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Abstract

We examine the asymptotic and finite-sample properties of tests for equal forecast accuracy and
encompassing applied to 1-step ahead forecasts from nestecbarametric models. Wefirst derive the asymp
totic distributions of two standard tests and one new test of encompassing. Tables of asymptotically valid
critical values are provided. Monte Carlo methods are then used to evaluate the size and power of the tests
of equal forecast accuracy and encompassing. The simulations indicate that post-sample tests can be
reasonably well sized. Of the post-sampl e tests considered, the encompassing test proposed in this paper is
the most powerful. We conclude with an empirical application regarding the predictive content of

unemployment for inflation
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1. Introduction

Since the influential work of Meese and Rogoff (1983, 1988), it has become common to
use comparisons of out-of-sample forecasts to determine whether one variable has predictive
power for another.> Typically, this out-of-sample comparison is made in two stages. First,
forecasts of the variable of interest are constructed once using amodel that includes avariable
with putative predictive content and then a second time excluding that variable. Second, given
the two sequences of forecast errors, tests of equal forecast accuracy or forecast encompassing
are conducted. This out-of-sample approach is explicitly advocated by Ashley, Granger, and
Schmalensee (1980), who argue that it is more in the spirit of the definition of Granger causality
to employ post-sample forecast tests than to employ the standard full-sample causality test.

Although post-sample tests of thistype are increasingly used, little is known about their
effectiveness. Virtually all evidence on the asymptotic and finite-sample behavior of tests of
egual forecast accuracy and encompassing pertain to forecasts from non-nested models. Diebold
and Mariano (1995), West (1996, 1999), Harvey, Leybourne, and Newbold (1997, 1998), West
and McCracken (1998), Clark (1999), Corradi, Swanson, and Olivetti (1999), and McCracken
(1999a) each present results for non-nested forecasts. Y et when the forecasting models are
nested rather than non-nested, many of the usual test statistics, such as the encompassing test of
Ericsson (1992), fail to converge to the standard normal distribution.? Thisimplies that critical
values taken from the standard normal distribution are asymptotically invalid for testing equal

accuracy or encompassing between forecasts from nested models.

! Examples of studies using this methodol ogy include Diebold and Rudebusch (1991), Amano and van Norden
(1995), Chinn and Meese (1995), Mark (1995), Krueger and Kuttner (1996), Blomberg and Hess (1997), Bram and
Ludvigson (1998), Berkowitz and Giorgianni (1999), Evans and Lyons (1999), and Kilian (1999).

2 One exception is the Chong and Hendry (1986) test of forecast encompassing. West and McCracken (1998) show
that it can be asymptotically normal when applied to either nested or non-nested forecasts. In our simulations
however, the power of this test was dominated by that of the other encompassing tests and hence has been excluded
in order to limit the number of tables.



To fill the existing void, this paper examines the asymptotic and finite-sample properties
of tests for equal accuracy and encompassing applied to 1-step ahead forecasts from nested
parametric models. We first derive the asymptotic distributions of two standard tests and one
new test of encompassing. The standard tests are those proposed by Ericsson (1992) and
Harvey, Leybourne, and Newbold (1998). The new statistic we propose is avariant of these two
tests. AsinWest (1996, 1999), West and McCracken (1998), Corradi, Swanson, and Olivetti
(1999), and McCracken (1999a), the derived asymptotic distributions of the tests explicitly
account for the uncertainty introduced by parameter estimation. To facilitate the use of the
limiting distributions derived here, asymptotically valid critical values are generated numerically
and reported in a set of tables. Using the same basic framework, McCracken (1999b) develops
the asymptotic distributions and provides asymptotic critical values for tests of equal mean
squared error (M SE) proposed by Granger and Newbold (1977) and Diebold and Mariano
(1995), aswell as anew F-type test.

We then eva uate the finite-sampl e size and size-adjusted power of these equal accuracy
and encompassing tests using Monte Carlo simulations based upon different VAR data-
generating processes. For comparison, the set of tests also includes a full-sample F-test of
Granger causality. The post-sample tests are evaluated using tabulated asymptotic critical values
provided in this paper and in McCracken (1999b). For those post-sample tests that would be
asymptotically standard normal if the forecasting models were non-nested, we aso compare the
statistics against standard normal critical valuesin order to evaluate whether using incorrect
critical values can yield misleading inferences. Finally, to illustrate how the tests performin
practical settings, each test is used to determine whether the unemployment rate has predictive

content for inflation in quarterly U.S. data.



Our Monte Carlo analysis produces four key results. First, in most settings, each of the
post-sample tests is reasonably well sized. In many instances, the size distortions associated with
the post-sample tests are smaller than those associated with the full-sample F-test of causality.
Second, comparing the post-sample forecast statistics against the inappropriate standard normal
critical values makes the tests undersized. Third, when the features of the data-generating
process make lag selection sufficiently imprecise, the post-sampl e tests suffer more substantial
size distortions and lose some of their advantage over the full-sample F-test of causality.
Accordingly, post-sample forecast tests are not necessarily a panacea for in-sample overfitting;
many of the problems that lead to in-sample overfitting also lead to post-sample overfitting.
Finally, the powers of the post-sample forecast tests permit some simple rankings, in which the
new encompassing statistic proposed in this paper is most powerful. In some settings, the power
of the new encompassing test rivals the power of the full-sample F-test of causality even though
the full-sampl e test uses many more observations.

The remainder of the paper proceeds as follows. Section 2 introduces the notation and
genera environment under which the forecasts are generated and the tests of equal forecast
accuracy and encompassing are constructed. Section 3 defines the test statistics considered and
provides the null asymptotic results. In section 4 we present a Monte Carlo evaluation of the
finite-sample size and power properties of the tests. Section 5 uses the tests to determine
whether the unemployment rate has predictive power for inflation. Section 6 concludes. Proofs
are contained within Appendix 1. Appendix 2 contains further detail on one of the Lemmas.

2. General Environment
In order to present the tests considered we first provide some general notation, describe

the forecasting schemes, and present the assumptions under which the asymptotic results are



derived.
T+l o T+

The sample of observations {z}/;" © {y,, X,},- includes a scalar random variable y; to

be predicted and a vector of predictors x;. The data sample is divided into in-sample and out-of -
sample portions. The in-sample observations span 1 to R. Letting P denote the number of 1-step
ahead predictions, the out-of-sample observations span R + 1 through R + P. The total number
of observationsin the sampleisR+ P =T + 1. Thelargest number of observations used to

estimate the model parametersisT =R+ P- 1.

Forecasts of yi.1, t = R,..., T, are generated using two parametric models, g, (X,,,,b;) °
Ji (b)), 1 =12, each of whichisestimated. Model 2 is unrestricted and nests the restricted
model 1. Under the null, model 2 includes k, excess parameters. Without loss of generality let
b, = (011, 0ry,) (ki+ka=k 1) suchthat foral t, g,..,(b;) = g,,.4(b;). Under the

aternative hypothesis, the k; restrictions are not true, and model 2 is correct.

Following West and McCracken (1998), three forecast schemes are considered. Under

the recursive scheme, each model’s parameters, b; i = 1,2, are estimated with added data as
forecasting moves forward through time. The first prediction, gi’Rﬂ(Bi’R) , Iscreated using the
parameter estimate Bi‘R based on datafrom 1to R. The second prediction, g, z., (BLRH) , IS
created using the parameter estimate BLRH based on datafrom 1to R +1. Ingenerd, fort =

R,...,T, the prediction of yi.1, gim(Bi’t) , Is created using the parameter estimate Bi,t based on

datafrom 1tot.

Under the rolling scheme, model parameters are estimated using only the most recent R

observations. Thefirst prediction, givRﬂ(Bi‘R) , Is created using the parameter estimate Bi,R



based on datafrom 1to R. The second prediction, g, z., (Bi,Rﬂ) , Is created using the parameter
estimate BLRH based on datafrom2to R + 1. Ingenerd, fort=R,...,T, the prediction of V.1,
gim(ﬁi’t) , Is created using the parameter estimate Bi’t based on datafromt- R+ 1tot. Note

that under the rolling scheme the parameter estimate Bi,t should also be subscripted by R in order

to reflect the width of the sample window. To reduce notation we leave that subscript implicit.

Under the fixed scheme, each forecast is generated using parameters that are estimated

only once using datafrom 1 to R. Hence for each prediction of yi.1, gi,t+1(6i,t) = gim(f)i,R); the
prediction is created using the same parameter estimate Bi,t = Bi’R based on datafrom 1to R. As

was the case for the rolling scheme, under the fixed scheme the parameter estimates Bi’t should

be subscripted by R. To reduce notation we also leave this subscript implicit.

For each of the three forecasting schemes, the 1-step ahead forecast errors are

A

Uppsg = Y - gl,t+l(61,t) and lAjz,t+1 =Yia- gZ,t+l(62,t) for models 1 and 2, respectively. Using

the two sequences of P forecast errors the out-of-sample tests of forecast accuracy and
encompassing are constructed. In al cases the out-of-sample statistics rely on sums of functions
of these forecast errors. To simplify notation, for any variable z.; welet &,z,,, denote the

1o T n2

summation &{_xZz,,, . For example, the MSE for model i isMSE © P& .07, = P 4,07, .
Before getting to the assumptions some final notation is needed. For any function f let

fion = fiua®). Let Gipa®) = 78, (0)/Tb, 9o a®) = 19,0 (0) /b, hy (b)) =

Veor = Gien OGip a0+ G ®©1) = G0 0500 0 = Veor = Giea (00D Gi i (01

and B; = (Eqim)'l. Let W(s) denote a (k2" 1) vector standard Brownian Motion. For any



(m” n) matrix A with elements & ; and column vectors g let vec(A) denote the (mn” 1) vector
[a,,a,,...,a,] and let |A| denote max; |a; ; |. Finally, under the null Uy = Uz © .

Given the definitions and the three forecasting schemes described above, the following
five assumptions are used to derive the limiting distributions of encompassing tests presented in
Theorems 3.5, 3.6, and 3.7. The assumptions are aso sufficient for the results of McCracken
(1999b) when M SE is the measure of predictive ability. The assumptions are intended to be only

sufficient, not necessary and sufficient.

Assumption 1: The parameter estimates Biyt, i=12,t=R,...,T, satisfy Bi’t - b =B, (tH, ().
For b, ontheline between b,, and b’, B, (t)H, (t) equals (t*&',q,;(0,,)) *(t*aL.h;,),
(RU8L rndy0,)) (R M8 rahy,) and (RM&RG,, (B,)) *(R &, ), respectively, for

the recursive, rolling, and fixed schemes.

The first assumption provides us with one primary piece of information. Analytically it
tells us that the parameters must be estimated by OLS, NLLS, or maximum likelihood under
normality assumptions. When aV AR is used, the system must be exactly identified. These
restrictions are imposed to ensure that the statistics in Theorems 3.5-3.7 are pivotal. Asin
McCracken (1999b), achieving alimiting distribution that does not depend upon the data-
generating process requires that the loss function used to estimate the parameters be closely
related to the loss function used to measure predictive ability. Each of the statistics in Theorems
3.5-3.7 are functions of squared forecast errors. To achieve apivota statistic the parameters
must then be estimated using mean square error as the loss function. Although this assumption

restricts how the parameters are estimated, it does not otherwise restrict the type of model.



Single and multiple equation models as well as linear and nonlinear models are permitted.

Assumption 2: Fori =1,2, (@) b, T Q,, Q; compact, (b) E[y, - 9. (b.)]? isuniquely minimized
a b T Q, with Eq; . nonsingular, (c) In some open neighborhood N; around b;, and with
probability one [y, - g, (b,)]? istwice continuously differentiable, (d) In the open
neighborhood N;, and for all t there exists a positive random variable m, such that

max{lgi,b,t(bi)' gi,b,t |u|qi,t(bi)' qi,t)l} £ m; |bi - bi* |j ’ Emt <¥ and1<j <¥.

