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Abstract

We examine the asymptotic and finite-sample properties of tests for equal forecast accuracy and

encompassing applied to 1-step ahead forecasts from nested parametric models.  We first derive the asymp-

totic distributions of two standard tests and one new test of encompassing.  Tables of asymptotically valid

critical values are provided.  Monte Carlo methods are then used to evaluate the size and power of the tests

of equal forecast accuracy and encompassing.  The simulations indicate that post-sample tests can be

reasonably well sized.  Of the post-sample tests considered, the encompassing test proposed in this paper is

the most powerful.  We conclude with an empirical application regarding the predictive content of

unemployment for inflation.
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1.  Introduction

Since the influential work of Meese and Rogoff (1983, 1988), it has become common to

use comparisons of out-of-sample forecasts to determine whether one variable has predictive

power for another.1  Typically, this out-of-sample comparison is made in two stages.  First,

forecasts of the variable of interest are constructed once using a model that includes a variable

with putative predictive content and then a second time excluding that variable.  Second, given

the two sequences of forecast errors, tests of equal forecast accuracy or forecast encompassing

are conducted.  This out-of-sample approach is explicitly advocated by Ashley, Granger, and

Schmalensee (1980), who argue that it is more in the spirit of the definition of Granger causality

to employ post-sample forecast tests than to employ the standard full-sample causality test.

Although post-sample tests of this type are increasingly used, little is known about their

effectiveness.  Virtually all evidence on the asymptotic and finite-sample behavior of tests of

equal forecast accuracy and encompassing pertain to forecasts from non-nested models.  Diebold

and Mariano (1995), West (1996, 1999), Harvey, Leybourne, and Newbold (1997, 1998), West

and McCracken (1998), Clark (1999), Corradi, Swanson, and Olivetti (1999), and McCracken

(1999a) each present results for non-nested forecasts.  Yet when the forecasting models are

nested rather than non-nested, many of the usual test statistics, such as the encompassing test of

Ericsson (1992), fail to converge to the standard normal distribution.2  This implies that critical

values taken from the standard normal distribution are asymptotically invalid for testing equal

accuracy or encompassing between forecasts from nested models.

                                                
1 Examples of studies using this methodology include Diebold and Rudebusch (1991), Amano and van Norden
(1995), Chinn and Meese (1995), Mark (1995), Krueger and Kuttner (1996), Blomberg and Hess (1997), Bram and
Ludvigson (1998), Berkowitz and Giorgianni (1999), Evans and Lyons (1999), and Kilian (1999).
2 One exception is the Chong and Hendry (1986) test of forecast encompassing.  West and McCracken (1998) show
that it can be asymptotically normal when applied to either nested or non-nested forecasts.  In our simulations
however, the power of this test was dominated by that of the other encompassing tests and hence has been excluded
in order to limit the number of tables.
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To fill the existing void, this paper examines the asymptotic and finite-sample properties

of tests for equal accuracy and encompassing applied to 1-step ahead forecasts from nested

parametric models.  We first derive the asymptotic distributions of two standard tests and one

new test of encompassing.  The standard tests are those proposed by Ericsson (1992) and

Harvey, Leybourne, and Newbold (1998).  The new statistic we propose is a variant of these two

tests.  As in West (1996, 1999), West and McCracken (1998), Corradi, Swanson, and Olivetti

(1999), and McCracken (1999a), the derived asymptotic distributions of the tests explicitly

account for the uncertainty introduced by parameter estimation.  To facilitate the use of the

limiting distributions derived here, asymptotically valid critical values are generated numerically

and reported in a set of tables.  Using the same basic framework, McCracken (1999b) develops

the asymptotic distributions and provides asymptotic critical values for tests of equal mean

squared error (MSE) proposed by Granger and Newbold (1977) and Diebold and Mariano

(1995), as well as a new F-type test.

We then evaluate the finite-sample size and size-adjusted power of these equal accuracy

and encompassing tests using Monte Carlo simulations based upon different VAR data-

generating processes.  For comparison, the set of tests also includes a full-sample F-test of

Granger causality.  The post-sample tests are evaluated using tabulated asymptotic critical values

provided in this paper and in McCracken (1999b).  For those post-sample tests that would be

asymptotically standard normal if the forecasting models were non-nested, we also compare the

statistics against standard normal critical values in order to evaluate whether using incorrect

critical values can yield misleading inferences.  Finally, to illustrate how the tests perform in

practical settings, each test is used to determine whether the unemployment rate has predictive

content for inflation in quarterly U.S. data.
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Our Monte Carlo analysis produces four key results.  First, in most settings, each of the

post-sample tests is reasonably well sized.  In many instances, the size distortions associated with

the post-sample tests are smaller than those associated with the full-sample F-test of causality.

Second, comparing the post-sample forecast statistics against the inappropriate standard normal

critical values makes the tests undersized.  Third, when the features of the data-generating

process make lag selection sufficiently imprecise, the post-sample tests suffer more substantial

size distortions and lose some of their advantage over the full-sample F-test of causality.

Accordingly, post-sample forecast tests are not necessarily a panacea for in-sample overfitting;

many of the problems that lead to in-sample overfitting also lead to post-sample overfitting.

Finally, the powers of the post-sample forecast tests permit some simple rankings, in which the

new encompassing statistic proposed in this paper is most powerful.  In some settings, the power

of the new encompassing test rivals the power of the full-sample F-test of causality even though

the full-sample test uses many more observations.

The remainder of the paper proceeds as follows.  Section 2 introduces the notation and

general environment under which the forecasts are generated and the tests of equal forecast

accuracy and encompassing are constructed.  Section 3 defines the test statistics considered and

provides the null asymptotic results.  In section 4 we present a Monte Carlo evaluation of the

finite-sample size and power properties of the tests.  Section 5 uses the tests to determine

whether the unemployment rate has predictive power for inflation.  Section 6 concludes.  Proofs

are contained within Appendix 1.  Appendix 2 contains further detail on one of the Lemmas.

2.  General Environment

In order to present the tests considered we first provide some general notation, describe

the forecasting schemes, and present the assumptions under which the asymptotic results are
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derived.

The sample of observations 1T
1t

'
t}z{ +

=  ≡ 1T
1t

'
tt }x,y{ +

=  includes a scalar random variable yt to

be predicted and a vector of predictors xt.  The data sample is divided into in-sample and out-of-

sample portions.  The in-sample observations span 1 to R.  Letting P denote the number of 1-step

ahead predictions, the out-of-sample observations span R + 1 through R + P.  The total number

of observations in the sample is R + P = T + 1.  The largest number of observations used to

estimate the model parameters is T = R + P - 1.

Forecasts of yt+1, t = R,… ,T, are generated using two parametric models, ),x(g *
i1ti β+  ≡

)(g *
i1t,i β+ , i = 1,2, each of which is estimated.  Model 2 is unrestricted and nests the restricted

model 1.  Under the null, model 2 includes k2 excess parameters.  Without loss of generality let

'
k1k1

*'
1

*
2 )0 ,(

21 ××β=β  (k1 + k2 = k×1) such that for all t, )(g *
11t,1 β+  = )(g *

21t,2 β+ .  Under the

alternative hypothesis, the k2 restrictions are not true, and model 2 is correct.

Following West and McCracken (1998), three forecast schemes are considered.  Under

the recursive scheme, each model’s parameters, *
iβ  i = 1,2, are estimated with added data as

forecasting moves forward through time.  The first prediction, )ˆ(g R,i1R,i β+ , is created using the

parameter estimate R,îβ  based on data from 1 to R.  The second prediction, )ˆ(g 1R,i2R,i ++ β , is

created using the parameter estimate 1R,î +β  based on data from 1 to 1R + .  In general, for t =

R,… ,T, the prediction of yt+1, )ˆ(g t,i1t,i β+ , is created using the parameter estimate t,îβ  based on

data from 1 to t.

Under the rolling scheme, model parameters are estimated using only the most recent R

observations.  The first prediction, )ˆ(g R,i1R,i β+ , is created using the parameter estimate R,îβ
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based on data from 1 to R.  The second prediction, )ˆ(g 1R,i2R,i ++ β , is created using the parameter

estimate 1R,î +β  based on data from 2 to R + 1.  In general, for t = R,… ,T, the prediction of yt+1,

)ˆ(g t,i1t,i β+ , is created using the parameter estimate t,îβ  based on data from t −  R + 1 to t.  Note

that under the rolling scheme the parameter estimate t,îβ  should also be subscripted by R in order

to reflect the width of the sample window.  To reduce notation we leave that subscript implicit.

Under the fixed scheme, each forecast is generated using parameters that are estimated

only once using data from 1 to R.  Hence for each prediction of yt+1, )ˆ(g t,i1t,i β+  = )ˆ(g R,i1t,i β+ ; the

prediction is created using the same parameter estimate t,îβ  = R,îβ  based on data from 1 to R.  As

was the case for the rolling scheme, under the fixed scheme the parameter estimates t,îβ  should

be subscripted by R.  To reduce notation we also leave this subscript implicit.

For each of the three forecasting schemes, the 1-step ahead forecast errors are

)ˆ(gyû t,11t,11t1t,1 β−= +++  and )ˆ(gyû t,21t,21t1t,2 β−= +++  for models 1 and 2, respectively.  Using

the two sequences of P forecast errors the out-of-sample tests of forecast accuracy and

encompassing are constructed.  In all cases the out-of-sample statistics rely on sums of functions

of these forecast errors.  To simplify notation, for any variable zt+1 we let ∑ +t 1tz  denote the

summation ∑ = +
T

Rt 1tz .  For example, the MSE for model i is MSEi ≡ ∑ = +
− T

Rt
2

1t,i
1 ûP  = ∑ +

−
t

2
1t,i

1 ûP .

