

Ay =Ty 1+ e —Tig—q (14)

with 9 = y—1 = 0 and & normally independently distributed N(0,%). The
parameter matrices are defined as follows, I'y = C,diag(0.297, —0.202,0)C ! where

—0.816 —0.657 —0.822
C,=| —0624 —0.785 0.566 (15)
—0.488 0475  0.174

0.47 0.20 0.18
= 020 0.32 027 (16)
0.18 0.27 0.30

and ¥ = Ndiag(¢1, po, p3) N1 — I3 with

—0.29 —0.47 —0.57
N 't=1[ —001 —0.85 1.00 (17)
—0.75 1.39 —0.55
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Scheme | ¢ | ¢ | @3
1/1.0]08]0.7
2|11.0]1.0]0.7
311.0]1.0|1.0

Table 5: Parameter values ¢; for Schemes 1 to 3.

MA1 MA2 MA3 MA4 MA5 MA6 MAT7 MAS
100 2 2 2 2 2 3 4 5

200 3 2 2 2 2 4 4 4
300 3 2 2 2 2 4 4 7
400 3 2 2 2 2 4 4 7

Table 6: Selected autoregressive order of an autoregressive approximation of
systems (18) for different sample sizes using AIC.

The 3 sets of parameters ¢; are given in Table 5.

The number of parameters ¢; less than unity corresponds to the number of
cointegrating relationships.

The 2-dimensional ARMA(2,1) systems that have been simulated are taken
from Wagner (1999a) and are given in equation (18)

EREIREIE A
-1 3 Yat Ugt 0 0.5 Ugt—1
—-0.5 0 U2 E1t ] [ 7 0 ] [ €141 ]
+ + + 18
[ 0 0 ] [ Unt—2 ] [ €2t 0 72 ][ €2 (18)
The parameter values 7,72 in the MA polynomials are given by v = 72 =

—0.8,—-0.5. — 0.2,0,0.2,0.5,0.8, and 73 = 1 and v = 0.8. The initial values
are set to 0 and the ¢; are standard normally independently distributed.

In the figures and tables the systems are referred to as MA1 to MA8. The
true cointegrating vector of the systems is, suitably normalized, given by (1, —3).
For the Johansen procedure the order of an autoregressive approximation of the
systems has to be chosen. The orders are selected according to AIC6, the chosen
orders (for the different sample sizes) are given in Table 6. In Table 6 it can be

16The results are essentially unchanged if one selects the order according to e.g. BIC.
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seen that only for the systems with large positive autocorrelation of the ¢4’s large
lag lengths tend to be chosen.
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