Most of Assumption 2 isimposed in order to ensure that the parameters are identified and
are consistently estimated. It is directly comparable to Theorem (2.1) of Newey and McFadden

(1994). The substantive components of this assumption are that the predictive function, g; ,(b;) .

isthe conditional mean function and that it is twice continuously differentiable in the parameters.

Assumption 3: Let Uy = [u,, h'2,t ’Va:(hz,thlz,t : Eh2,th'2,t)'!Va:(gz,ﬁ,tg‘z&t : EgZ,B,tg'Z,B,t)"Va:(utgzﬁb,t)']‘ :
(8) EU, =0, (b) Uy is uniformly L® bounded, (c) Eu? =s?, (d) For some 8> d > 2, U, is strong

mixing with coefficients of size-8d/(8 - d), (€) lim.,, T'E&A[,U U, <¥.

Assumption 4: (&) Eh,h,, = s’Eq,, ° s°B;', (b) E(h,, |h,,. ;.0 j=1.2,..) =0,

Both Assumptions 3 and 4 largely consist of technical conditions sufficient for the
application of an invariance principle. Moreover they are sufficient for joint weak convergence
of partial sums and averages of these partial sums to Brownian Motion and integrals of these
Brownian Motion. Assumption 3 isdirectly comparable to the assumptions in Hansen (1992)

and hence we are able to apply his Theorems (2.1) and (3.1).



The reasons for imposing Assumption 4 are much the same as Assumption 1. In order to
ensure that the limiting distribution does not depend upon the underlying data-generating process
we must impose some extra conditions. Here we essentially require that the disturbances form a

conditionally homoskedastic martingal e difference sequence.

Assumption 5: lim,,, P/R =p,0<p<¥,| ° (1+p)".

Thisfina assumption introduces the means by which the asymptotics are achieved. Asin
Ghysels and Hall (1990), West (1996), and White (1999) the limiting distribution results are
derived by imposing a slightly stronger condition than simply that the sample size, T+1, becomes
arbitrarily large. Here we impose the additional condition that both the numbers of in-sample
(R) and out-of-sample (P) observations also become arbitrarily large at the same rate. In this
way we ensure that the parameters estimated in-sample and certain out-of-sample averages are
both consistent estimators of their population level analogs.

Unless otherwise noted, the notation and assumptions presented in this section hold

throughout the remainder of the paper.

3. Tests

While Ashley, Granger, and Schmalensee (1980) specifically advocate using tests of
egual forecast accuracy to examine causality, given their definition of causality, any test
designed to examine whether one variable carries information about another could reasonably be
used. Accordingly, this paper considers the ability of full-sample Granger causality tests, equal
forecast accuracy tests, and forecast encompassing tests to determine whether one variable has
predictive power for another. Since alarge number of tests for equal accuracy and encompassing

already exist, for tractability the set examined is limited based on considerations of



computational simplicity and performance in the non-nested investigations of Ericsson (1992),
Diebold and Mariano (1995), Harvey, Leybourne, and Newbold (1997, 1998) and Clark (1999).

In the results below, the tests are applied to 1-step ahead forecasts. These findings should
be widely useful because, in practice, most forecast comparisons include 1-step ahead resullts.
Admittedly, many researchers are also interested in multi-step forecast results. We do not
provide results for multi-step forecasts because the asymptotic distributions of the equal accuracy
and encompassing tests appear to depend on the parameters of the data-generating process. For
practical purposes, such dependence eliminates the possibility of using asymptotically pivotal
approximations to test for equal accuracy or encompassing. Lutkepohl and Burda (1997) note
similar difficulties associated with in-sample causality tests involving multi-step horizons. For
those researchers interested in multi-step horizons, bootstrap procedures, such as those

developed in Ashley (1998) and Kilian (1999), may yield accurate inferences.

3.1 Granger Causality (GC) Tests
In this paper we focus on testing ex-ante forecasts for equal accuracy and encompassing.

However, for the sake of comparison we provide results for the commonly used full-sample F-

test of Granger causality, which we refer to asthe GC test. Letting V,, = y, - g, (61,R+P) and

Vo =Y - Oy (62R+P) denote the residuals from two nested models estimated with the full

sample of R + P observations,

_R+P-k (R+P)'AR07 - (R+P)ALTT, 0
k, (R+P)*akPis, '

GC

Under the null that the ks restrictions hold it is well known that, subject to certain conditions, the

GC dtatistic has an exact F(k,,R + P- k) distribution. More generally, k, XGC convergesin



distribution to a chi-square variate with k, degrees of freedom.?

We provide the formulain (1) for two key reasons. First, it helps motivate the tests of
equal M SE detailed below (equations (3), (4) and (6)). Second, it aso helps motivate the tests of
encompassing considered below. To see this, decompose the numerator of (1) as

(R+P) APV, - (R+P)TATFVS,

= (R+P) AT (U, - Uy, 0,) - (R+P) AL (V3, - V1, 05,). )
If, for example, the two nested models are linear and estimated by OL S then the | atter right-hand
sideterm in (2) is numerically zero and hence the numerator of (1) isidentically
(R+P) &P (V2 - ¥, V,,). Thistermisqualitatively similar to the orthogonality condition

used in the forecast encompassing tests (equations (7), (9) and (10)).*

3.2The MSE-F Test

McCracken (1999b) devel ops an out-of-sample F-type test of equal MSE, given by

-l N2 -l N2
Pra Ui, - Prauy,

MSE-F = Px STy
Pa Us

©)

This statistic is comparable to the full-sample GC test in (1) and offers the advantage of being
particularly simple to compute if forecast summary statistics are already available. Using
assumptions broadly similar to those used in this paper, McCracken (1999b) shows that the

M SE-F statistic converges in distribution to a function of stochastic integrals of quadratics of
Brownian motion. Under the null, the limiting distribution, which varies with the forecasting

scheme, is afunction of the limit of the ratio of post-sample to in-sample observations, p, and

% Comparing the statistic k, XGC against the chi-square distribution produces results very similar to those reported.

* Various discussions in the literatures on encompassing and artificial regression tests of non-nested hypotheses
point out that encompassing tests are equivalent to F-type tests of exclusion restrictions. Davidson and MacKinnon
(1993, pp. 386-87) summarize the basic point and relevant literature.

10



excess parameters, kz, in moddl 2.
In the Monte Carlo experiments of section 4 the test statistic is compared against

asymptotic critical values tabulated by McCracken (1999b). Since the models are nested, the

null hypothesisis Eu?,,, £ Eu,,, and thealternativeis EuZ,,, > Eu3,,,. Thealternativeisone-

sided because, if the restrictions imposed on model 1 are not true, there is no reason to expect

forecasts from model 1 to be superior to those from model 2.

3.3TheMSE-T Test
Letting d,,, =07, - 03,,, and d = P*&,d,,, = MSE; - MSE,, Diebold and Mariano
(1995) propose at-statistic for equal M SE that, as calculated here, takes the form

3 N2
(ult+l 2t+l)

d
= (P- 1Y o e (4)
JP &, (d,, - d)? J'a (02, - 02,,,)% - 0

MSE-T = (P- 1)*?

Note that the term in front is(P - 1) ?rather than P*'* because, for computational convenience,
we calculate the test using standard regression methods (we regress d,,, on aconstant) in which

the estimated error variance incorporates a degrees-of-freedom adjustment.
While West (1996) proves that the MSE-T statistic can be asymptotically standard
normal when applied to non-nested forecasts, the asymptotic distribution is non-normal when the

forecasting models are nested under the null hypothesis. The root of the problem is that, under
the null, g ., (0;) = 9, (b,) and thusboth Us 1 = Yy - Gr e (07) = Uy, aNd Upger =
Vi - 920a(03) = Vir - 010a(07) = Uy, Hence, at least heuristically, the squared loss

differential di+1 isexactly 0. McCracken (1999b) shows that, for forecasts from nested models,
the MSE-T test statistic convergesin distribution to afunction of stochastic integrals of

quadratics of Brownian motion. Aswas the case for the M SE-F statistic, the limiting distribution

11



depends on the forecasting scheme, p, and k.

In our Monte Carlo analysis, the MSE-T statistic is compared against the asymptotic
critical values tabulated by McCracken (1999b). Aswith the M SE-F test, the alternative
hypothesisis one-sided. To evaluate how using the standard, but asymptotically invalid, critical
values would affect inference, results are also reported for aversion of the test comparing the

MSE-T statistic against the standard normal distribution.

3.4 The MSE-REG Test
Granger and Newbold (1977) also propose atest of equal M SE, referred to here asthe
MSE-REG statistic. It can be evaluated using the t-statistic associated with the coefficient a;

from the OLS regression

(l:ll,t+l B 02,t+1) = al(al,tﬂ + 02,t+1) + error term, )
which can be expressed as
1/2 a
MSE-REG = (P- 1) . (6)

P8 (O - O50) P8 (O + 0gp)% - 2
The covariance term in the numerator of (6) is equal to the difference in the MSEs for models 1
and 2. While West (1996) proves the M SE-REG statistic can be asymptotically standard normal
when applied to non-nested forecasts, M cCracken (1999b) shows that, for forecasts from nested
models, the MSE-REG test statistic has the same limiting distribution as the MSE-T test.

In the Monte Carlo results of section 4, we compare the M SE-REG statistic against the
asymptotic critical values tabulated by McCracken (1999b). Aswith the MSE-F and MSE-T
tests, the alternative hypothesisis one-sided. To evaluate how using the standard, but
asymptotically invalid, critical values would affect inference, results are also reported for a

version of the test comparing the MSE-REG statistic against the standard normal distribution.

12



3.5The ENC-T Test
Harvey, Leybourne, and Newbold (1998) develop atest of forecast encompassing based
on the methodology of Diebold and Mariano (1995). Specificaly, Harvey, Leybourne, and

Newbold (1998) propose atest of encompassing that uses at-statistic for the covariance between

A

~ ~ _n ~ ~ _ a2 ~ ~ = _p-lo
ul,t+1 and ul,t+l - u2,t+l' Let Cv1 = ul,t+1(ul,t+l - u2,t+1) - ul,t+l - ul,t+1u2,t+1 andc=P a.C.

Their encompassing test, denoted ENC-T, isformed as

-1lo N2 0 0
c P at(ul,t+1 - ul,t+1u2,t+1)

ENC-T = (P- 1)¥? = (P- 1)"?

\/P_lét(ctﬂ - E)2 \/P_lét(aitﬂ - l,Jl,t+102,t+1)2 - 62

(7

Aswith the MSE-T statistic, thetermin front is (P- 1)*? rather than P*? because we calcul ate
the test using standard regression methods (we regress c,,, on aconstant). Under the null that
model 1 forecast encompasses model 2, the covariance between u;; and u,, - u,, will beless

than or equal to 0. Under the aternative that model 2 contains added information, the covariance
should be positive. Hence the test is one-sided.

While West (1999) shows the ENC-T statistic can be asymptotically standard normal
when applied to non-nested forecasts, the asymptotic distribution is non-normal when the

forecasts are nested under the null. The actual limiting distribution is provided in Theorem 3.5.

Theorem 3.5: For ENC-T defined in (7), ENC-T ® 4 ¢, /(c,)"? where ¢, equals

0S W' (3)dW(s) for the recursive scheme,
1-3W() - W( )} W(l) for the fixed scheme,
| 1 3{W(s) - W(s- | )} dwW(s) for the rolling scheme,

13



and c, equas
9S*W (W(s)ds for the recursive scheme,
pl *wW (1)W(l) for the fixed scheme,

| 2 5{W(s) - W(s- 1 )} {W(s)- W(s- | )}ds for the rolling scheme.

According to Theorem 3.5, for each forecasting scheme the test statistic is pivotal. This
permits the construction of estimates of asymptotically valid critical values without knowledge
of the underlying data-generating process. With these critical values one can conduct an
asymptotically valid test of the null. Morever, because the statistic is pivotal, the bootstrap
procedures suggested by Ashley (1998) and Kilian (1999) may provide refinements to first-order
asymptotics and thereby yield more accurate inference in finite samples.