Before getting to the assumptions some final notation is needed.  For any function f let

1t,if +  = )(f *
i1t,i β+ .  Let )(g i1t,,i β+β  = ii1t,i /)(g β∂β∂ + , )(g i1t,,i β+ββ  = '

ii1t,,i /)(g β∂β∂ +β , )(h i1t,i β+  =

)(g))(gy( i1t,,ii1t,i1t ββ− +β++ , )(q i1t,i β+  = )(g)(g i
'

1t,,ii1t,,i ββ +β+β  - )(g))(gy( i1t,,ii1t,i1t ββ− +ββ++ ,

and Bi =  1
1t,i )Eq( −

+ .  Let W(s) denote a (k2×1) vector standard Brownian Motion.  For any
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(m×n) matrix A with elements ai,j and column vectors aj let vec(A) denote the (mn×1) vector

''
n

'
2

'
1 ]a,...,a,a[  and let |A| denote |a|max j,ij,i .  Finally, under the null u1,t = u2,t ≡ ut.

Given the definitions and the three forecasting schemes described above, the following

five assumptions are used to derive the limiting distributions of encompassing tests presented in

Theorems 3.5, 3.6, and 3.7.  The assumptions are also sufficient for the results of McCracken

(1999b) when MSE is the measure of predictive ability.  The assumptions are intended to be only

sufficient, not necessary and sufficient.

Assumption 1: The parameter estimates t,îβ , i = 1,2, t = R,… ,T, satisfy *
it,î β−β  = )t(H)t(B ii .

For t,iβ&  on the line between t,îβ  and *
iβ , )t(H)t(B ii  equals )ht())(qt( t

1j j,i
11t

1j t,ij,i
1 ∑∑ β =

−−
=

− & ,

)hR())(qR( t
1Rtj j,i

11t
1Rtj t,ij,i

1 ∑∑ β +−=
−−

+−=
− & , and )hR())(qR( R

1j j,i
11R

1j t,ij,i
1 ∑∑ β =

−−
=

− & , respectively, for

the recursive, rolling, and fixed schemes.

The first assumption provides us with one primary piece of information.  Analytically it

tells us that the parameters must be estimated by OLS, NLLS, or maximum likelihood under

normality assumptions.  When a VAR is used, the system must be exactly identified.  These

restrictions are imposed to ensure that the statistics in Theorems 3.5-3.7 are pivotal.  As in

McCracken (1999b), achieving a limiting distribution that does not depend upon the data-

generating process requires that the loss function used to estimate the parameters be closely

related to the loss function used to measure predictive ability.  Each of the statistics in Theorems

3.5-3.7 are functions of squared forecast errors.  To achieve a pivotal statistic the parameters

must then be estimated using mean square error as the loss function.  Although this assumption

restricts how the parameters are estimated, it does not otherwise restrict the type of model.
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Single and multiple equation models as well as linear and nonlinear models are permitted.

Assumption 2: For i = 1,2, (a) ii Θ∈β , Θ i compact, (b) 2
it,it )](gy[E β−  is uniquely minimized

at i
*
i Θ∈β  with t,iEq  nonsingular, (c) In some open neighborhood Ni around *

iβ , and with

probability one 2
it,it )](gy[ β−  is twice continuously differentiable, (d) In the open

neighborhood Ni, and for all t there exists a positive random variable tm  such that

} |)q)(q||,g)(gmax{| t,iit,it,,iit,,i −β−β ββ  ≤ ϕβ−β ||m *
iit , tEm  < ∞  and 1 < ϕ < ∞ .

Most of Assumption 2 is imposed in order to ensure that the parameters are identified and

are consistently estimated.  It is directly comparable to Theorem (2.1) of Newey and McFadden

(1994).  The substantive components of this assumption are that the predictive function, )(g it,i β ,

is the conditional mean function and that it is twice continuously differentiable in the parameters.

Assumption 3: Let Ut = ''
t,ß2,t

''
tß,2,tß,2,

'
tß,2,tß,2,

''
t2,t2,

'
t2,t2,

'
t2,t ])gvec(u,)gEg-gvec(g,)hEh-hvec(h,h,[u β .

(a) EUt = 0, (b) Ut is uniformly L8 bounded, (c) 2
tEu  = σ2, (d) For some 8 > d > 2, Ut is strong

mixing with coefficients of size -8d/(8 - d), (e) ∑ =
−

∞→
T

1j
'
jj

1
T UUETiml  < ∞ .

Assumption 4: (a) '
t,2t,2 hEh  = t,2

2Eqσ  ≡ 1
2

2B −σ , (b) 1,2,...)=j ,q,h|h(E jt,2jt,2t,2 −−  = 0.

Both Assumptions 3 and 4 largely consist of technical conditions sufficient for the

application of an invariance principle.  Moreover they are sufficient for joint weak convergence

of partial sums and averages of these partial sums to Brownian Motion and integrals of these

Brownian Motion.  Assumption 3 is directly comparable to the assumptions in Hansen (1992)

and hence we are able to apply his Theorems (2.1) and (3.1).
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The reasons for imposing Assumption 4 are much the same as Assumption 1.  In order to

ensure that the limiting distribution does not depend upon the underlying data-generating process

we must impose some extra conditions.  Here we essentially require that the disturbances form a

conditionally homoskedastic martingale difference sequence.

Assumption 5: R/PlimT ∞→  = π, 0 < π < ∞ , 1)1( −π+≡λ .

This final assumption introduces the means by which the asymptotics are achieved.  As in

Ghysels and Hall (1990), West (1996), and White (1999) the limiting distribution results are

derived by imposing a slightly stronger condition than simply that the sample size, T+1, becomes

arbitrarily large.  Here we impose the additional condition that both the numbers of in-sample

(R) and out-of-sample (P) observations also become arbitrarily large at the same rate.  In this

way we ensure that the parameters estimated in-sample and certain out-of-sample averages are

both consistent estimators of their population level analogs.

Unless otherwise noted, the notation and assumptions presented in this section hold

throughout the remainder of the paper.

3.  Tests

While Ashley, Granger, and Schmalensee (1980) specifically advocate using tests of

equal forecast accuracy to examine causality, given their definition of causality, any test

designed to examine whether one variable carries information about another could reasonably be

used.  Accordingly, this paper considers the ability of full-sample Granger causality tests, equal

forecast accuracy tests, and forecast encompassing tests to determine whether one variable has

predictive power for another.  Since a large number of tests for equal accuracy and encompassing

already exist, for tractability the set examined is limited based on considerations of
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computational simplicity and performance in the non-nested investigations of Ericsson (1992),

Diebold and Mariano (1995), Harvey, Leybourne, and Newbold (1997, 1998) and Clark (1999).

In the results below, the tests are applied to 1-step ahead forecasts.  These findings should

be widely useful because, in practice, most forecast comparisons include 1-step ahead results.

Admittedly, many researchers are also interested in multi-step forecast results.  We do not

provide results for multi-step forecasts because the asymptotic distributions of the equal accuracy

and encompassing tests appear to depend on the parameters of the data-generating process.  For

practical purposes, such dependence eliminates the possibility of using asymptotically pivotal

approximations to test for equal accuracy or encompassing.  Lutkepohl and Burda (1997) note

similar difficulties associated with in-sample causality tests involving multi-step horizons.  For

those researchers interested in multi-step horizons, bootstrap procedures, such as those

developed in Ashley (1998) and Kilian (1999), may yield accurate inferences.

3.1  Granger Causality (GC) Tests

In this paper we focus on testing ex-ante forecasts for equal accuracy and encompassing.

However, for the sake of comparison we provide results for the commonly used full-sample F-

test of Granger causality, which we refer to as the GC test.  Letting t,1v̂  = )ˆ(gy PR,1t,1t +β−  and

)ˆ(gyv̂ PR,2t,2tt,2 +β−=  denote the residuals from two nested models estimated with the full

sample of R + P observations,

GC = 
∑+

∑+−∑+
⋅−+

+
=

−

+
=

−+
=

−

PR
1t

2
t,2

1

PR
1t

2
t,2

1PR
1t

2
t,1

1

2 v̂)PR(
v̂)PR(v̂)PR(

k
kPR

. (1)

Under the null that the k2 restrictions hold it is well known that, subject to certain conditions, the

GC statistic has an exact F( kPR,k 2 −+ ) distribution.  More generally, GCk 2 ⋅  converges in
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distribution to a chi-square variate with k2 degrees of freedom.3

We provide the formula in (1) for two key reasons.  First, it helps motivate the tests of

equal MSE detailed below (equations (3), (4) and (6)).  Second, it also helps motivate the tests of

encompassing considered below.  To see this, decompose the numerator of (1) as

∑+−∑+ +
=

−+
=

− PR
1t

2
t,2

1PR
1t

2
t,1

1 v̂)PR(v̂)PR(

= )v̂v̂v̂()PR()v̂v̂v̂()PR( PR
1t t,2t,1

2
t,2

1PR
1t t,2t,1

2
t,1

1 ∑ −+−∑ −+ +
=

−+
=

− . (2)

If, for example, the two nested models are linear and estimated by OLS then the latter right-hand

side term in (2) is numerically zero and hence the numerator of (1) is identically

)v̂v̂v̂()PR( PR
1t t,2t,1

2
t,1

1 ∑ −+ +
=

− .  This term is qualitatively similar to the orthogonality condition

used in the forecast encompassing tests (equations (7), (9) and (10)).4

3.2 The MSE-F Test

McCracken (1999b) develops an out-of-sample F-type test of equal MSE, given by

MSE-F = 
∑

∑−∑⋅
+

−
+

−
+

−

t
2

1t,2
1

t
2

1t,2
1

t
2

1t,1
1

ûP
ûPûP

P . (3)

This statistic is comparable to the full-sample GC test in (1) and offers the advantage of being

particularly simple to compute if forecast summary statistics are already available.  Using

assumptions broadly similar to those used in this paper, McCracken (1999b) shows that the

MSE-F statistic converges in distribution to a function of stochastic integrals of quadratics of

Brownian motion.  Under the null, the limiting distribution, which varies with the forecasting

scheme, is a function of the limit of the ratio of post-sample to in-sample observations, π, and

                                                
3 Comparing the statistic GCk 2 ⋅ against the chi-square distribution produces results very similar to those reported.
4 Various discussions in the literatures on encompassing and artificial regression tests of non-nested hypotheses
point out that encompassing tests are equivalent to F-type tests of exclusion restrictions.  Davidson and MacKinnon
(1993, pp. 386-87) summarize the basic point and relevant literature.
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excess parameters, k2, in model 2.