Though the null limiting distributions do not depend upon the data-generating process
itself, the distributions are dependent upon two parameters. Thefirst is the number of excess
parameters k,. It arises because the vector Brownian Motion, W(s), is (k2" 1). The second
parameter, p, aso affects the null limiting distribution, in two ways. It directly affectsthe

weights on each of the components of the statistics (recall that | = (L+ p)™*). It also affects the

range of integration on each of the stochastic integrals through | .

We provide a selected set of asymptotic critical values for the ENC-T statisticin
Appendix Tables 1-3.° These values were generated numerically using the limiting distribution
in Theorem 3.5 and hence can be considered estimates of the true asymptotic critical values. The

reported critical values are the 90", 95™ and 99™ percentiles of 5000 independent draws from the

distribution of c,/(c,)"? for agiven forecasting scheme and value of k, and p. Generating these

14



draws proceeded as follows. Weights that depend upon p are estimated in the obvious way using
p © P/R. The necessary k, Brownian Mations are simulated as random walks each using an
independent sequence of 10,0001i.i.d. N(0,TY?) increments. Theintegrals are emulated by
summing the relevant weighted quadratics of the random walks from the R+1% observation to the
T™ observation. The random number generator is seeded so that all (k, p) pairs and all sampling
schemes use the same 5000 draws of the k, random walks.

In the Monte Carlo results of section 4, we compare the ENC-T statistic against the
asymptotic critical values tabulated in Appendix Tables 1-3, again using a one-sided alternative
hypothesis. To evaluate how using the standard, but asymptotically invalid, critical values would

affect inference, results are also reported for aversion of the test comparing the ENC-T against

the standard normal distribution.®

3.6 TheENC-REG Test

The forecast encompassing test proposed by Ericsson (1992) is a regression-based variant
of the ENC-T test. The test statistic, denoted ENC-REG, is the t-statistic associated with the
coefficient a; from the OLS regression

Upy = @5 (Opyy - Gyyyy) +error term, 8

which can be expressed as

P Alt+l(01t+l - lAjzt+1) (9)
VP& Oy - Op00)°P 18,07, - ©°

ENC-REG = (P- 1)V?

Under the null that model 1 forecast encompasses model 2, a; will be less than or equal to O.

Under the alternative that model 2 contains added information, a; should be positive.

®> More detailed tables of critical values are available upon request.
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Once again the ENC-REG statistic can be asymptotically standard normal when applied
to non-nested forecasts but the null asymptotic distribution is non-normal when the forecasts are

nested. The actua limiting distribution is provided in Theorem 3.6.

Theorem 3.6: For ENC-REG defined in (9) and ENC-T defined in (7), ENC-REG - ENC-T =

op(1).

Theorem 3.6 states that ENC-REG and ENC-T are asymptotically equivalent under the
null.” Hence we can use Appendix Tables 1-3 to construct asymptotically valid tests of forecast
encompassing when the ENC-REG statistic is used. However, this does not imply that the two
statistics will have similar finite sample properties. Accordingly, in the Monte Carlo
experiments of section 4 we include both the ENC-T and ENC-REG statistics. Aswith the
ENC-T test, in our Monte Carlo results we compare the ENC-REG test against the asymptotic
critical values reported in Appendix Tables 1-3 and against critical values taken from the
asymptotically invalid standard normal distribution.

3.7 A New Encompassing Test

Because the population prediction errors from models 1 and 2 are exactly the same under
the null, the variances in the denominators of the ENC-T statistic (7) and the ENC-REG statistic
(9) are, heuristically, 0. These denominators are estimates of the variance of c,,, which, in
population, isidentically 0. This feature of the ENC-T and ENC-REG statistics may adversely
affect the small-sample properties of the tests. Therefore, in paralel to the M SE-F tet, this
paper proposes a variant of the ENC-T and ENC-REG statistics in which € is scaled by the

variance of one of the forecast errors rather than an estimate of the variance of C.

® Incorporating the small-sample adjustments suggested by Harvey, Leybourne, and Newbold (1997, 1998) does not
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This statistic, which we refer to as the ENC-NEW statistic, takes the form

ENC-NEW = Px c = pyp_lét(ﬂlz,tﬂ - 01,t+102,t+1)
MSE, P_létag,m .

(10)
The numerator is the object of interest in the ENC-NEW test (i.e., the covariance between

Uy,and Oy, - U,,,,). Thedenominator, MSE,, serves asascae correction. Aswith the

ENC-T and ENC-REG statistics, the limiting distribution is non-normal when the forecasts are

nested under the null. The actual limiting distribution is provided in Theorem 3.7.

Theorem 3.7: For ENC-NEW defined in (10) and c, defined in Theorem 3.5, ENC-NEW ® 4 c; .

Given Theorem 3.5, thisresult is not surprising. The sole difference between the ENC-T
and ENC-NEW statistics is the denominator. Hence we expect their limiting distributions to be
somewhat related. Aswas the case for the ENC-T statistic, the limiting distribution is pivotal
and relies upon the forecasting scheme and the parameters k, and p.

In the Monte Carlo of section 4, the ENC-NEW statistic is compared against asymptotic
critical values tabulated in Appendix Tables4-6. Aswith Appendix Tables 1-3, these values
were generated numerically using the limiting distribution in Theorem 3.7 and hence can be

considered estimates of the true asymptotic critical values.®

4. Monte Carlo Results
The small-sample properties of the tests described in section 3 are evaluated using a

bivariate VAR data-generating process. Specifically, we compare the predictive ability of an AR

alter the basic results for either the MSE-T or ENC-T tests.
"Thereisapardlél to thisin McCracken (1999b). Thereit is shown that MSE-REG - MSE-T = 0p(1).
8 The random number generator was seeded so that the same c, valueswere used in the construction of Appendix

Tables 1-3 and 4-6.
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model (model 1) with that from a VAR model (model 2). The presented results are based on
data generated using standard normal disturbances. The results are essentially unchanged when
the disturbances are drawn from the heavier-tailed t(6) distribution considered by Diebold and

Mariano (1995), Harvey, Leybourne, and Newbold (1997, 1998), and Clark (1999).

4.1 Experiment Design
In the presented results, data are generated using two different artificial VAR models.

Thefirst, denoted VAR-1, takes the form

0 803 b y,,0
gxtﬂ go 05£Xt1ﬂ guxtg (11)

The second, denoted VAR-2, takes the form

&0 a3 b (_'m’ 10 .3 cw 5
gng §o7 -OSéxim 503 Oéxizﬂ gxtg (12)

In both cases, y, isthe predictand, X, isan auxiliary variable, and the disturbances arei.i.d.

standard normal random variates. To evaluate size in finite samples, the coefficient b is set at 0.
To evaluate power, bisset at 0.1 and 0.2. Simulations based on other VAR(2) models, the
trivariate stationary VAR(1) and VAR(3) models of Swanson, Ozyildirim, and Pisu (1996), and
the empirical inflation and unemployment model considered in section 5 produced results similar
to those from the VAR-1 and VAR-2 modelsin equations (11) and (12).°

In each Monte Carlo simulation we generate R + P + 4 observations. The additional four
observations allow for data-determined lag lengths in the forecasting models. Letting L denote
the lag length of the data-generating process, the first L observations are generated by drawing

from the unconditional normal distribution implied by the model parameterization. The

18



remaining R + P+ 4 - L observations are constructed using the autoregressive model structure
and draws of the error terms from the standard normal distribution.

In the presented results, the lag length of the VAR model was chosen using Akaike's
information criterion; the same lag length was used for the AR model.® Only thein-sample
portion of the data was used to choose the lag length. Reserving observations 1 through 4 as
initial observations necessary to allow for amaximum of four lagsin the estimated models, the
in-sample period spans observations 5 through R + 4. The estimated forecasting models are used
to form P 1-step ahead predictions, spanning observations R + 5 through R + P + 4. For brevity,
results are only presented for recursive forecasts, as the basic conclusions are essentially the
same for rolling and fixed forecasts.* Note that while the forecasting models use lags
determined from just the in-sample portion of the data, the GC test uses alag length determined
from the full sample of R + P observations.

Results are reported for empirically relevant combinations of Pand R suchthat p © P/R
takesthevalues 0.1, 0.2, 0.4, 0.6, and 1.0. Specifically, we use R = 100 with P =10, 20, 40, 60,

and 100. Wealso use R = 200 with P = 20, 40, 80, 120, and 200.

4.2 Size Reaults

Table 1 presents the empirical sizes of Granger causality, equal forecast accuracy, and

® In addition, simulations based on a limited set of bivariate VARMA DGPs produced similar results. Thisisto be
expected as long as the VARMAS can be reasonably well-approximated by a finite-order VAR.

1911 computing power, the test statistic in simulation i, for which the selected lag isj, is compared against the
distribution of test statistics from the set of simulations under the null in which the lag was selected to bej. For
example, if lag j was selected in J of the 50,000 size simulations of a given experiment, empirical critical valuesfor
lag j were calculated from just those J simulated test statistics. 1n a corresponding power experiment, for those
simulations in which the lag was selected to be j, the test statistics were compared against these critical values.
Since longer lags tend to be somewhat infrequently selected, 50,000 simulations were used in the size experiments
to ensure the accuracy of the results with data-determined lags.

1 While results for rolling forecasts are very similar to those for recursive forecasts, results for fixed forecasts do
differ dightly. For example, the power of the MSE-T, MSE-REG, ENC-T, and ENC-REG testsis modestly lower
for fixed forecasts than for recursive forecasts.
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forecast encompassing tests for datafrom the VAR-1 and VAR-2 models of equations (11) and
(12), using anominal size of 10%. The results are generally the same at a nominal size of 5%.

In these size experiments, the null isimposed by setting b = 0 in equations (11) and (12). Under
thisnull, the AR and VAR models have equal M SE and forecasts from the AR model encompass
those from the VAR. Three general results are evident from Table 1.

Sizeresult 1. In most settings the post-sampl e tests have reasonable finite-sample size
properties, often suffering smaller size distortions than the full-sample F-test of causality.

More specifically, the MSE-F, MSE-REG, ENC-NEW, and ENC-REG tests perform
well, suffering only slight size distortions in finite samples. For example, when the DGPis
VAR-1, R =100, and P = 20, these four tests have empirical sizes of 11.0%, 11.4%, 11.8%, and
11.9%, respectively. Whilethe MSE-T and ENC-T statistics also perform reasonably well, when
Pissmall the tests suffer slightly greater distortions than do the MSE-REG and ENC-REG tests.
For instance, using the VAR-1 DGP, R = 100, and P = 10, the MSE-T test has an actual size of
14.8% while MSE-REG has an actual size of 12.6%. The better performance of MSE-REG and
ENC-REG likely stems from the regression forms of the tests using more precise variance

estimates. For example, the variance term in the denominator of the ENC-REG test (9) usesthe

product of second moments, P*&, (0., - 0,,,,)°P 4,07, , whilethe ENC-T test (7) uses the
1,t+1 2,t+1 1,t+1

A

sample fourth moment, P *4,(02,,, - 0,,,,0,,.,)%. With normally distributed data, of course, in
p 1t+1 1t+1~2,t+1

population the fourth moment equals the product of the second moments.*?
In general, given R, any size distortions of the post-sample testsfall as P rises. For
example, when data are generated using VAR-1 with R = 100 and P = 10, the actual sizesrange

from 11.7% to 14.9%. When P increasesto 100, the actual sizes range from 10% to 11%. The
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improvement in size that comes with increases in P presumably stems from greater precision in
the sample moments that enter the test statistics. Each of the sample moments is computed with
P predictions.