In the Monte Carlo experiments of section 4 the test statistic is compared against

asymptotic critical values tabulated by McCracken (1999b).  Since the models are nested, the

null hypothesis is 2
1t,1Eu +  ≤ 2

1t,2Eu +  and the alternative is 2
1t,1Eu +  > 2

1t,2Eu + .  The alternative is one-

sided because, if the restrictions imposed on model 1 are not true, there is no reason to expect

forecasts from model 1 to be superior to those from model 2.

3.3 The MSE-T Test

Letting 2
1t,2

2
1t,11t ûûd +++ −=  and d  = ∑ +

−
t 1t

1 dP  = MSE1 - MSE2, Diebold and Mariano

(1995) propose a t-statistic for equal MSE that, as calculated here, takes the form

MSE-T = 
∑ −

−
+

−
t

2
1t

1

2/1

)dd(P

d
)1P(  = 

∑ −−
∑ −

−
++

−

++
−

t
222

1t,2
2

1t,1
1

t
2

1t,2
2

1t,1
1

2/1

d)ûû(P

)ûû(P
)1P( .  (4)

Note that the term in front is 2/1)1P( − rather than 2/1P because, for computational convenience,

we calculate the test using standard regression methods (we regress 1td +  on a constant) in which

the estimated error variance incorporates a degrees-of-freedom adjustment.

While West (1996) proves that the MSE-T statistic can be asymptotically standard

normal when applied to non-nested forecasts, the asymptotic distribution is non-normal when the

forecasting models are nested under the null hypothesis.  The root of the problem is that, under

the null, )(g *
11t,1 β+  = )(g *

21t,2 β+  and thus both u1,t+1 = )(gy *
11t,11t β− ++  = 1tu +  and u2,t+1 =

)(gy *
21t,21t β− ++  = )(gy *

11t,11t β− ++  = 1tu + .  Hence, at least heuristically, the squared loss

differential dt+1 is exactly 0.  McCracken (1999b) shows that, for forecasts from nested models,

the MSE-T test statistic converges in distribution to a function of stochastic integrals of

quadratics of Brownian motion.  As was the case for the MSE-F statistic, the limiting distribution
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depends on the forecasting scheme, π, and k2.

In our Monte Carlo analysis, the MSE-T statistic is compared against the asymptotic

critical values tabulated by McCracken (1999b).  As with the MSE-F test, the alternative

hypothesis is one-sided.  To evaluate how using the standard, but asymptotically invalid, critical

values would affect inference, results are also reported for a version of the test comparing the

MSE-T statistic against the standard normal distribution.

3.4  The MSE-REG Test

Granger and Newbold (1977) also propose a test of equal MSE, referred to here as the

MSE-REG statistic.  It can be evaluated using the t-statistic associated with the coefficient α1

from the OLS regression

( )1t,21t,1 ûû ++ −  = ( )1t,21t,11 ûû ++ +α  + error term, (5)

which can be expressed as

MSE-REG = 
2

t
2

1t,21t,1
1

t
2

1t,21t,1
1

2/1

d)ûû(P)ûû(P

d
)1P(

−∑ +∑ −
−

++
−

++
−

. (6)

The covariance term in the numerator of (6) is equal to the difference in the MSEs for models 1

and 2.  While West (1996) proves the MSE-REG statistic can be asymptotically standard normal

when applied to non-nested forecasts, McCracken (1999b) shows that, for forecasts from nested

models, the MSE-REG test statistic has the same limiting distribution as the MSE-T test.

In the Monte Carlo results of section 4, we compare the MSE-REG statistic against the

asymptotic critical values tabulated by McCracken (1999b).  As with the MSE-F and MSE-T

tests, the alternative hypothesis is one-sided.  To evaluate how using the standard, but

asymptotically invalid, critical values would affect inference, results are also reported for a

version of the test comparing the MSE-REG statistic against the standard normal distribution.
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3.5 The ENC-T Test

Harvey, Leybourne, and Newbold (1998) develop a test of forecast encompassing based

on the methodology of Diebold and Mariano (1995).  Specifically, Harvey, Leybourne, and

Newbold (1998) propose a test of encompassing that uses a t-statistic for the covariance between

1t,1û +  and 1t,21t,1 ûû ++ − .  Let ct+1 = )ûû(û 1t,21t,11t,1 +++ −  = 1t,21t,1
2

1t,1 ûûû +++ −  and .cPc t t
1∑= −

Their encompassing test, denoted ENC-T, is formed as

ENC-T = 
∑ −

−
+

−
t

2
1t

1

2/1

)cc(P

c
)1P(  = 

∑ −−
∑ −

−
+++

−

+++
−

t
22

1t,21t,1
2

1t,1
1

t 1t,21t,1
2

1t,1
1

2/1

c)ûûû(P

)ûûû(P
)1P( . (7)

As with the MSE-T statistic, the term in front is 2/1)1P( −  rather than 2/1P  because we calculate

the test using standard regression methods (we regress 1tc +  on a constant).  Under the null that

model 1 forecast encompasses model 2, the covariance between u1,t and t,2t,1 uu −  will be less

than or equal to 0.  Under the alternative that model 2 contains added information, the covariance

should be positive.  Hence the test is one-sided.

While West (1999) shows the ENC-T statistic can be asymptotically standard normal

when applied to non-nested forecasts, the asymptotic distribution is non-normal when the

forecasts are nested under the null.  The actual limiting distribution is provided in Theorem 3.5.

Theorem 3.5: For ENC-T defined in (7), ENC-T → d 2/1
21 )/(χχ  where 1χ  equals

)s(dW)s(Ws '1 1∫λ
− for the recursive scheme,

)(W)}(W)1(W{ '1 λλ−λ− for the fixed scheme,

∫ λ−−λ λ
− 1 '1 )s(dW)}s(W)s(W{ for the rolling scheme,
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and 2χ  equals

ds)s(W)s(Ws '1 2∫λ
− for the recursive scheme,

)(W)(W '1 λλπλ− for the fixed scheme,

∫ λ−−λ−−λ λ
− 1 '2 ds)}s(W)s(W{)}s(W)s(W{ for the rolling scheme.

According to Theorem 3.5, for each forecasting scheme the test statistic is pivotal.  This

permits the construction of estimates of asymptotically valid critical values without knowledge

of the underlying data-generating process.  With these critical values one can conduct an

asymptotically valid test of the null.  Morever, because the statistic is pivotal, the bootstrap

procedures suggested by Ashley (1998) and Kilian (1999) may provide refinements to first-order

asymptotics and thereby yield more accurate inference in finite samples.

Though the null limiting distributions do not depend upon the data-generating process

itself, the distributions are dependent upon two parameters.  The first is the number of excess

parameters k2.  It arises because the vector Brownian Motion, W(s), is (k2×1).  The second

parameter, π, also affects the null limiting distribution, in two ways.  It directly affects the

weights on each of the components of the statistics (recall that λ = 1)1( −π+ ).  It also affects the

range of integration on each of the stochastic integrals through λ.

We provide a selected set of asymptotic critical values for the ENC-T statistic in

Appendix Tables 1-3.5  These values were generated numerically using the limiting distribution

in Theorem 3.5 and hence can be considered estimates of the true asymptotic critical values.  The

reported critical values are the 90th, 95th and 99th percentiles of 5000 independent draws from the

distribution of 2/1
21 )/(χχ  for a given forecasting scheme and value of k2 and π.  Generating these
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draws proceeded as follows.  Weights that depend upon π are estimated in the obvious way using

π̂  ≡ P/R.  The necessary k2 Brownian Motions are simulated as random walks each using an

independent sequence of 10,000 i.i.d. N(0,T-1/2) increments.  The integrals are emulated by

summing the relevant weighted quadratics of the random walks from the R+1st observation to the

Tth observation.  The random number generator is seeded so that all (k2, π) pairs and all sampling

schemes use the same 5000 draws of the k2 random walks.