By comparison, the GC test suffers a consistent size distortion that often exceeds (albeit
dightly) that of the post-sampletests. For example, in the experiments using VAR-1 and R =
100, the GC test has empirical size of dlightly more than 13% for al vaues of P. In contrast, the
actual size of the ENC-NEW test ranges between 11.0% for P = 100 and 12.6% for P = 10.
Similarly, in the experiments using VAR-2 and R = 200, the GC test consistently has size of
about 13%, compared to roughly 11% or 12% in the ENC-NEW statistic. All of the size
distortions in the GC test appear to stem from the pre-test bias associated with using the full
sample of datato first determine the appropriate lag length and then test causality.™® In
unreported results, we find that if the GC test is calculated with the model lag length always set
to the true order of the DGP (or at alonger lag length), the test is correctly sized.

In results not reported, some evidence suggests that the size advantage of post-sample
tests may be larger than in Table 1 when more data mining is involved in choosing the lag length
of the VAR. Asnoted above, in the Table 1 results, the lag length was set to minimize the AIC
for the VAR. An dternative, more data-intensive approach to model selection isto allow the

lagson y, and X, inthe nesting equation for vy, (i.e.,, model 2) to differ, and then choose the lag

combination that minimizes the AIC for that equation.** Using this approach to lag selection,

whenthe DGPisVAR-1, R =100, and P = 20, the GC test has actual size of 20.2%, while the

2\We dso find that MSE-REG and ENC-REG have better size than MSE-T and ENC-T in simulations with t(6)-
distributed innovations.

13 The same cannot be said about the size distortions of the post-sampletests. For these, results for simulationsin
which the true lag length is used are very similar to those reported (except for the experiments with VAR-2 and R =
100), in which the lag is data-determined.
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MSE-F and ENC-NEW tests have size of 11.6% and 13.5%, respectively.

Sizeresult 2. Comparing the MSE-T, MSE-REG, ENC-T, and ENC-REG tests against
invalid asymptotic critical values generally leads to too-infrequent rejections.

While the ENC-T and ENC-REG tests are typically undersized when compared against
standard normal critical values, the problem is more severe for the MSE-T and M SE-REG tests.
For instance, using VAR-1 with R =100 and P = 20, comparing the MSE-T and MSE-REG
statistics against the standard normal distribution yields sizes of 5.8% and 4.7%, respectively.
For agiven R, using the wrong critical values typically causes the tests to become more
undersized as P rises. When P increases to 60, the sizes of MSE-T and M SE-REG fall to 2.8%
and 2.5%, respectively.

The MSE-T, MSE-REG, ENC-T, and ENC-REG tests are undersized when compared
against standard normal critical values because the true asymptotic distributions of the statistics
(and the empirical distributions) are shifted to the |eft relative to the standard normal. For a one-
tailed test, the 10% critical value from the standard normal distribution is 1.282. In the case of
the MSE-T and M SE-REG tests, for example, the 10% critical value from the true asymptotic
distribution tabulated by McCracken (1999b) is0.780 when k, =1 and p = 0.2. For agiven R,
the undersizing becomes worse as P rises because the correct asymptotic distributions shift
further to the left as p increases. With k, = 1, the 10% critical value from the true asymptotic
distribution of the MSE-T and MSE-REG tests falls to 0.443 when p rises to 1.0.

Sizeresult 3. When the length of the sample and certain features of the DGP combine to
make data-based |ag sel ection sufficiently imprecise, the size performance of all the tests

deteriorates, more so for the post-sampl e tests than for the full-sample F-test of causality.

14 Stock and Watson (1999), for example, take this approach to model selection. In our alternative simulations, we
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In the case of the VAR-2 model, the true model for y; isan AR(2). However, because the
population correlation between x;.; and yi.» islarge (0.57), in sufficiently small samples standard
lag selection procedures cause alag of 1 to be selected with some regularity.*> When R = 100,
the lag order isset at 1 in roughly 13% of the VAR-2 simulations; the lag order is correctly set at
2 in about 74% of the simulations. When R = 200, lag selection is much more precise. In this
case, thelag order isset a 1 in only about 0.6% of the VAR-2 simulations. How often the lag of
1 isselected iscrucia to the performance of the tests, because in an estimated model with just 1
lag, x:.1 will often spuriously appear to have predictive power for y:.

Due to the difficulty in selecting lag length when the DGP is VAR-2 and R = 100, the
size performance of each test deteriorates.'® For example, when P = 20, the sizes of the MSE-F,
ENC-NEW, and GC tests are 14.5%, 15.9%, and 16.2%, respectively. For the post-sample tests
the size distortions generally do not fall as Prises. For instance, the size of the MSE-F test is
14.7% when P = 60. The size of the GC test doesimprove as P rises, because increasesin P lead
to greater precision in choosing the lag length of the model used to form the full sample-based
GC test. In generd, the deterioration in the performance of each test seemsto be purely a
function of the lag selection problem. In unreported results, we find that the sizes of the tests
improve when the lag is fixed at the true order of 2 (or at a higher order).

This finding suggests that, contrary to the view some researchers may have, post-sample
forecast tests are not necessarily a panacea for spurious in-sample or full-sample causality

results. Many of the problems that lead to spurious in-sample results al'so seem likely to lead to

allow for lags between 1 and 4 of each variable.

%5 The problem is more severeif the BIC isused in lieu of the AIC.

181 addition to an overall deterioration in performance, the simulations based on VAR-2 and R = 100 produce a
change in the performance of the ENC-T and ENC-REG tests compared against invalid critical values. While these
encompassing tests are generally undersized if compared against the standard normal distribution, in the VAR-2
simulations with R = 100 the tests are dightly oversized.
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spurious post-sample results. In the VAR-2 example, the basic problem is collinearity between
Xt-1 and yi.o, which is afeature of both the in-sample and out-of-sample data. This collinearity
can cause the in-sample-determined VAR lag to be incorrectly set at 1 with some frequency.
When that occurs, both in-sample and post-sampl e tests will too frequently (relative to nominal

size) find that x.., has predictive power for y:.

4.3 Power Results

Tables 2 and 3 present results on the power of Granger causality, equal forecast accuracy,
and forecast encompassing tests using the VAR-1 and VAR-2 DGPs in equations (11) and (12).
In these power experiments, data are generated using b = 0.1 and b = 0.2, so the VAR forecasts
of y have lower M SE than AR forecasts, and the AR forecast does not encompass the VAR
forecast. Because the tests are, to varying degrees, subject to some size distortions, the reported
power figures are based on empirical critical values and therefore size-adjusted. The actual size
of the testsis 10%; using 5% produces essentially the same results. For all of the tests, the null is
rejected if the test statistic is greater than the 90™ percentile of the statistic in the corresponding
size experiment. Two general results are evident in Tables 2 and 3.

Power result 1. The powers of the tests permit some simple rankings: ENC-NEW >
MSE-F, ENC-T, ENC- REG > MSE-T, MSE-REG.

In our experiments, the ENC-NEW test is clearly the most powerful out-of-sample test of
predictive ability. In some settings, the power of the ENC-NEW statistic rivals the power of the
GC test, even though the GC test is based on many more observations (R + P rather than P). For
example, as shown in the lower panel of Table 2, in simulationswith VAR-2, b= 0.1, R = 100,

and P = 40, the ENC-NEW test has power of 27.8%, little different from the GC test’s power of

7 As expected, it is also the case that power rises with the coefficient b defined in equations (11) and (12).
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30.0%. The MSE-F, ENC-T, and ENC-REG tests are less powerful than the ENC-NEW test.
Using the experiment of the previous example, the MSE-F, ENC-T, and ENC-REG tests have
power of 24.2%, 23.1%, and 23.6%, respectively. The MSE-T and MSE-REG tests are less
powerful than the other tests.

There seem to be two factors underlying the power advantage of the ENC-NEW statistic.
First, as noted in section 3.7, the denominator of the statistic is simply MSE,, rather than some
variance estimate that, heuristically, is 0 under the null. This feature seemsto be the most likely
explanation of the ENC-NEW test’s power advantage over the ENC-T and ENC-REG tests. The
greater power of the M SE-F test compared to the MSE-T and M SE-REG statistics lends further
support to thisidea.

Second, encompassing tests like ENC-NEW are more powerful than their equal accuracy
counterparts, like M SE-F, because the equal accuracy statistics are essentially equal to an
encompassing test plus noise. Paralleling the decomposition of the GC test in equation (2), the

M SE-F statistic can be rewritten as

o

1o A ~ ~ 1o ~ ~ ~
P atul,t+1(u1,t+1 - u2,t+1) i PP atuz,t+1(u2,t+1 - ul,t+1)

MSE-F: P)’ -lo ~2 -lo ~2
Pra U5, Pra Usu,

The first term on the right-hand side of the above equation is simply the ENC-NEW statistic.
The second term is atest of the null that forecast 2 encompasses forecast 1 (in the full-sample
expression (2), by construction this second term is exactly 0). Because the models are nested,
forecast 2 encompasses forecast 1 under both the null and alternative hypotheses and,
heuristically, this second test statisticis 0. The M SE-F statistic has lower power becauseitisa
linear combination of the ENC-NEW test and a statistic testing a true hypothesis, which simply
adds noise to the test and thereby reduces its power relative to the ENC-NEW test.

Power result 2. Increasing the number of observations affects the powers of the tests
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along several dimensions.

First, holding P fixed, the powers of the M SE-F and ENC-NEW tests rise with R, while
the powers of the other tests are unaffected. For instance, as shown in the upper panel of Table
2, with the VAR-1 DGP and P = 40, the power of the ENC-NEW test rises from 31.2% when R
=100 to 39.7% when R = 200. Second, when R is held fixed, power riseswith P. For example,
inthe VAR-1 experiment with R = 100 and b = 0.2, the power of the M SE-F test rises from
39.3% when P = 10 to 75.4% when P = 100. At the same time, the gap between the powers of (i)
ENC-NEW and (ii) MSE-T, MSE-REG typically increases with P. Similarly, the differencein
the powers of (i) ENC-T, ENC-REG and (ii) MSE-T, MSE-REG usually riseswith P. These
changes are mirrored by areduction in the power difference between (i) MSE-F and (ii) MSE-T,
MSE-REG and areduction in the power difference between (i) ENC-T, ENC-REG and (ii) MSE-

T, MSE-REG.

5. Empirical Example

In this section’s example we use tests of Granger causality, equal forecast accuracy, and
forecast encompassing to determine whether the prime-age male unemployment rate is useful in
predicting core CPI inflation. Cecchetti (1995), Staiger, Stock, and Watson (1997), and Stock
and Watson (1999) are recent examples of studiesin the long literature on this basic question.

Our quarterly data, which begin in 1957:Q1, are divided into in-sample and out-of-
sample portions so asto produce a p © P/R value for which McCracken (1999b) and this paper
report asymptotically valid critical values. After we allow for data differencing and a maximum
of four data-determined lags, the in-sample period spans 1958:Q3-1987:Q1. Thisleaves atotal
of R =115 observations. The out-of-sample period spans 1987:Q2-1998:Q3, yielding atotal of

P = 46 1-step ahead predictions. For this split, p =0.4.
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Consistent with the results of augmented Dickey-Fuller tests for unit roots, our model
variables are the change in inflation and the change in the unemployment rate. Over thein-
sample period, the AIC for both the AR and the VAR is minimized at two lags. The sample test
statistics are compared against asymptotic critical values and empirical critical values generated
by Monte Carlo methods. The empirical critical values are based on 50,000 simulations of the
estimated inflation-unemployment model in which the null of no causality from unemployment
toinflation isimposed. The simulated model is constructed using the in-sample estimates of the
coefficients as the “true” values. Bootstrap methods produce similar critical values.

Table 4 presents results for the inflation-unemployment example. The upper panel
reports in-sample estimates of an AR(2) fit to changes in core CPI inflation and aVAR(2) fit to
changesin core CPI inflation and prime-age male unemployment. In the in-sample model
estimates, unemployment clearly has predictive power for inflation. Moreover, the full-sample
GC test reported in the lower panel of the table strongly rejects the null of no causality from
unemployment to inflation.

Although weaker, the out-of-sampl e evidence indicates that unemployment has predictive
power for inflation.’® Asreported in the lower panel of Table 4, all of the encompassing tests
indicate that the change in unemployment has predictive content for the change in inflation. The
ENC-NEW test strongly regjects the null that the AR forecast encompasses the VAR forecast.
The ENC-T test clearly rgects, while the ENC-REG test marginally rejects. None of the tests for
equal M SE regject the null of equal accuracy.

Two factors may account for the difference in the in-sample and post-sample evidence.

Oneissimply power differences — some of the post-sample tests may not be powerful enough to

8 The forecasts are slightly biased. Demeaning the errors prior to calculating the test statistics actually strengthens
the evidence of unemployment’s predictive power.
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pick up unemployment’s predictive content. The Monte Carlo results in section 4 indicate that
the power of equal forecast accuracy tests such as M SE-F lag behind the power of encompassing
counterparts like the ENC-NEW test, which has power rivaling that of the GC test. The second
factor ismodel instabilities. Neither the AR model for inflation nor the VAR pass the supremum
Wald or exponential Wald tests for stability developed in Andrews (1993) and Andrews and

Ploberger (1994), respectively.'®

6. Conclusions

In this paper we provide analytical, Monte Carlo, and empirical evidence on the
properties of tests of equal forecast accuracy and encompassing applied to predictions from
nested parametric models. We first derive the limiting distributions of two standard tests and one
new test of forecast encompassing. Monte Carlo experiments are then used to provide evidence
on the finite-sampl e size and power of equal accuracy and encompassing tests. These
experiments yield four key results. First, the post-sample tests are, in general, reasonably well
sized. Second, when compared against asymptotically invalid standard normal critical values the
post-sample tests are undersized. Third, when lag selection is sufficiently imprecise, the post-
sampl e tests suffer more substantial size distortions, with the implication that forecast tests are
not necessarily a panaceafor in-sample overfitting. Fourth, the encompassing test proposed in
this paper (the ENC-NEW statistic defined in equation (10)) is most powerful. In thefina part
of our analysis, we find that the post-sampl e tests provide mixed evidence on the predictive
content of unemployment for inflation. While each of the equal forecast accuracy testsfail to

reject the null that unemployment has no predictive content for inflation, each of the

19 The model's do pass the Nyblom (1989) test for stability and Chow tests for a shift in the parameter estimates
between 1958:Q3-87:Q1 and 1987:Q2-97:Q3. Following Diebold and Chen (1996), the stability test results are
based on bootstrap critical values.
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encompassing tests indicates that unemployment does have predictive power.

Although we extend the literature on out-of-sample tests of predictive ability there still
remain a number of unanswered questions. Perhaps the most obvious is the optimal choice of
the sample split parameter p. Asreviewed by McCracken and West (1999), within the existing
literature on out-of-sample hypothesis testing this seems to be an important determinant of both
the size and power properties of tests of predictive ability.

Another important topic for future research is devel oping tests of equal forecast accuracy
and encompassing that allow unit roots in the nested parametric models used to forecast.
Corradi, Swanson and Olivetti (1999) show how tests of equal forecast accuracy can be
constructed for predictions from non-nested parametric models in the presence of cointegrating
relationships. Because tests for causality often, in practice, involve nonstationary variables
(Stock and Watson, 1988) extending their results to a nested environment may prove useful.

A fina topic for future research is developing tests of out-of-sample predictive ability for
forecasts generated with nonparametric methods. Local-linear (Diebold and Nason, 1992),
series-based (Swanson and White, 1997), and kernel-based (Chung and Zhou, 1996)
nonparametric methods are frequently used to construct forecasts. Although McCracken (1999c¢)
provides a limited set of results that are applicable to kernel-based forecasts, there do not exist a

range of results that can be applied in other nonparametric environments.
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Appendix 1
Lemmas Al - A5 are abbreviated versions of Lemmas A1, 3.1, A9, A1l and A12 that appear
in McCracken (1999b). In order to facilitate reference, but also conserve space, these are
repeated below without proof. Lemmas A6 - A8 are new and hence their proofs are provided.

Throughout, the following notation will be used: J denotes the selection matrix (I, -, ,0y,) »
sup; denotes supg,,.1 , for matrices A and C defined in LemmaA2 HZM denotes
s 'A'CB¥h,,,, and H,(t) denotes s *A'CBY'2H,(t), Ng,, ., denotes g;, .,(b,,)(b;, - b;)
for some bi’t on the line between Bi’t and b;. Notethat, for simplicity, the P - 1 terms that

appear in the text formulas for ENC-T and ENC-REG are replaced by P in the theoretical results

below, without any consequence.

LemmaA1: For al [0,0.5) (a) sup, t*|b;, - b} | = 0,(1), (b) sup, | T"?(vedB, (1)]- vedB,])|

= Op(D).

LemmaA2: (a) Let - JB,J+B, =M and B;"*MB"? = Q, then Q isidempotent. (b) Let A be

a (k" ko) matrix with I, ., on the upper (k2" k2) block and zeroes elsewhere. There existsa

symmetric orthonormal matrix C such that Q = CAA'C.

LemmaA3: & (Oy,, - Uy0)° = S°&H,(DH, (1) +0p(1).
LemmaA4: &, ﬁ;(t)-ﬁwl ® 4 C, defined in Theorem 3.5 of the text.

LemmaA5: &, I:|'2(t)lj|2(t) ® 4 ¢, defined in Theorem 3.5 of the text..



LemmaA6: Fori = 1,2, & U0,y (0B, (OH, () = &, ,BH, (1) +0x(L).

t

Proof of Lemma A6: Add and subtract g;, ., and B; to obtain
& UpiGrp s (0B, (DH, (1) = &.h; ,BH, (1) (13)
+ & U (G () - Grpra)BH (1) + &.h; (B, (D) - BH, (D)
+ 8 Upy(@rpa (1) - G ) By (1) - BOH, (1),
We must then show that the latter three right-hand side termsin (13) are 0,(1). Wedo so for the

recursive scheme; the arguments are similar for the other schemes. For the second right-hand

sideterm in (13) note that
18Uy (Grp1a (B1) - Gip.e)BH (D)
£ K2(SUup, Uy D B [(sup, T2 [H, () D(SUP, T 191 s (B1) = G -
That sup|u+1| is Op(1) follows from Assumption 3. To show that suptTl’2|Hi(t)| is Op(1) note that
sup T Hi(®)] £ (T/R)(sup, | T ¥2& L h, ). By Assumption 5 (T/R) is bounded; that
sup, |T'”2é§;lhi’3 | is Op(1) follows from Theorem 3.1 of Hansen (1992). To see that
SUP, T2 |Gy a1 (D1 ) - Giprea | 1S 0p(1), Note that by Assumption 2,
SUP, T2 19 eaa (B0) = Dipa |
£ (sup,m,)(sup, T** |b,, - b ) £ (sup, m,)(sup, T |b,, - b} ' .
That supimy is Oy(1) follows from Assumption 2. Since x isa continuous function, it sufficesto
show that sup, T¥# |b, , - b | isox(1). Sincej > 1, the result follows from LemmaA1 (a).

To show that the third right-hand side term in (13) is 0y(1) note that

éth;,tﬂ(Bi (t) - Bi)Hi (t)
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= T4, (Tivec T (B, (1) - B)I [T *h, ., A (T80, ).

it+1
Given Assumption 3 and Lemma A1l (b), Theorem 3.1 of Hansen (1992) implies that
&, (Ti)ved[ T (B, (t) - B, )]'[T'”Zhim A (T'”Zéﬁzlhiyj)] isOp(1). Since T2 = 0(1) the desired

result follows.

To show that the fourth right-hand side term in (13) is 0y(1) note that
18 Ups (@rga(B0) - Gigea) (B (1) - BIH (B
£ K2(sup, | Uy D(sup, T [H, (©) D(sup, T | B, (1) - B, D(Sup, [Gigen(B) - Gigeon D -
That supy|u1| and sup TY2[Bi(t) - Bi| are Op(1) follows from Assumption 3 and LemmaA1 (b).

That supT2Hi(t)| is Op(1) and sup, |G; g (B.) - i gea | 15 0p(1) Were previously established.

LemmaA7: Fori,j=12, () &,u?,H ()B; ()7, . (D;)9;5.00(0;)B; (DH; (1) =

& H; (DBE(h, 1) 1.)B;H; (1) +0p(D). (6) &, H, (DB, (00,12 (61, )G 2 (BB (OH; (1) =
8 H; (OB,E(0,p 10} p.)B;H,; (8) + 0p(1).

Proof of Lemma A7: (&) We will show the result for the recursive scheme. Proofsfor the

rolling and fixed schemes are similar. The proof is conducted in two stages. Thefirst stage

consists of showing that

& UZH; (0B, (00 0a ()9 500 (B, 0B OH; () = & H; (B, h; a0 1B H, (1) + 0p(2).
In this proof only let a; = Bj, & = Bi(t) - B, b1 = Gipt+1, 2= 0 111 - gi,b,tﬂ(bim) €1 = g},bm, C2
= Oipr - Oipea (D), 0= By, d2 = By(t) - Bj. Using this notation, if we add and subtract g p s+,
0i.o.+1, Bi and B; we obtain the identity

&, U2 H (0B, (10, 51 (B9, 5001 (BB (OH; (O (14)
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= & &, H(ba,b,c,dH ).

16w X,y,2£2
Whenw = x =y =z = 1 the argument of the outer summation takes the value
& H;()B;h; .sh; .,B;H,(t) . To obtain the result we must show that the remaining fifteen pieces
in (14) are each 0y(1). The proof of each isvery similar. Here we only show that the term
&, UZH, (Dab,c,dH (1) = 8,UZH (0B, (950 (B1) - 9110109118 H, (B) is05(1). Taking
absolute values we immediately have

|8 UZH 0B, (9 (B) - 901091018 H O |

£ k*(sup, |UfaG 50 ) 1B, 1B 1(sup, [T*H, ()]’
(sup, [ TY2H; (1) D(SUP, 1950 (B.) - Figeon D

That sup, |Uf,10; 5. | 1S Op(2) follows from Assumption 3. To show that supTY2Hi(t)] is Op(1)
note that supT?[Hi(t)| £ (T/R)(sup, | T"*2&%,h, . |). By Assumption 5 (T/R) is bounded; that
sup, |T'l’2:‘51§;lhi’S | is Op(1) follows from Theorem 3.1 of Hansen (1992). The argument is
identical for sup,T?[Hj(t)|. It then suffices to show that SUp, |g; .11 (0i.) - Gip e | iSO(1). To
do so note that by Assumption 2,

SUP, |G (B1) - Qi | £ (SUP M )(UP, [y, - BT D' £ (sup, m,)(sup, b, - by ).
That supimy is Oy(1) follows from Assumption 2. Since X isacontinuous function, the result

follows from LemmaALl (a).

The second stage of the proof consists of showing that
& H (0B;h; .0 BH; (O = &H (OBEN; .;h; ,1BjH; (1) +0y(2).

To do so add and subtract Eh. . .h:

i1 tOODtaiN
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a.H,()B;h; .

eaBiH; () (15)
= é-t H| (t)B| Ehi,t+1h'j,t+lBjHj(t) + ét HI (t)BI (hi,t+1h'j,t+1 - Ehi,t+1h'j,t+1)BjHj(t) '

It then suffices to show that the second right-hand side term in (15) is 0y(1). Rearranging terms

we obtain
ét H; (t)Bi (hi,t+1h'j,t+1 - Ehi,t+1h'j,t+l)BjHj(t)
= T8, (T[T ?auh, B, AT 8 h B)Ivec[ T (h; sh, 1y - BN, by )]

1S

That & (T/)’[T *&aL,h; B, AT *?aL h B;)vec[T" (hi,t+1h'j,t+1 -Eh, ;0 )] 1S Op(2)

1,571 J
follows from Assumption 3 and Theorem 3.1 of Hansen (1992). Since T2iso(1) the proof is
complete.
(b) The proof of (b) follows essentially the same argument as that for (a) and hence is omitted to

conserve space. Appendix 2 contains further detail.