In the Monte Carlo results of section 4, we compare the ENC-T statistic against the

asymptotic critical values tabulated in Appendix Tables 1-3, again using a one-sided alternative

hypothesis.  To evaluate how using the standard, but asymptotically invalid, critical values would

affect inference, results are also reported for a version of the test comparing the ENC-T against

the standard normal distribution.6

3.6 The ENC-REG Test

The forecast encompassing test proposed by Ericsson (1992) is a regression-based variant

of the ENC-T test. The test statistic, denoted ENC-REG, is the t-statistic associated with the

coefficient α1 from the OLS regression

1t,1û +  = )ûû( 1t,21t,11 ++ −α  + error term, (8)

which can be expressed as

ENC-REG = 
2

t
2

1t,1
1

t
2

1t,21t,1
1

1t,21t,1t 1t,1
1

2/1

cûP)ûû(P

)ûû(ûP
)1P(

−∑∑ −
−∑−

+
−

++
−

+++
−

. (9)

Under the null that model 1 forecast encompasses model 2, α1 will be less than or equal to 0.

Under the alternative that model 2 contains added information, α1 should be positive.

                                                                                                                                                            
5 More detailed tables of critical values are available upon request.
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Once again the ENC-REG statistic can be asymptotically standard normal when applied

to non-nested forecasts but the null asymptotic distribution is non-normal when the forecasts are

nested.  The actual limiting distribution is provided in Theorem 3.6.

Theorem 3.6:  For ENC-REG defined in (9) and ENC-T defined in (7), ENC-REG - ENC-T =

op(1).

Theorem 3.6 states that ENC-REG and ENC-T are asymptotically equivalent under the

null.7  Hence we can use Appendix Tables 1-3 to construct asymptotically valid tests of forecast

encompassing when the ENC-REG statistic is used.  However, this does not imply that the two

statistics will have similar finite sample properties.  Accordingly, in the Monte Carlo

experiments of section 4 we include both the ENC-T and ENC-REG statistics.  As with the

ENC-T test, in our Monte Carlo results we compare the ENC-REG test against the asymptotic

critical values reported in Appendix Tables 1-3 and against critical values taken from the

asymptotically invalid standard normal distribution.

3.7  A New Encompassing Test

Because the population prediction errors from models 1 and 2 are exactly the same under

the null, the variances in the denominators of the ENC-T statistic (7) and the ENC-REG statistic

(9) are, heuristically, 0.  These denominators are estimates of the variance of 1tc +  which, in

population, is identically 0.  This feature of the ENC-T and ENC-REG statistics may adversely

affect the small-sample properties of the tests.  Therefore, in parallel to the MSE-F test, this

paper proposes a variant of the ENC-T and ENC-REG statistics in which c  is scaled by the

variance of one of the forecast errors rather than an estimate of the variance of .c

                                                                                                                                                            
6 Incorporating the small-sample adjustments suggested by Harvey, Leybourne, and Newbold (1997, 1998) does not
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This statistic, which we refer to as the ENC-NEW statistic, takes the form

ENC-NEW = 
2MSE

c
P ⋅  = 

∑
∑ −

⋅
+

−
+++

−

t
2

1t,2
1

t 1t,21t,1
2

1t,1
1

ûP

)ûûû(P
P . (10)

The numerator is the object of interest in the ENC-NEW test (i.e., the covariance between

1t,1û + and 2t,21t,1 ûû ++ − ).  The denominator, ,MSE 2  serves as a scale correction.  As with the

ENC-T and ENC-REG statistics, the limiting distribution is non-normal when the forecasts are

nested under the null.  The actual limiting distribution is provided in Theorem 3.7.

Theorem 3.7: For ENC-NEW defined in (10) and 1χ  defined in Theorem 3.5, ENC-NEW → d 1χ .

Given Theorem 3.5, this result is not surprising.  The sole difference between the ENC-T

and ENC-NEW statistics is the denominator.  Hence we expect their limiting distributions to be

somewhat related.  As was the case for the ENC-T statistic, the limiting distribution is pivotal

and relies upon the forecasting scheme and the parameters k2 and π.

In the Monte Carlo of section 4, the ENC-NEW statistic is compared against asymptotic

critical values tabulated in Appendix Tables 4-6.  As with Appendix Tables 1-3, these values

were generated numerically using the limiting distribution in Theorem 3.7 and hence can be

considered estimates of the true asymptotic critical values.8

4.  Monte Carlo Results

The small-sample properties of the tests described in section 3 are evaluated using a

bivariate VAR data-generating process.  Specifically, we compare the predictive ability of an AR

                                                                                                                                                            
alter the basic results for either the MSE-T or ENC-T tests.
7 There is a parallel to this in McCracken (1999b).  There it is shown that MSE-REG - MSE-T = op(1).
8 The random number generator was seeded so that the same 1χ  values were used in the construction of Appendix
Tables 1-3 and 4-6.
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model (model 1) with that from a VAR model (model 2).  The presented results are based on

data generated using standard normal disturbances.  The results are essentially unchanged when

the disturbances are drawn from the heavier-tailed t(6) distribution considered by Diebold and

Mariano (1995), Harvey, Leybourne, and Newbold (1997, 1998), and Clark (1999).

4.1  Experiment Design

In the presented results, data are generated using two different artificial VAR models.

The first, denoted VAR-1, takes the form



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+


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−
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. (11)

The second, denoted VAR-2, takes the form
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In both cases, ty  is the predictand, tx  is an auxiliary variable, and the disturbances are i.i.d.

standard normal random variates.  To evaluate size in finite samples, the coefficient b is set at 0.

To evaluate power, b is set at 0.1 and 0.2.  Simulations based on other VAR(2) models, the

trivariate stationary VAR(1) and VAR(3) models of Swanson, Ozyildirim, and Pisu (1996), and

the empirical inflation and unemployment model considered in section 5 produced results similar

to those from the VAR-1 and VAR-2 models in equations (11) and (12).9

In each Monte Carlo simulation we generate R + P + 4 observations.  The additional four

observations allow for data-determined lag lengths in the forecasting models.  Letting L denote

the lag length of the data-generating process, the first L observations are generated by drawing

from the unconditional normal distribution implied by the model parameterization.  The
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remaining R + P + 4 - L observations are constructed using the autoregressive model structure

and draws of the error terms from the standard normal distribution.

In the presented results, the lag length of the VAR model was chosen using Akaike’s

information criterion; the same lag length was used for the AR model.10  Only the in-sample

portion of the data was used to choose the lag length.  Reserving observations 1 through 4 as

initial observations necessary to allow for a maximum of four lags in the estimated models, the

in-sample period spans observations 5 through R + 4.  The estimated forecasting models are used

to form P 1-step ahead predictions, spanning observations R + 5 through R + P + 4.  For brevity,

results are only presented for recursive forecasts, as the basic conclusions are essentially the

same for rolling and fixed forecasts.11  Note that while the forecasting models use lags

determined from just the in-sample portion of the data, the GC test uses a lag length determined

from the full sample of R + P observations.

Results are reported for empirically relevant combinations of P and R such that π̂  ≡ P/R

takes the values 0.1, 0.2, 0.4, 0.6, and 1.0.  Specifically, we use R = 100 with P = 10, 20, 40, 60,

and 100.  We also use R = 200 with P = 20, 40, 80, 120, and 200.

4.2  Size Results

Table 1 presents the empirical sizes of Granger causality, equal forecast accuracy, and

                                                                                                                                                            
9 In addition, simulations based on a limited set of bivariate VARMA DGPs produced similar results.  This is to be
expected as long as the VARMAs can be reasonably well-approximated by a finite-order VAR.
10 In computing power, the test statistic in simulation i, for which the selected lag is j, is compared against the
distribution of test statistics from the set of simulations under the null in which the lag was selected to be j.  For
example, if lag j was selected in J of the 50,000 size simulations of a given experiment, empirical critical values for
lag j were calculated from just those J simulated test statistics.  In a corresponding power experiment, for those
simulations in which the lag was selected to be j, the test statistics were compared against these critical values.
Since longer lags tend to be somewhat infrequently selected, 50,000 simulations were used in the size experiments
to ensure the accuracy of the results with data-determined lags.
11 While results for rolling forecasts are very similar to those for recursive forecasts, results for fixed forecasts do
differ slightly.  For example, the power of the MSE-T, MSE-REG, ENC-T, and ENC-REG tests is modestly lower
for fixed forecasts than for recursive forecasts.
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forecast encompassing tests for data from the VAR-1 and VAR-2 models of equations (11) and

(12), using a nominal size of 10%.  The results are generally the same at a nominal size of 5%.

In these size experiments, the null is imposed by setting b = 0 in equations (11) and (12).  Under

this null, the AR and VAR models have equal MSE and forecasts from the AR model encompass

those from the VAR.  Three general results are evident from Table 1.

Size result 1.  In most settings the post-sample tests have reasonable finite-sample size

properties, often suffering smaller size distortions than the full-sample F-test of causality.

More specifically, the MSE-F, MSE-REG, ENC-NEW, and ENC-REG tests perform

well, suffering only slight size distortions in finite samples.  For example, when the DGP is

VAR-1, R = 100, and P = 20, these four tests have empirical sizes of 11.0%, 11.4%, 11.8%, and

11.9%, respectively.  While the MSE-T and ENC-T statistics also perform reasonably well, when

P is small the tests suffer slightly greater distortions than do the MSE-REG and ENC-REG tests.