C 8 (12 A A 2 4
LemmaA8: & (Up, - Uppalyn)” ® g s7C,.

Proof of Lemma A8: If we take first order Taylor expansions of both @, ,,, and G,,,, around b;
and b, respectively, we have

Q n2 o o 2

at(ul,t+1 - ul,t+lu2,t+l) (16)

= [é-t ut2+1{Ngl,t+1}2 - Zé-t ut2+1{Ngl,t+1}{Ngz,t+1} + ét ut2+1{Ngz,t+1}2 ]

+ [' Zét ut+1{Ngl,t+1}3 + 4é~t ut+1{ l<1£31,t+1:} Z{Ngz,tﬂ} - Zét ut+1{Ngl,t+1}{Ngz,t+1}2

+ é~I{K|gl,t+jl_}4 - Zét{Ngl,t+1}3{Ngz,t+1} + Zét{Ngl,t+1} 2{Klgz,t+1}2]
Consider the first bracketed right-hand side term in (16). If we notethat Eh, ,,.h,,,, = s?JB;'

and apply the definition of I:|2(t) then by Lemma A7 we obtain
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[8.U8{NG, 1} - 28, U8a{NG, L HNG, L} + 8, UR{Ng, )2 ] 17)

= 548, H,(HH,(t) +0p(D).
Given Lemma A5 we now need only show that the second bracketed term on the right-hand side
of (16) is0y(1). To do so we show that & u,,.{ Ngm} * isop(1). Theremaining terms follow
similar arguments. Taking absolute values we obtain

|8, Ua{NG, 1} | £ K3(sup, Uy Dsup, T [by, - by )(SUp, Gy 0 (01)
That supt|ui1 is Op(1) follows from Assumption 3. That (sup, T"® |61‘t - b; |)® isop(2) follows
by continuity of the function x* and LemmaA1 (). It then suffices to show that

sup, |gl,b,t+1(b1,t) | isOp(1). If weadd and subtract g1 +1 We obtain

SUP, |95, (010 | £ SUP, 915,061 (01) = Do | + SUP, [0 |-
That sup, |9y, .1 | 1S Op(1) follows from Assumption 3. To show that sup, |G, 1 (01,) = G1p cea |
IS 0y(1) note that by Assumption 2,

SUP, |G (B1) - Qi | £ (SUP M )(UP, [y, - BT D £ (sup, m,)(sup, b, - by ).

That supimy is Oy(1) follows from Assumption 2. Since X isacontinuous function, the result

follows from LemmaAl (a).

Proof of Theorem 3.5: Given Theorem 3.7 and the Continuous Mapping Theorem it sufficesto
show that &, (07, - Uy,,10,,.4)° - PT° ® g s*Cc,. By Theorem 3.7 € is Oy(P™") and hence P’

= 0p(1). Theresult then follows from LemmaA8.

Proof of Theorem 3.6: Defineaor, ay 1, @7 and agr as P&, 05, - Oy il
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2

-lo /1 N 2 -lag n~N2 -1lo N2 N N 2 = H
P& (Upy - Uyy) PPAUG, ,and P73 (UD,,, - Up,U,,,,)° - C° respectively. By

Theorems 3.5 and 3.7 we know both Pay 1+ and Pay 1/[Pas 7] V2 are Oy(1). By the proof of Lemma
A8 and Theorem 3.5 we know that from (17), Pas = s*&,H,,(t)H,(t) + 0,(1). Given the
Continuous Mapping Theorem it then sufficesto show that P(a, 1, - a2;) = s*&,H, (t)H,(t)

+0p(1). That a,; ®p s follows from Theorem 4.1 of West (1996). That PaS’T = 0p(1) follows

from Theorem 3.7. The result follows since by LemmaA3, Payr = s2&,H, (t)H,(t) + 0p(1).

Proof of Theorem 3.7: If we take first order Taylor expansions of 0, ,,, and ,,,, around b;
and b’, respectively, we obtain

8,070 0,0, (18)

= 8{- UuaOrp,001 (01) By (DH, (1) + UG5 0 (05,)B, (H, (1))

- & - Hy(DB, (191,00 (01,0910 (01, )B; (DH, (1)

+ H (0B (091,11 (01)F25,11 (02, )B, (OH, (1)}
for bi,t on the line between Bi’t and b; respectively. Consider the first bracketed right-hand
sidetermin (18). If we note that both hy 1+1 = Jhy 141 and Ha(t) = JH,(t) and apply the definition of
both F\zm and I:|2(t) then by Lemma A6 we obtain

& - UpaGrp 1 (02,)BL (OH (1) + UpaGop 10 (02,08, (DH, (1)}

= 574 H, (D, (t) +0y(D).
Given Lemma A4 we now need only show that the second bracketed right-hand side term in (18)

isop(1). If wenotethat EQ,, .10, = JED,p 10500 = JB theresult follows by LemmaA7.
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Appendix 2
This appendix contains a proof of LemmaA7 (b).

Proof of Lemma A7 (b): Wewill show the result for the recursive scheme. Proofs for the
rolling and fixed schemes are similar. The proof is conducted in two stages. Thefirst stage

consists of showing that

& H; (0B, (09, 504 (B, 5.0 (3,0)B; (OH () = & H (DB,0,,1149;5,61B,H, () + 0p(D).
In this proof only let & = Bj, & = Bj(t) - Bi, b1 = Gipt+1, 02 = 001 - gi,b,t+1(bi,t+1) y C1L= g‘j,b,t+l’ G2
= g‘j,b,t+1 - 9},b,t+1(b;,t) , 1 = By, d2 = Bj(t) - Bj. Using this notation, if we add and subtract g p t+1,
0ib.+1, Bi and B; we obtain the identity

& H, (0B, (09, 504 (B, )9 . (3,08 (OH; (1) (AA1)

= & A&,H (ta,b.c,dH ().

1£w,Xx,y,zE£2

Whenw = x =y =z = 1 the argument of the outer summation takes the value

& H;()B;0;419,p..:B;H;(t) . Toobtain the result we must show that the remaining fifteen
termsin (AA1) are each oy(1). The proof of eachisvery similar. Here we show that the term
. H;(Dab,c,dH (t) = &, H, (B, (giYB’Hl(BM)-gm’tﬂ)g'mﬂBjHj(t) isop(1). Taking absolute
values we immediately have
|& H (OB, (50 (B.) - i) 50:4BH, B |
£ k*(sup, 19,500 D 1By 1By [ (sup, [ TH; () )7

(sup, | T**H, (6 D(sup, | Gigea (B) - Gigen D
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That sUp, |9, | is Op(1) follows from Assumption 3. That supT2|H;(t)] and supT?H;(t)] are
Op(1) was established in the proof of part (a). The result follows since
SUP, |9ip 1 (0i ) - Oip e | Was shown to be 0(1) in the proof of part (a).
The second stage of the proof consists of showing that
& H (0BG p,119;5.:aB;H; () = & H; (DB,EG;p 1110jp1aBH; (1) +0p(D).
To do so add and subtract Eg, ,,,0,,,., t0obtain
&H;(0B,0;p:19;p:1B;H; (1) (AA2)

=4, H; (t)BiEgi,b,t+1g'j,b,t+1BjHj(t) + &, H; (HB, (gi,b,t+1g'j,b,t+1 - Egi,b,t+1g‘j,b,t+1)BjHj(t) :
It then suffices to show that the second r.h.s. term in (AA2) is 0,(1). Rearranging termswe

obtain
ét H| (t)B| (gi,b,t+1g‘j,b,t+1 - Egi,b,t+:l.g'l‘vb’t+1)Bj H i (t)

=T & (T[T a5h B AT a0 0 BV T (9,119 5,00 - EDip.1s1Gjp0a)]

1,87 i

That &, (T/)*[T " &h; B AT a5 0 B)IVE T (95,1119 - EipsaTinea)] 15 Op(2)

1,$T]
follows from Assumption 3 and Theorem 3.1 of Hansen (1992). Since T¥?is o(1) the proof is

complete.
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Table 1
Empirical Size
Recursive Forecasts
Nominal Size = 10%
R =100 R =200
P=10|P=20|P=40|P=60|P=100| P=20| P=40| P=80| P=120] P =200
VAR-1
Tests Compared Against Valid Asymptotic Critical Values
MSE-F A17 110 .102 .103 .103 110 107 .097 .103 .100
MSE-T .149 128 116 .105 .102 130 118 .107 .101 .101
MSE-REG 126 114 .109 .099 .100 116 .109 .102 .098 .099
ENC-NEW | .126 118 110 11 110 118 113 .105 11 .106
ENC-T .148 134 120 111 110 129 123 .108 .108 .105
ENC-REG 127 119 .108 104 .105 115 113 .102 104 .102
GC 135 134 133 133 134 133 129 129 133 128
Tests Compared Against Invalid Standard Normal Critical Values

MSE-T .085 .058 .039 .028 .018 .071 .050 .033 .026 .017
MSE-REG .069 .047 .033 .025 .017 .060 .044 .030 .024 .015
ENC-T 110 .091 .079 .073 .067 .094 .081 .070 .069 .062
ENC-REG .093 .078 .071 .067 .062 .083 .073 .065 .065 .060

VAR-2

Tests Compared Against Valid Asymptotic Critical Values
MSE-F .140 145 144 147 159 A11 112 107 .097 .103
MSE-T 151 144 143 141 153 123 114 .109 .098 .102
MSE-REG 130 130 136 .136 151 .109 .106 .106 .096 101
ENC-NEW | .158 159 162 .169 181 119 118 110 107 112
ENC-T 154 157 157 159 172 123 120 113 .103 .107
ENC-REG 135 142 .146 151 .168 110 11 107 .100 .105
GC 174 162 153 144 132 128 130 127 127 127
Tests Compared Against Invalid Standard Normal Critical Values

MSE-T .090 .066 .048 .042 .040 .068 .048 .030 .021 .014
MSE-REG .075 .056 .043 .038 .037 .061 .042 .026 .019 .012
ENC-T 128 119 A17 122 131 .103 .090 .081 .076 .075
ENC-REG 113 .106 .108 115 126 .092 .082 077 .074 .072

Notes:
1. The VAR-1 and VAR-2 models are, respectively,

()= 5) () ()
()= 5) )= (3 o) )+ ().

where the error terms are independent standard normal variables and, in these size experiments, b = 0. In each
simulation, 1-step ahead forecasts of y are formed from an estimated AR model for y and an estimated VAR in y and x.
2. In each simulation, the lag lengths of the estimated models are set at the order minimizing the AIC for the VAR.

3. R and P refer to the number of in—sample observations and post—sample predictions, respectively.

4. Section 3 in the text defines the test statistics. The statistics included in the above set of asymptotically valid tests
are compared to the correct asymptotic distributions, described in Section 3. The valid asymptotic critical values are
taken from the appendix tables in this paper and in McCracken (1999b). The statistics in the set of asymptotically
invalid tests are compared to the distributions that would be appropriate if the forecasting models were non—nested but
are inappropriate for nested models.

5. The number of simulations is 50,000.
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Table 2
Size—Adjusted Power, b = .1
Recursive Forecasts
(Empirical Size = 10%)
R =100 R =200
P=10|P=20|P=40|P=60|P=100| P=20| P=40| P=80| P=120] P =200

VAR-1
MSE-F .202 .229 .268 .303 .365 .289 .329 402 .462 .569
MSE-T 139 174 .216 .252 .328 177 227 313 375 .506
MSE-REG .146 181 .220 .253 .329 183 234 318 378 807
ENC-NEW | 221 .255 312 .353 435 331 397 493 .561 678
ENC-T 150 .198 .252 .301 .390 .208 278 .396 475 .621
ENC-REG .163 .203 .258 .304 .393 218 287 401 .480 .623
GC .306 .322 .361 .393 457 483 518 571 .622 711

VAR-2
MSE-F 178 .204 .242 271 333 .235 275 .328 .385 A74
MSE-T 136 157 197 227 287 161 .206 .269 .332 436
MSE-REG .140 164 .201 .229 .290 .169 .209 271 333 436
ENC-NEW .196 .232 278 .316 .384 275 335 .408 .480 .90
ENC-T 150 176 231 271 .349 185 .245 331 413 835
ENC-REG 156 .188 .236 274 .351 194 .251 334 414 537
GC .254 276 .300 331 .385 416 451 479 .542 .631

Notes:
1. The VAR-1 and VAR-2 models are, respectively,

()= 5) () ()
()= 5) ()= (3 o) )+ ().

where the error terms are independent standard normal variables and, in these power experiments, b = .1. In each
simulation, 1-step ahead forecasts of y are formed from an estimated AR model for y and an estimated VAR in y and x.
2. In each simulation, the lag lengths of the estimated models are set at the order minimizing the AIC for the VAR.

3. R and P refer to the number of in—sample observations and post—sample predictions, respectively.

4. Section 3 in the text defines the test statistics. In each experiment, power is calculated by comparing the test
statistics against empirical critical values, calculated as the 90th percentile of the distributions of the statistics in the
corresponding size experiment (in which the DGP, R, and P are the same as in the power experiment, except b = 0).
Because empirical critical values are used, in contrast to Table 1 results are not reported for tests compared against
invalid standard normal critical values.

5. The number of simulations is 10,000.
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Table 3
Size—Adjusted Power, b = .2
Recursive Forecasts
(Empirical Size = 10%)
R =100 R =200
P=10|P=20|P=40|P=60|P=100| P=20| P=40| P=80| P=120] P =200

VAR-1
MSE-F .393 463 .560 .640 754 535 .632 753 .831 .920
MSE-T 207 .288 413 513 674 273 .400 .588 702 .863
MSE-REG .228 .303 425 .522 .678 .293 413 094 707 .864
ENC-NEW | 467 571 .700 .792 .891 672 .799 911 .960 .991
ENC-T 257 377 555 678 .832 .384 .583 795 .899 977
ENC-REG .293 403 572 .690 .837 416 .602 .806 .904 979
GC 711 742 811 .853 911 .934 952 970 .981 .995

VAR-2
MSE-F .343 419 513 .94 719 468 .569 .685 781 .894
MSE-T .196 277 .389 .486 .644 .261 .380 .549 .683 .852
MSE-REG 211 .288 .397 .493 .648 .273 .390 .555 .688 .852
ENC-NEW .408 519 .641 735 .849 .604 .746 .868 .936 .985
ENC-T 244 .359 513 .632 793 .358 537 745 .867 .964
ENC-REG .270 .380 529 .646 .801 379 .558 755 .873 .965
GC .640 .679 743 793 .868 .898 .926 951 971 991

Notes:
1. The VAR-1 and VAR-2 models are, respectively,

()= 5) () ()
()= 5) ()= (3 o) )+ ().

where the error terms are independent standard normal variables and, in these power experiments, b = .2. In each
simulation, 1-step ahead forecasts of y are formed from an estimated AR model for y and an estimated VAR in y and x.
2. In each simulation, the lag lengths of the estimated models are set at the order minimizing the AIC for the VAR.

3. R and P refer to the number of in—sample observations and post—sample predictions, respectively.

4. Section 3 in the text defines the test statistics. In each experiment, power is calculated by comparing the test
statistics against empirical critical values, calculated as the 90th percentile of the distributions of the statistics in the
corresponding size experiment (in which the DGP, R, and P are the same as in the power experiment, except b = 0).
Because empirical critical values are used, in contrast to Table 1 results are not reported for tests compared against
invalid standard normal critical values.

5. The number of simulations is 10,000.
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Table 4

Testing the Predictive Content of Unemployment for Inflation

Recursive Forecasts
R =115, P =146

In—Sample Model Estimates, 1958:Q3 to 1987:Q1

Ezxplanatory Dependent variable
variable Inflation, Inflation, Unemployment,
Constant .024 (.154) .033 (.148) -.009 (.031)
Inflation, | -.288 (.092) | -.391 (.093) .057 (.019)
Inflation,_, -.237 (.092) | -.266 (.097) .015 (.020)
Unemployment,_, -1.207 (.454) .703 (.093)
Unemployment,_, -.137 (.457) -.182 (.094)
R? .092 .166 .356
Tests of Predictive Power of Unemployment for Inflation
Test Asymptotic Empirical
statistics | critical values critical values
MSE, AR .420
MSE, VAR 412
MSE-F .839 1.029 1.115
MSE-T .099 .614 .700
MSE-REG 137 .614 .664
ENC-NEW 5.186 1.019 1.093
ENC-T 1.112 1.086 1.179
ENC-REG 1.698 1.086 1.144
GC 8.107 2.337 2.376

Notes:
1. The figures in parentheses in the upper panel of the table are standard errors for the reported coefficient estimates.
2. 1-step ahead forecasts of the change in inflation are formed from an estimated AR model for the change in inflation
and an estimated VAR in the changes in inflation and unemployment.
3. R and P refer to the number of in—sample observations and post—sample predictions, respectively.
4. The significance level of the tests is 10%.
5. Section 3 in the text defines the test statistics. The asymptotic critical values are taken from the appendix tables in
this paper and in McCracken (1999b).
6. The empirical critical values are generated from a Monte Carlo experiment (using 50,000 simulations) in which the
DGP is a VAR in the changes in inflation and unemployment imposing the null that unemployment not enter the inflation
equation. The equations of the simulated model, estimated with just in—sample data, are given in columns 2 and 4 of
the top panel. The covariance matrix of the residuals in the DGP is
Uin fl¢ 2.673 —.081
Var (ummp,t) (7.081 102 ) :
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Appendix Table 1
Percentiles of the ENC-T and ENC-REG Statistics: Recursive Scheme

T=
ky  %-ile 1 2 4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
1099 2102 2.030 1.997 2.006 2.054 2.052 2.036 2.033 2.030 2.077 2.082
0.95 1.422 1.360 1.338 1.399 1.350 1.331 1.350 1.360 1.332 1.329 1.322
0.90 1.056 1.002 1.005 .995 .968 .955 .942 939 .959 .956  .939

2 099 2187 2214 2073 2.089 2178 2195 2.169 2.151 2164 2135 2.115
0.95 1.505 1.467 1.445 1.441 1.413 1.413 1.425 1.439 1.427 1.440 1.443
0.90 1.166 1.101 1.086 1.096 1.077 1.066 1.060 1.044 1.049 1.053 1.035

3 099 2155 2144 2203 2.180 2.146 2.143 2.151 2127 2.099 2.148 2.134
0.95 1.574 1.525 1.529 1.496 1.462 1.476 1.491 1.475 1.478 1.501 1.473
0.90 1.227 1.138 1.105 1.136 1.118 1.113 1.124 1.111 1.098 1.094 1.114

4 099 2230 2200 2273 2.232 2.158 2137 2181 2.195 2.158 2.178 2.183
0.95 1.594 1.596 1.552 1.532 1.469 1.463 1.482 1.472 1.483 1.473 1.481
0.90 1.219 1.175 1.192 1.177 1.136 1.132 1.111 1.099 1.104 1.112 1.111

5 099 2233 2215 2245 2162 2.102 2172 2.163 2204 2168 2.136 2.179
0.95 1.567 1.583 1.544 1.557 1.470 1.460 1.474 1.475 1.464 1.459 1.472
0.90 1.205 1.192 1.170 1.172 1.117 1.092 1.116 1.092 1.084 1.102 1.100

6 099 2265 2240 2216 2188 2.190 2.212 2.218 2.198 2.182 2.182 2.207
0.95 1.576 1.548 1.536 1.546 1.498 1.491 1.477 1.509 1.507 1.496 1.478
0.90 1.222 1.187 1.162 1.169 1.125 1.109 1.125 1.140 1.132 1.126 1.137

7 099 2267 2281 2200 2.138 2.152 2.184 2.216 2.212 2.143 2.168 2.206
0.95 1.630 1.577 1.574 1.551 1.543 1.492 1.525 1.527 1.500 1.514 1.498
0.90 1.223 1.178 1.180 1.195 1.164 1.142 1.168 1.169 1.165 1.137 1.134

8 099 2253 2284 2231 2210 2.106 2.156 2.199 2.195 2.181 2.182 2.225
0.95 1.653 1.566 1.592 1.548 1.513 1.519 1.554 1.534 1.522 1.534 1.530
0.90 1.211 1.195 1.205 1.193 1.181 1.159 1.187 1.169 1.169 1.152 1.151

9 099 2243 2296 2194 2.248 2.142 2.224 2.202 2223 2227 2243 2.212
095 1.613 1.595 1.557 1.532 1.561 1.530 1.543 1.546 1.539 1.549 1.544
0.90 1.213 1.223 1.203 1.208 1.187 1.166 1.181 1.190 1.179 1.172 1.168

100,99 2.274 2.231 2.220 2.223 2.143 2.146 2.197 2.232 2.233 2.251 2.243
0.95 1.602 1.609 1.556 1.510 1.546 1.496 1.514 1.519 1.539 1.531 1.518
0.90 1.244 1.226 1.208 1.194 1.176 1.175 1.177 1.178 1.162 1.175 1.170

Notes:

1. Appendix Table 1 reports estimates of the 90th, 95th and 99th percentiles of the asymptotic distribution of both the
ENC-T and ENC-REG statistics when the recursive scheme is used.

2. The estimates were constructed based upon 5,000 simulated draws from the relevant distribution for a given value of
both ko and . See section 3.5 of the text for further detail on how the simulations were conducted.

47



Appendix Table 2
Percentiles of the ENC-T and ENC-REG Statistics: Rolling Scheme

T=
ky  %-ile 1 2 4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
1099 2.069 2.055 1.967 2.016 2.066 2.049 1.998 1.978 2.039 2.028 1.996
095 1.413 1.383 1.348 1.372 1.341 1.338 1.334 1.325 1.342 1.350 1.344
0.90 1.070 1.028 1.019 .999 .951 .949 .948 964 .953 .965 .992

2 099 2207 2117 2059 2051 2.100 2.140 2.151 2.149 2.161 2.126 2.109
095 1.508 1.456 1.419 1.439 1.410 1.407 1.421 1.394 1.401 1.410 1.394
0.90 1.150 1.091 1.067 1.083 1.064 1.022 1.044 1.059 1.029 1.053 1.073

3 099 2143 2138 2182 2.126 2.107 2.208 2.197 2.194 2.093 2.112 2.127
0.95 1.575 1.504 1.496 1.467 1.440 1.447 1.426 1.430 1.455 1.434 1.432
0.90 1.223 1.121 1.104 1.110 1.082 1.089 1.086 1.067 1.062 1.075 1.089

4 099 2226 2184 2.242 2188 2.150 2.194 2226 2.222 2.130 2.175 2.152
0.95 1.587 1.584 1.570 1.490 1.450 1.461 1.469 1.499 1.497 1.484 1.499
0.90 1.203 1.184 1.18 1.104 1.100 1.100 1.092 1.081 1.103 1.123 1.117

5 099 2195 2181 2197 2.198 2.168 2.157 2.226 2218 2.148 2.162 2.167
0.95 1.600 1.577 1.504 1.476 1.449 1.480 1.460 1.501 1.483 1.480 1.495
0.90 1177 1.201 1.160 1.125 1.063 1.106 1.105 1.127 1.110 1.119 1.127

6 099 2296 2316 2169 2211 2.186 2.199 2.216 2.191 2.118 2.194 2.163
095 1576 1.544 1.516 1.483 1.484 1.516 1.485 1.513 1.510 1.509 1.524
0.90 1.214 1.170 1.153 1.149 1.140 1.119 1.117 1.137 1.125 1.115 1.161

7 099 2326 2300 2192 2193 2.215 2.210 2.252 2.184 2.146 2.207 2.184
0.95 1.584 1.546 1.580 1.506 1.520 1.539 1.529 1.557 1.528 1.522 1.509
0.90 1.218 1.201 1.198 1.187 1.171 1.141 1.132 1.152 1.153 1.167 1.161

8 0.99 2249 2268 2.208 2.221 2.218 2.213 2215 2.227 2.191 2.183 2.145
0.95 1.611 1.597 1.578 1.508 1.527 1.549 1.518 1.523 1.529 1.511 1.531
0.90 1.232 1.198 1.177 1.150 1.168 1.175 1.163 1.187 1.169 1.177 1.184

9 099 2262 2217 2203 2199 2.221 2.191 2.201 2250 2225 2.222 2.161
0.95 1.606 1.619 1.554 1.543 1.580 1.582 1.561 1.540 1.569 1.519 1.560
0.90 1.221 1.228 1.204 1.186 1.185 1.216 1.183 1.198 1.190 1.192 1.198

10099 2.266 2.212 2.236 2.261 2221 2173 2.233 2.232 2179 2216 2.199
0.95 1.604 1.613 1.541 1.507 1.555 1.551 1.517 1.553 1.509 1.502 1.523
0.90 1.240 1.241 1.206 1.168 1.190 1.181 1.169 1.183 1.170 1.179 1.190

Notes:

1. Appendix Table 2 reports estimates of the 90th, 95th and 99th percentiles of the asymptotic distribution of both the
ENC-T and ENC-REG statistics when the rolling scheme is used.