For instance, using the VAR-1 DGP, R = 100, and P = 10, the MSE-T test has an actual size of

14.8% while MSE-REG has an actual size of 12.6%.  The better performance of MSE-REG and

ENC-REG likely stems from the regression forms of the tests using more precise variance

estimates. For example, the variance term in the denominator of the ENC-REG test (9) uses the

product of second moments, ∑∑ − +
−

++
−

t
2

1t,1
1

t
2

1t,21t,1
1 ûP)ûû(P , while the ENC-T test (7) uses the

sample fourth moment, ∑ − +++
−

t
2

1t,21t,1
2

1t,1
1 )ûûû(P .  With normally distributed data, of course, in

population the fourth moment equals the product of the second moments.12

In general, given R, any size distortions of the post-sample tests fall as P rises.  For

example, when data are generated using VAR-1 with R = 100 and P = 10, the actual sizes range

from 11.7% to 14.9%.  When P increases to 100, the actual sizes range from 10% to 11%.  The
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improvement in size that comes with increases in P presumably stems from greater precision in

the sample moments that enter the test statistics.  Each of the sample moments is computed with

P predictions.

By comparison, the GC test suffers a consistent size distortion that often exceeds (albeit

slightly) that of the post-sample tests.  For example, in the experiments using VAR-1 and R =

100, the GC test has empirical size of slightly more than 13% for all values of P.  In contrast, the

actual size of the ENC-NEW test ranges between 11.0% for P = 100 and 12.6% for P = 10.

Similarly, in the experiments using VAR-2 and R = 200, the GC test consistently has size of

about 13%, compared to roughly 11% or 12% in the ENC-NEW statistic.  All of the size

distortions in the GC test appear to stem from the pre-test bias associated with using the full

sample of data to first determine the appropriate lag length and then test causality.13  In

unreported results, we find that if the GC test is calculated with the model lag length always set

to the true order of the DGP (or at a longer lag length), the test is correctly sized.

In results not reported, some evidence suggests that the size advantage of post-sample

tests may be larger than in Table 1 when more data mining is involved in choosing the lag length

of the VAR.  As noted above, in the Table 1 results, the lag length was set to minimize the AIC

for the VAR.  An alternative, more data-intensive approach to model selection is to allow the

lags on ty  and tx  in the nesting equation for ty (i.e., model 2) to differ, and then choose the lag

combination that minimizes the AIC for that equation.14  Using this approach to lag selection,

when the DGP is VAR-1, R = 100, and P = 20, the GC test has actual size of 20.2%, while the

                                                                                                                                                            
12 We also find that MSE-REG and ENC-REG have better size than MSE-T and ENC-T in simulations with t(6)-
distributed innovations.
13 The same cannot be said about the size distortions of the post-sample tests.  For these, results for simulations in
which the true lag length is used are very similar to those reported (except for the experiments with VAR-2 and R =
100), in which the lag is data-determined.
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MSE-F and ENC-NEW tests have size of 11.6% and 13.5%, respectively.

Size result 2.  Comparing the MSE-T, MSE-REG, ENC-T, and ENC-REG tests against

invalid asymptotic critical values generally leads to too-infrequent rejections.

While the ENC-T and ENC-REG tests are typically undersized when compared against

standard normal critical values, the problem is more severe for the MSE-T and MSE-REG tests.

For instance, using VAR-1 with 100R =  and 20P = , comparing the MSE-T and MSE-REG

statistics against the standard normal distribution yields sizes of 5.8% and 4.7%, respectively.

For a given R, using the wrong critical values typically causes the tests to become more

undersized as P rises.  When P increases to 60, the sizes of MSE-T and MSE-REG fall to 2.8%

and 2.5%, respectively.

The MSE-T, MSE-REG, ENC-T, and ENC-REG tests are undersized when compared

against standard normal critical values because the true asymptotic distributions of the statistics

(and the empirical distributions) are shifted to the left relative to the standard normal. For a one-

tailed test, the 10% critical value from the standard normal distribution is 1.282.  In the case of

the MSE-T and MSE-REG tests, for example, the 10% critical value from the true asymptotic

distribution tabulated by McCracken (1999b) is 0.780 when k2  = 1 and π = 0.2.  For a given R,

the undersizing becomes worse as P rises because the correct asymptotic distributions shift

further to the left as π  increases.  With k2 = 1, the 10% critical value from the true asymptotic

distribution of the MSE-T and MSE-REG tests falls to 0.443 when π rises to 1.0.

Size result 3.  When the length of the sample and certain features of the DGP combine to

make data-based lag selection sufficiently imprecise, the size performance of all the tests

deteriorates, more so for the post-sample tests than for the full-sample F-test of causality.

                                                                                                                                                            
14 Stock and Watson (1999), for example, take this approach to model selection.  In our alternative simulations, we
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In the case of the VAR-2 model, the true model for yt is an AR(2).  However, because the

population correlation between xt-1 and yt-2 is large (0.57), in sufficiently small samples standard

lag selection procedures cause a lag of 1 to be selected with some regularity.15  When R = 100,

the lag order is set at 1 in roughly 13% of the VAR-2 simulations; the lag order is correctly set at

2 in about 74% of the simulations.  When R = 200, lag selection is much more precise.  In this

case, the lag order is set at 1 in only about 0.6% of the VAR-2 simulations.  How often the lag of

1 is selected is crucial to the performance of the tests, because in an estimated model with just 1

lag, xt-1 will often spuriously appear to have predictive power for yt.

Due to the difficulty in selecting lag length when the DGP is VAR-2 and R = 100, the

size performance of each test deteriorates.16  For example, when P = 20, the sizes of the MSE-F,

ENC-NEW, and GC tests are 14.5%, 15.9%, and 16.2%, respectively.  For the post-sample tests

the size distortions generally do not fall as P rises.  For instance, the size of the MSE-F test is

14.7% when P = 60.  The size of the GC test does improve as P rises, because increases in P lead

to greater precision in choosing the lag length of the model used to form the full sample-based

GC test.  In general, the deterioration in the performance of each test seems to be purely a

function of the lag selection problem.  In unreported results, we find that the sizes of the tests

improve when the lag is fixed at the true order of 2 (or at a higher order).

This finding suggests that, contrary to the view some researchers may have, post-sample

forecast tests are not necessarily a panacea for spurious in-sample or full-sample causality

results.  Many of the problems that lead to spurious in-sample results also seem likely to lead to

                                                                                                                                                            
allow for lags between 1 and 4 of each variable.
15 The problem is more severe if the BIC is used in lieu of the AIC.
16 In addition to an overall deterioration in performance, the simulations based on VAR-2 and R = 100 produce a
change in the performance of the ENC-T and ENC-REG tests compared against invalid critical values.  While these
encompassing tests are generally undersized if compared against the standard normal distribution, in the VAR-2
simulations with R = 100 the tests are slightly oversized.
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spurious post-sample results.  In the VAR-2 example, the basic problem is collinearity between

xt-1 and yt-2, which is a feature of both the in-sample and out-of-sample data.  This collinearity

can cause the in-sample-determined VAR lag to be incorrectly set at 1 with some frequency.

When that occurs, both in-sample and post-sample tests will too frequently (relative to nominal

size) find that xt-1 has predictive power for yt.

4.3  Power Results

Tables 2 and 3 present results on the power of Granger causality, equal forecast accuracy,

and forecast encompassing tests using the VAR-1 and VAR-2 DGPs in equations (11) and (12).

In these power experiments, data are generated using b = 0.1 and b = 0.2, so the VAR forecasts

of y have lower MSE than AR forecasts, and the AR forecast does not encompass the VAR

forecast.  Because the tests are, to varying degrees, subject to some size distortions, the reported

power figures are based on empirical critical values and therefore size-adjusted.  The actual size

of the tests is 10%; using 5% produces essentially the same results.  For all of the tests, the null is

rejected if the test statistic is greater than the 90th percentile of the statistic in the corresponding

size experiment.  Two general results are evident in Tables 2 and 3.17

Power result 1.  The powers of the tests permit some simple rankings: ENC-NEW >

MSE-F, ENC-T, ENC- REG > MSE-T, MSE-REG.

In our experiments, the ENC-NEW test is clearly the most powerful out-of-sample test of

predictive ability.  In some settings, the power of the ENC-NEW statistic rivals the power of the

GC test, even though the GC test is based on many more observations (R + P rather than P).  For

example, as shown in the lower panel of Table 2, in simulations with VAR-2, b = 0.1, R = 100,

and P = 40, the ENC-NEW test has power of 27.8%, little different from the GC test’s power of

                                                
17 As expected, it is also the case that power rises with the coefficient b defined in equations (11) and (12).
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30.0%.  The MSE-F, ENC-T, and ENC-REG tests are less powerful than the ENC-NEW test.

Using the experiment of the previous example, the MSE-F, ENC-T, and ENC-REG tests have

power of 24.2%, 23.1%, and 23.6%, respectively.  The MSE-T and MSE-REG tests are less

powerful than the other tests.

There seem to be two factors underlying the power advantage of the ENC-NEW statistic.

First, as noted in section 3.7, the denominator of the statistic is simply MSE2, rather than some

variance estimate that, heuristically, is 0 under the null.  This feature seems to be the most likely

explanation of the ENC-NEW test’s power advantage over the ENC-T and ENC-REG tests.  The

greater power of the MSE-F test compared to the MSE-T and MSE-REG statistics lends further

support to this idea.

Second, encompassing tests like ENC-NEW are more powerful than their equal accuracy

counterparts, like MSE-F, because the equal accuracy statistics are essentially equal to an

encompassing test plus noise.  Paralleling the decomposition of the GC test in equation (2), the

MSE-F statistic can be rewritten as
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The first term on the right-hand side of the above equation is simply the ENC-NEW statistic.

The second term is a test of the null that forecast 2 encompasses forecast 1 (in the full-sample

expression (2), by construction this second term is exactly 0).  Because the models are nested,

forecast 2 encompasses forecast 1 under both the null and alternative hypotheses and,

heuristically, this second test statistic is 0.  The MSE-F statistic has lower power because it is a

linear combination of the ENC-NEW test and a statistic testing a true hypothesis, which simply

adds noise to the test and thereby reduces its power relative to the ENC-NEW test.

Power result 2.  Increasing the number of observations affects the powers of the tests
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along several dimensions.

First, holding P fixed, the powers of the MSE-F and ENC-NEW tests rise with R, while

the powers of the other tests are unaffected.  For instance, as shown in the upper panel of Table

2, with the VAR-1 DGP and P = 40, the power of the ENC-NEW test rises from 31.2% when R

= 100 to 39.7% when R = 200.  Second, when R is held fixed, power rises with P.  For example,

in the VAR-1 experiment with R = 100 and b = 0.2, the power of the MSE-F test rises from

39.3% when P = 10 to 75.4% when P = 100.  At the same time, the gap between the powers of (i)

ENC-NEW and (ii) MSE-T, MSE-REG typically increases with P.  Similarly, the difference in

the powers of (i) ENC-T, ENC-REG and (ii) MSE-T, MSE-REG usually rises with P.  These

changes are mirrored by a reduction in the power difference between (i) MSE-F and (ii) MSE-T,

MSE-REG and a reduction in the power difference between (i) ENC-T, ENC-REG and (ii) MSE-

T, MSE-REG.

5.  Empirical Example

In this section’s example we use tests of Granger causality, equal forecast accuracy, and

forecast encompassing to determine whether the prime-age male unemployment rate is useful in

predicting core CPI inflation.  Cecchetti (1995), Staiger, Stock, and Watson (1997), and Stock

and Watson (1999) are recent examples of studies in the long literature on this basic question.

Our quarterly data, which begin in 1957:Q1, are divided into in-sample and out-of-

sample portions so as to produce a π̂  ≡ P/R value for which McCracken (1999b) and this paper

report asymptotically valid critical values.  After we allow for data differencing and a maximum

of four data-determined lags, the in-sample period spans 1958:Q3-1987:Q1.  This leaves a total

of R = 115 observations.  The out-of-sample period spans 1987:Q2-1998:Q3, yielding a total of

P = 46 1-step ahead predictions.  For this split, .4.0ˆ=π
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Consistent with the results of augmented Dickey-Fuller tests for unit roots, our model

variables are the change in inflation and the change in the unemployment rate.  Over the in-

sample period, the AIC for both the AR and the VAR is minimized at two lags.  The sample test

statistics are compared against asymptotic critical values and empirical critical values generated

by Monte Carlo methods.  The empirical critical values are based on 50,000 simulations of the

estimated inflation-unemployment model in which the null of no causality from unemployment

to inflation is imposed.  The simulated model is constructed using the in-sample estimates of the

coefficients as the “true” values.  Bootstrap methods produce similar critical values.

Table 4 presents results for the inflation-unemployment example.  The upper panel

reports in-sample estimates of an AR(2) fit to changes in core CPI inflation and a VAR(2) fit to

changes in core CPI inflation and prime-age male unemployment.  In the in-sample model

estimates, unemployment clearly has predictive power for inflation.  Moreover, the full-sample

GC test reported in the lower panel of the table strongly rejects the null of no causality from

unemployment to inflation.

Although weaker, the out-of-sample evidence indicates that unemployment has predictive

power for inflation.18  As reported in the lower panel of Table 4, all of the encompassing tests

indicate that the change in unemployment has predictive content for the change in inflation.  The

ENC-NEW test strongly rejects the null that the AR forecast encompasses the VAR forecast.

The ENC-T test clearly rejects, while the ENC-REG test marginally rejects.  None of the tests for

equal MSE reject the null of equal accuracy.

Two factors may account for the difference in the in-sample and post-sample evidence.

One is simply power differences – some of the post-sample tests may not be powerful enough to

                                                
18  The forecasts are slightly biased.  Demeaning the errors prior to calculating the test statistics actually strengthens
the evidence of unemployment’s predictive power.
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pick up unemployment’s predictive content.  The Monte Carlo results in section 4 indicate that

the power of equal forecast accuracy tests such as MSE-F lag behind the power of encompassing

counterparts like the ENC-NEW test, which has power rivaling that of the GC test.  The second

factor is model instabilities.  Neither the AR model for inflation nor the VAR pass the supremum

Wald or exponential Wald tests for stability developed in Andrews (1993) and Andrews and

Ploberger (1994), respectively.19

6.  Conclusions

In this paper we provide analytical, Monte Carlo, and empirical evidence on the

properties of tests of equal forecast accuracy and encompassing applied to predictions from

nested parametric models.  We first derive the limiting distributions of two standard tests and one

new test of forecast encompassing.  Monte Carlo experiments are then used to provide evidence

on the finite-sample size and power of equal accuracy and encompassing tests.  These

experiments yield four key results.  First, the post-sample tests are, in general, reasonably well

sized.  Second, when compared against asymptotically invalid standard normal critical values the

post-sample tests are undersized.  Third, when lag selection is sufficiently imprecise, the post-

sample tests suffer more substantial size distortions, with the implication that forecast tests are

not necessarily a panacea for in-sample overfitting.  Fourth, the encompassing test proposed in

this paper (the ENC-NEW statistic defined in equation (10)) is most powerful.  In the final part

of our analysis, we find that the post-sample tests provide mixed evidence on the predictive

content of unemployment for inflation.  While each of the equal forecast accuracy tests fail to

reject the null that unemployment has no predictive content for inflation, each of the

                                                
19 The models do pass the Nyblom (1989) test for stability and Chow tests for a shift in the parameter estimates
between 1958:Q3-87:Q1 and 1987:Q2-97:Q3.  Following Diebold and Chen (1996), the stability test results are
based on bootstrap critical values.
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encompassing tests indicates that unemployment does have predictive power.

Although we extend the literature on out-of-sample tests of predictive ability there still

remain a number of unanswered questions.  Perhaps the most obvious is the optimal choice of

the sample split parameter π.  As reviewed by McCracken and West (1999), within the existing

literature on out-of-sample hypothesis testing this seems to be an important determinant of both

the size and power properties of tests of predictive ability.

Another important topic for future research is developing tests of equal forecast accuracy

and encompassing that allow unit roots in the nested parametric models used to forecast.

Corradi, Swanson and Olivetti (1999) show how tests of equal forecast accuracy can be

constructed for predictions from non-nested parametric models in the presence of cointegrating

relationships.  Because tests for causality often, in practice, involve nonstationary variables

(Stock and Watson, 1988) extending their results to a nested environment may prove useful.

A final topic for future research is developing tests of out-of-sample predictive ability for

forecasts generated with nonparametric methods.  Local-linear (Diebold and Nason, 1992),

series-based (Swanson and White, 1997), and kernel-based (Chung and Zhou, 1996)

nonparametric methods are frequently used to construct forecasts.  Although McCracken (1999c)

provides a limited set of results that are applicable to kernel-based forecasts, there do not exist a

range of results that can be applied in other nonparametric environments.
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Appendix 1

Lemmas A1 - A5 are abbreviated versions of Lemmas A1, 3.1, A9, A11 and A12 that appear

in McCracken (1999b).  In order to facilitate reference, but also conserve space, these are

repeated below without proof.  Lemmas A6 - A8 are new and hence their proofs are provided.

Throughout, the following notation will be used: J denotes the selection matrix )0,I(
2111 kkkk ×× ,

supt denotes TtRsup ≤≤ , for matrices A and C defined in Lemma A2 1t,2h
~

+  denotes

1t2,
1/2
2

'1 hCBAs +
−  and )t(H~ 2  denotes )t(HCBA 2

2/1
2

'1−σ , 1t,,ig +β∇&  denotes )ˆ)((g *
it,it,i

'
1t,,i β−ββ+β
&

for some t,iβ&  on the line between t,îβ  and *
iβ .  Note that, for simplicity, the P - 1 terms that

appear in the text formulas for ENC-T and ENC-REG are replaced by P in the theoretical results

below, without any consequence.

Lemma A1: For )5.0,0[a ∈  (a) |ˆ|tsup *
it,i

a
t β−β  = op(1), (b) |])B[vec)]t(B[vec(T|sup ii

2/1
t −

= Op(1).

Lemma A2: (a) Let MBJBJ 21
' =+−  and 2/1

2
2/1

2 MBB −−  = Q, then Q is idempotent. (b) Let A be

a (k×k2) matrix with 
22 kkI ×  on the upper (k2×k2) block and zeroes elsewhere.  There exists a

symmetric orthonormal matrix C such that Q = CCAA ' .

Lemma A3: 2
t 1t,21t,1 )ûû(∑ − ++  = )t(H~)t(H~ 2t

'
2

2 ∑σ  + op(1).

Lemma A4: 1dt 1t,2
'
2 h

~
)t(H~ χ→∑ +  defined in Theorem 3.5 of the text.

Lemma A5: 2d2t
'
2 )t(H~)t(H~ χ→∑  defined in Theorem 3.5 of the text..
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Lemma A6: For i = 1, 2, ∑ β+β+t iit,i
'

1t,,i1t )t(H)t(B)(gu &  = ∑ +t ii
'

1t,i )t(HBh  + op(1).

Proof of Lemma A6: Add and subtract '
1t,,ig +β  and Bi to obtain

∑ β+β+t iit,i
'

1t,,i1t )t(H)t(B)(gu &  = ∑ +t ii
'

1t,i )t(HBh (13)

+ ∑ −β +β+β+t ii
'

1t,,it,i
'

1t,,i1t )t(HB)g)(g(u &  + ∑ −+t iii
'

1t,i )t(H)B)t(B(h

+ ∑ −−β +β+β+t iii
'

1t,,it,i
'

1t,,i1t )t(H)B)t(B)(g)(g(u & .

We must then show that the latter three right-hand side terms in (13) are op(1).  We do so for the

recursive scheme; the arguments are similar for the other schemes.  For the second right-hand

side term in (13) note that

|)t(HB)g)(g(u| t ii
'

1t,,it,i
'

1t,,i1t∑ −β +β+β+
&

≤ |)g)(g|T|)(sup)t(H|T(sup|B||)u|(supk '
1t,,it,i

'
1t,,i

2/1
ti

2/1
ti1tt

2
+β+β+ −β& .

That supt|ut+1| is Op(1) follows from Assumption 3.  To show that suptT1/2|Hi(t)| is Op(1) note that

suptT1/2|Hi(t)| ≤ (T/R)( |hT|sup t
1s s,i

2/1
t ∑ =

− ).  By Assumption 5 (T/R) is bounded; that

|hT|sup t
1s s,i

2/1
t ∑ =

−  is Op(1) follows from Theorem 3.1 of Hansen (1992).  To see that

|g)(g|Tsup '
1t,,it,i

'
1t,,i

2/1
t +β+β −β&  is op(1), note that by Assumption 2,

|g)(g|Tsup '
1t,,it,i

'
1t,,i

2/1
t +β+β −β&

≤ ϕϕ β−β |)|T)(supm(sup *
it,i

2/1
ttt

&  ≤ ϕϕ β−β |)ˆ|T)(supm(sup *
it,i

2/1
ttt .

That suptmt is Op(1) follows from Assumption 2.  Since xϕ is a continuous function, it suffices to

show that |ˆ|Tsup *
it,i

2/1
t β−βϕ  is op(1).  Since ϕ > 1, the result follows from Lemma A1 (a).

To show that the third right-hand side term in (13) is op(1) note that

∑ −+t iii
'

1ti, (t))HB(t)(Bh
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= )]h(Th[T)]B(t)(B(T/t)vec[TT t
1j ji,

1/2
1ti,

1/2
t

'
ii

1/21/2 ∑⊗∑ − =
−

+
−− .

Given Assumption 3 and Lemma A1 (b), Theorem 3.1 of Hansen (1992) implies that

)]h(Th[T)]B(t)(B(T/t)vec[T t
1j ji,

1/2
1ti,

1/2
t

'
ii

1/2 ∑⊗∑ − =
−

+
−  is Op(1).  Since T-1/2 = o(1) the desired

result follows.

To show that the fourth right-hand side term in (13) is op(1) note that

|(t))HB(t))(Bg)ß((gu| t iii
'

1tß,i,ti,
'

1tß,i,1t∑ −− +++
&

≤ |)g)ß(g||)(supB(t)B|T|)(sup(t)H|T|)(supu|(supk '
1tß,i,ti,

'
1tß,i,tii

1/2
ti

1/2
t1tt

2
+++ −− & .

That supt|ut+1| and suptT1/2|Bi(t) - Bi| are Op(1) follows from Assumption 3 and Lemma A1 (b).

That suptT1/2|Hi(t)| is Op(1) and |g)ß(g|sup '
1tß,i,ti,

'
1tß,i,t ++ −&  is op(1) were previously established.

Lemma A7: For i,j = 1,2, (a) ∑ ββ +β+β+t jjt,j
'

1t,,jt,i1t,,ii
'
i

2
1t )t(H)t(B)(g)(g)t(B)t(Hu &&  =

∑ ++t jj
'

1t,j1t,ii
'
i )t(HB)hh(EB)t(H  + op(1). (b) ∑ ββ +β+βt jjt,j

'
1t,,jt,i1t,,ii

'
i )t(H)t(B)(g)(g)t(B)t(H &&  =

∑ +β+βt jj
'

1t,,j1t,,ii
'
i )t(HB)gg(EB)t(H  + op(1).

Proof of Lemma A7: (a) We will show the result for the recursive scheme.  Proofs for the

rolling and fixed schemes are similar.  The proof is conducted in two stages.  The first stage

consists of showing that

∑ +++t jjtj,
'

1tß,j,ti,1tß,i,i
'
i

2
1t (t)(t)H)Bß()gß((t)g(t)BHu &&  = ∑ ++t jj

'
1tj,1ti,i

'
i (t)HBhh(t)BH  + op(1).

In this proof only let a1 = Bi, a2 = Bi(t) - Bi, b1 = gi,β,t+1, b2 = )(gg 1t,i1t,,i1t,,i ++β+β β− & , c1 = '
1t,,jg +β , c2

= )(gg t,j
'

1t,,j
'

1t,,j β− +β+β
& , d1 = Bj, d2 = Bj(t) - Bj.  Using this notation, if we add and subtract gi,β,t+1,

gj,β,t+1, Bi and Bj we obtain the identity

∑ +++t jjtj,
'

1tß,j,ti,1tß,i,i
'
i

2
1t (t)(t)H)Bß()gß((t)g(t)BHu &&  (14)
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= ∑ ∑
≤≤

+
2z,y,x,w1

t jzyxw
'
i

2
1t )t(Hdcba)t(Hu .

When w = x = y = z = 1 the argument of the outer summation takes the value

∑ ++t jj
'

1tj,1ti,i
'
i (t)HBhh(t)BH .  To obtain the result we must show that the remaining fifteen pieces

in (14) are each op(1).  The proof of each is very similar.  Here we only show that the term

∑ +t j1121
'
i

2
1t )t(Hdcba)t(Hu  = ∑ ++++t jj

'
1tß,j,1tß,i,ti,1tß,i,i

'
i

2
1t (t)HB)gg-)ß((g(t)BHu &  is op(1).  Taking

absolute values we immediately have

|(t)HB)gg-)ß((g(t)BHu| t jj
'
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'
i

2
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&
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1/2
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'
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2

1tt
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++ ×
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2/1
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&

That |gu|sup '
1tß,j,

2
1tt ++  is Op(1) follows from Assumption 3.  To show that suptT1/2|Hi(t)| is Op(1)

note that suptT1/2|Hi(t)| ≤ (T/R)( |hT|sup t
1s s,i

2/1
t ∑ =

− ).  By Assumption 5 (T/R) is bounded; that

|hT|sup t
1s s,i

2/1
t ∑ =

−  is Op(1) follows from Theorem 3.1 of Hansen (1992).  The argument is

identical for suptT1/2|Hj(t)|.  It then suffices to show that |g)(g|sup '
1t,,it,i

'
1t,,it +β+β −β&  is op(1).  To

do so note that by Assumption 2,

|g)(g|sup '
1t,,it,i

'
1t,,it +β+β −β&  ≤ ϕβ−β |)|)(supm(sup *

it,ittt
&  ≤ ϕβ−β |)ˆ|)(supm(sup *

it,ittt .

That suptmt is Op(1) follows from Assumption 2.  Since xϕ is a continuous function, the result

follows from Lemma A1 (a).

The second stage of the proof consists of showing that

∑ ++t jj
'

1tj,1ti,i
'
i (t)HBhh(t)BH  = ∑ ++t jj

'
1tj,1ti,i

'
i (t)HBhEh(t)BH  + op(1).

To do so add and subtract '
1t,j1t,i hEh ++  to obtain
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∑ ++t jj
'

1tj,1ti,i
'
i (t)HBhh(t)BH (15)

= ∑ ++t jj
'

1tj,1ti,i
'
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'
1tj,1ti,

'
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'
i (t)H)BhEh-h(h(t)BH .

It then suffices to show that the second right-hand side term in (15) is op(1).  Rearranging terms

we obtain

∑ ++++t jj
'

1tj,1ti,
'

1tj,1ti,i
'
i (t)H)BhEh-h(h(t)BH

= ∑ ∑⊗∑ ++++=
−

=
−−

t
''

1tj,1ti,
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1tj,1ti,
-1/2t

1s i
'

si,
1/2t

1s j
'

sj,
1/221/2 )]hEh-h(h)]vec[TBhTBh[T(T/t)T

That ∑ ∑⊗∑ ++++=
−

=
−

t
''

1tj,1ti,
'

1tj,1ti,
-1/2t

1s i
'

si,
1/2t

1s j
'

sj,
1/22 )]hEh-h(h)]vec[TBhTBh[T(T/t)  is Op(1)

follows from Assumption 3 and Theorem 3.1 of Hansen (1992).  Since T-1/2 is o(1) the proof is

complete.

(b) The proof of (b) follows essentially the same argument as that for (a) and hence is omitted to

conserve space.  Appendix 2 contains further detail.

Lemma A8: 2
t 1t,21t,1

2
1t,1 )ûûû(∑ − +++  2

4
d χσ→ .

Proof of Lemma A8: If we take first order Taylor expansions of both 1t,1û +  and 1t,2û +  around *
1β

and *
2β  respectively, we have

2
t 1t,21t,1

2
1t,1 )ûûû(∑ − +++ (16)

= [ ∑ ∇ ++t
2

1t,1
2

1t }g{u &  - ∑ ∇∇ +++t 1t,21t,1
2

1t }g}{g{u2 &&  + ∑ ∇ ++t
2

1t,2
2

1t }g{u & ]
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3
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2
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2
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Consider the first bracketed right-hand side term in (16).  If we note that '
1t,21t,1 hEh ++  = 1

2
2JB−σ

and apply the definition of )t(H~ 2  then by Lemma A7 we obtain
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[ ∑ ∇ ++t
2

1t,1
2
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'
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Given Lemma A5 we now need only show that the second bracketed term on the right-hand side

of (16) is op(1).  To do so we show that ∑ ∇ ++t
3

1t,11t }g{u &  is op(1).  The remaining terms follow

similar arguments.  Taking absolute values we obtain

|}g{u| t
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3*
1t,1

3/1
t1tt

3 |))(g|(sup|)ˆ|T|)(supu|(supk ββ−β +β+
&

That supt|ut+1| is Op(1) follows from Assumption 3.  That 3*
1t,1

3/1
t |)ˆ|T(sup β−β  is op(1) follows

by continuity of the function x3 and Lemma A1 (a).  It then suffices to show that

|)(g|sup t,11t,,1t β+β
&  is Op(1).  If we add and subtract g1,β,t+1 we obtain

|)(g|sup t,11t,,1t β+β
&  ≤ |g)(g|sup 1t,,1t,11t,,1t +β+β −β&  + |g|sup 1t,,1t +β .

That |g|sup 1t,,1t +β  is Op(1) follows from Assumption 3. To show that |g)(g|sup 1t,,1t,11t,,1t +β+β −β&

is op(1) note that by Assumption 2,

|g)(g|sup '
1t,,it,i

'
1t,,it +β+β −β&  ≤ ϕβ−β |)|)(supm(sup *

it,ittt
&  ≤ ϕβ−β |)ˆ|)(supm(sup *

it,ittt .

That suptmt is Op(1) follows from Assumption 2.  Since xϕ is a continuous function, the result

follows from Lemma A1 (a).

Proof of Theorem 3.5: Given Theorem 3.7 and the Continuous Mapping Theorem it suffices to

show that ∑ − +++t
2

1t,21t,1
2

1t,1 )ûûû(  −  P 2c  → d 2
4χσ .  By Theorem 3.7 c  is Op(P-1) and hence P 2c

= op(1).  The result then follows from Lemma A8.

Proof of Theorem 3.6: Define a0,T, a1,T, a2,T and a3,T as ∑ − +++
−

t 1t,21t,1
2

1t,1
1 ûûûP ,
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2
t 1t,21t,1

1 )ûû(P ∑ − ++
− , ∑ +

−
t

2
1t,2

1 ûP , and ∑ −− +++
−

t
22

1t,21t,1
2

1t,1
1 c)ûûû(P  respectively.  By

Theorems 3.5 and 3.7 we know both Pa0,T and Pa0,T/[Pa3,T]1/2 are Op(1).  By the proof of Lemma

A8 and Theorem 3.5 we know that from (17), Pa3,T = )t(H~)t(H~ 2t
'
2

4 ∑σ  + op(1).  Given the

Continuous Mapping Theorem it then suffices to show that )aaa(P 2
T,0T,2T,1 −  = )t(H~)t(H~ 2t

'
2

4 ∑σ

+ op(1).  That T,2a  → p σ2 follows from Theorem 4.1 of West (1996).  That 2
T,0Pa  = op(1) follows

from Theorem 3.7.  The result follows since by Lemma A3, Pa1,T = )t(H~)t(H~ 2t
'
2

2 ∑σ  + op(1).

Proof of Theorem 3.7: If we take first order Taylor expansions of 1t,1û +  and 1t,2û +  around *
1β

and *
2β  respectively, we obtain

∑ − +++t 1t,21t,1
2

1t,1 ûûû (18)

= ∑ β+β− +β++β+t 22t,2
'

1t,,21t11t,1
'

1t,,11t )}t(H)t(B)(gu)t(H)t(B)(gu{ &&

−  ∑ ββ− +β+βt 11t,1
'

1t,,1t,11t,,11
'
1 )t(H)t(B)(g)(g)t(B)t(H{ &&

+  )}t(H)t(B)(g)(g)t(B)t(H 22t,2
'

1t,,2t,11t,,11
'
1 ββ +β+β

&&

for t,iβ&  on the line between t,îβ  and *
iβ  respectively.  Consider the first bracketed right-hand

side term in (18).  If we note that both h1,t+1 = Jh2,t+1 and H1(t) = JH2(t) and apply the definition of

both 1t,2h
~

+  and )t(H~ 2  then by Lemma A6 we obtain

∑ β+β− +β++β+t 22t,2
'

1t,,21t11t,1
'

1t,,11t )}t(H)t(B)(gu)t(H)t(B)(gu{ &&

= )t(h
~

)t(H~ 2t
'
2

2 ∑σ  + op(1).

Given Lemma A4 we now need only show that the second bracketed right-hand side term in (18)

is op(1).  If we note that '
1t,,21t,,1 gEg +β+β  = '

1t,,21t,,2 gJEg +β+β  = 1
2JB −  the result follows by Lemma A7.
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Appendix 2

This appendix contains a proof of Lemma A7 (b).

Proof of Lemma A7 (b): We will show the result for the recursive scheme.  Proofs for the

rolling and fixed schemes are similar.  The proof is conducted in two stages.  The first stage

consists of showing that

∑ ++t jjtj,
'

1tß,j,ti,1tß,i,i
'
i (t)(t)H)Bß()gß((t)g(t)BH &&  = ∑ +β+βt jj

'
1t,j,1t,i,i

'
i (t)HBgg(t)BH  + op(1).

In this proof only let a1 = Bi, a2 = Bi(t) - Bi, b1 = gi,β,t+1, b2 = )(gg 1t,i1t,,i1t,,i ++β+β β− & , c1 = '
1t,,jg +β , c2

= )(gg t,j
'

1t,,j
'

1t,,j β− +β+β
& , d1 = Bj, d2 = Bj(t) - Bj.  Using this notation, if we add and subtract gi,β,t+1,

gj,β,t+1, Bi and Bj we obtain the identity

∑ ++t jjtj,
'

1tß,j,ti,1tß,i,i
'
i (t)(t)H)Bß()gß((t)g(t)BH && (AA1)

= ∑ ∑
≤≤ 2z,y,x,w1

t jzyxw
'
i )t(Hdcba)t(H .

When w = x = y = z = 1 the argument of the outer summation takes the value

∑ +β+βt jj
'

1t,j,1t,i,i
'
i (t)HBgg(t)BH .  To obtain the result we must show that the remaining fifteen

terms in (AA1) are each op(1).  The proof of each is very similar.  Here we show that the term

∑ t j1121
'
i )t(Hdcba)t(H  = ∑ +++t jj

'
1tß,j,1tß,i,ti,1tß,i,i

'
i (t)HB)gg-)ß((g(t)BH &  is op(1).  Taking absolute

values we immediately have

|(t)HB)gg-)ß((g(t)BH| t jj
'

1tß,j,1tß,i,ti,1tß,i,i
'
i∑ +++

&

≤ |)(t)HT|(sup|B||B||)g|(supk i
1/2

tji
'

1tß,j,t
4

+ ×

|)g-)ß(g||)(sup(t)HT|(sup 1tß,i,ti,1tß,i,tj
2/1

t ++
&
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That |g|sup '
1tß,j,t +  is Op(1) follows from Assumption 3.  That suptT1/2|Hi(t)| and suptT1/2|Hj(t)| are

Op(1) was established in the proof of part (a).  The result follows since

|g)(g|sup '
1t,,it,i

'
1t,,it +β+β −β&  was shown to be op(1) in the proof of part (a).

The second stage of the proof consists of showing that

∑ +β+βt jj
'

1t,j,1t,i,i
'
i (t)HBgg(t)BH  = ∑ +β+βt jj

'
1t,j,1t,i,i

'
i (t)HBgEg(t)BH  + op(1).

To do so add and subtract '
1t,,j1t,,i gEg +β+β  to obtain

∑ +β+βt jj
'

1t,j,1t,i,i
'
i (t)HBgg(t)BH (AA2)

= ∑ +β+βt jj
'

1t,j,1t,i,i
'
i (t)HBgEg(t)BH  + ∑ +β+β+β+βt jj

'
1t,j,1t,i,

'
1t,j,1t,i,i

'
i (t)H)BgEg-g(g(t)BH .

It then suffices to show that the second r.h.s. term in (AA2) is op(1).  Rearranging terms we

obtain

∑ +β+β+β+βt jj
'

1t,j,1t,i,
'

1t,j,1t,i,i
'
i (t)H)BgEg-g(g(t)BH

= ∑ ∑⊗∑ +β+β+β+β=
−

=
−−

t
''

1t,j,1t,i,
'

1t,j,1t,i,
-1/2t

1s i
'

si,
1/2t

1s j
'

sj,
1/221/2 )]gEg-g(g)]vec[TBhTBh[T(T/t)T

That ∑ ∑⊗∑ +β+β+β+β=
−

=
−

t
''

1t,j,1t,i,
'

1t,j,1t,i,
-1/2t

1s i
'

si,
1/2t

1s j
'

sj,
1/22 )]gEg-g(g)]vec[TBhTBh[T(T/t)  is Op(1)

follows from Assumption 3 and Theorem 3.1 of Hansen (1992).  Since T-1/2 is o(1) the proof is

complete.
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