2. The estimates were constructed based upon 5,000 simulated draws from the relevant distribution for a given value of
both ko and . See section 3.5 of the text for further detail on how the simulations were conducted.
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Appendix Table 3
Percentiles of the ENC-T and ENC-REG Statistics: Fixed Scheme

T=
ky  %-ile 1 2 4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
1099 2321 2184 2.222 2275 2334 2320 2.336 2.338 2318 2415 2.379
0.95 1.622 1.570 1.598 1.685 1.681 1.606 1.663 1.672 1.664 1.682 1.658
0.90 1.269 1.233 1.272 1.310 1.299 1.256 1.295 1.304 1.297 1.305 1.301

2 099 2323 2349 2212 2305 2.387 2.292 2364 2354 2.271 2.359 2.297
0.95 1.673 1.604 1.659 1.677 1.680 1.645 1.666 1.680 1.684 1.681 1.679
0.90 1.293 1.254 1.269 1.316 1.304 1.284 1.312 1.287 1.272 1.286 1.282

3 099 2260 2313 2413 2.374 2.327 2.224 2318 2361 2.298 2.389 2.327
0.95 1.665 1.629 1.666 1.684 1.675 1.666 1.681 1.693 1.659 1.694 1.686
0.90 1.301 1.250 1.269 1.287 1.306 1.305 1.339 1.314 1.290 1.291 1.311

4 099 2266 2310 2370 2.330 2.255 2.281 2.369 2.328 2.332 2.361 2.396
0.95 1.647 1.697 1.684 1.700 1.672 1.616 1.667 1.641 1.650 1.633 1.640
0.90 1.292 1.278 1.302 1.272 1.261 1.284 1.286 1.267 1.292 1.271 1.273

5 099 2255 2309 2324 2346 2.230 2.229 2.276 2327 2317 2333 2.311
0.95 1.645 1.632 1.650 1.667 1.632 1.608 1.644 1.612 1.629 1.644 1.625
0.90 1.274 1.278 1.262 1.261 1.232 1.248 1.284 1.263 1.239 1.254 1.258

6 099 2300 2398 2306 2316 2.238 2.258 2.346 2.321 2.309 2.293 2.293
0.95 1.610 1.630 1.632 1.632 1.648 1.630 1.678 1.637 1.662 1.694 1.634
0.90 1.269 1.255 1.271 1.262 1.261 1.275 1.316 1.290 1.281 1.284 1.290

7 099 2315 2403 2.269 2.238 2.266 2.322 2.339 2328 2322 2317 2.298
0.95 1.649 1.624 1.632 1.646 1.650 1.638 1.649 1.646 1.627 1.655 1.623
0.90 1.298 1.285 1.305 1.275 1.286 1.284 1.305 1.262 1.261 1.265 1.264

8 099 2276 2372 2282 2.242 2.278 2.296 2275 2.298 2.324 2.347 2.319
0.95 1.660 1.642 1.656 1.634 1.648 1.645 1.675 1.646 1.648 1.632 1.617
0.90 1.307 1.247 1.276 1.279 1.300 1.290 1.309 1.275 1.254 1.258 1.270

9 099 2297 2344 2269 2.207 2.254 2.299 2.290 2324 2325 2.343 2.340
0.95 1.646 1.653 1.655 1.623 1.652 1.653 1.668 1.646 1.643 1.628 1.619
0.90 1.310 1.280 1.297 1.279 1.288 1.295 1.302 1.274 1.266 1.269 1.283

10 0.99 2.287 2.263 2.263 2.216 2.231 2.266 2.273 2.291 2300 2314 2.323
0.95 1.631 1.671 1.636 1.618 1.628 1.625 1.631 1.638 1.612 1.635 1.606
0.90 1.300 1.289 1.277 1.263 1.272 1.283 1.272 1.291 1.255 1.249 1.275

Notes:

1. Appendix Table 3 reports estimates of the 90th, 95th and 99th percentiles of the asymptotic distribution of both the
ENC-T and ENC-REG statistics when the fixed scheme is used.

2. The estimates were constructed based upon 5,000 simulated draws from the relevant distribution for a given value of
both ko and . See section 3.5 of the text for further detail on how the simulations were conducted.
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Appendix Table 4
Percentiles of the ENC-NEW Statistic: Recursive Scheme

T=
ky  %-ile 1 2 4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
1099 954 1.397 2.098 2.662 2.904 3.209 3.436 3.611 3.722 3.920 4.134
0.95 520 744 1.079 1.312 1.467 1.584 1.724 1.845 1.967 2.084 2.085
0.90 .335 473 685 .791 .925 984 1.076 1.137 1.208 1.253 1.280

2 099 1.258 1.854 2.604 3.172 3.543 4.102 4.446 4.647 4.705 4.971 5.107
0.95 766 1.028 1.481 1.779 2.016 2.234 2.510 2.580 2.663 2.785 2.889
0.90 .524 .716 1.019 1.228 1.371 1.471 1.573 1.694 1.791 1.893 1.914

3 099 1.529 2115 3.098 3.658 4.128 4.574 4.936 5.221 5.179 5.484 5.805
0.95 .940 1.273 1.865 2.256 2.442 2709 2.909 3.065 3.250 3.463 3.564
0.90 .686 .890 1.285 1.532 1.718 1.905 2.097 2.183 2.238 2.285 2.366

4 099 1.711 2479 3.462 4.060 4.613 5.066 5.435 5.690 6.002 6.221 6.507
0.95 1.060 1.526 2.181 2.576 2.743 3.007 3.313 3.463 3.636 3.769 3.894
0.90 .776 1.062 1.528 1.789 1.951 2.169 2.307 2.399 2.542 2.635 2.727

5 099 1.870 2.654 3.651 4.398 4.798 5.517 5.808 6.352 6.667 6.870 7.074
095 1.186 1.671 2.349 2.788 2972 3.283 3.592 3.808 4.009 4.121 4.307
0.90 864 1.198 1.639 1.970 2.166 2.346 2.561 2.660 2.700 2.921 3.033

6 099 2053 2866 3.976 4.699 5.416 5.957 6.526 6.868 7.029 7.321 7.309
0.95 1.281 1.790 2514 3.008 3.260 3.586 3.966 4.236 4.407 4.524 4.701
0.90 .934 1.321 1.800 2.161 2.376 2.632 2.794 2.891 3.095 3.250 3.389

7 099 2269 3.047 4.203 4.783 5.813 6.170 6.850 7.249 7.611 7.922 8.283
0.95 1417 1.936 2.768 3.280 3.606 3.892 4.270 4.617 4.788 4.910 5.103
0.90 1.024 1.439 2.026 2.398 2.669 2912 3.074 3.220 3.403 3.468 3.662

8 0.99 2289 3.109 4.356 5.327 5.915 6.529 7.037 7.700 7.985 8.385 8.577
0.95 1.518 2.121 2.988 3.470 3.821 4.226 4.594 4.842 4.999 5.231 5.289
0.90 1.115 1.535 2.144 2.544 2.865 3.073 3.339 3.474 3.696 3.805 3.998

9 099 2473 3311 4.747 5.625 6.116 6.959 7.601 8.279 8.544 8.949 9.318
0.95 1.584 2300 3.100 3.667 4.144 4.555 4.886 5.159 5.435 5.556 5.630
0.90 1.171 1.650 2.299 2.693 3.072 3.271 3.576 3.769 3.925 4.041 4.328

10 0.99 2.548 3.442 4.758 5.815 6.433 7.224 8.076 8.450 8.832 9.367 9.928
0.95 1.695 2.394 3.218 3.729 4.294 4.576 4.949 5.283 5.522 5.728 5.923
0.90 1.250 1.749 2.435 2.834 3.174 3.413 3.715 3.914 4.035 4.247 4.388

Notes:

1. Appendix Table 4 reports estimates of the 90th, 95th and 99th percentiles of the asymptotic distribution of the
ENC-NEW statistic when the recursive scheme is used.

2. The estimates were constructed based upon 5,000 simulated draws from the relevant distribution for a given value of
both ko and . See section 3.5 of the text for further detail on how the simulations were conducted.
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Appendix Table 5
Percentiles of the ENC-NEW Statistic: Rolling Scheme

T=
ky  %-ile i 2 4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
1099 997 1.466 2.278 2.854 3.264 3.676 3.852 4.410 4.614 4.835 5.064
0.95 534 .788 1.161 1.506 1.722 1.946 2.198 2.374 2498 2.683 2.836
0.90 .339 502 .764 919 1.082 1.210 1.355 1.493 1.598 1.703  1.808

2 099 1.282 1.999 2929 3.596 4.282 4.799 5.389 5.568 6.062 6.338  6.502
0.95 .793 1.089 1.640 2.031 2.380 2.704 2949 3.212 3.366 3.593  3.723
0.90 .539 .760 1.109 1.402 1.632 1.824 1.991 2.200 2.302 2.471  2.652

3 099 1.561 2237 3.401 4.218 4.893 5.609 6.055 6.442 6.646 7.198 7.513
0.95 .962 1.391 1.955 2.500 2.847 3.271 3.549 3.759 4.108 4.219  4.435
0.90  .695 .941 1.409 1.746 2.003 2.275 2475 2.616 2.750 3.051  3.241

4 099 1.783 2.588 3.681 4.603 5.312 6.192 6.845 7.326 7.514 8.173  8.529
0.95 1.087 1.607 2.310 2.779 3.220 3.681 4.079 4.510 4.811 5.051  5.289
0.90 .791 1.137 1.637 1.974 2.265 2.642 2.872 3.066 3.275 3.516  3.655

5 099 1.921 2830 4.039 5.028 5.918 6.775 7.423 7.848 8310 8578 9.163
0.95 1.211 1.773 2545 3.073 3.522 4.082 4.468 4.899 5.199 5470 5.840
0.90 .871 1.249 1.791 2.203 2.464 2834 3.124 3.435 3.620 3.845 4.095

6 0.99 2120 2945 4.424 5303 6.480 7.193 8.140 8.407 8768 9.404 9.885
0.95 1.334 1870 2.766 3.413 3.939 4.473 4.881 5.326 5.675 5.979  6.288
0.90 984 1.380 1.950 2.432 2.869 3.169 3.429 3.782 4.011 4.282  4.576

7 099 2324 3.213 4.580 5.799 6.670 7.609 8313 8.759 9.160 10.097 10.305
0.95 1.465 2.082 3.029 3.696 4.299 4.904 5.364 5.805 6.199 6.389 6.763
0.90 1.066 1.533 2.188 2.691 3.138 3.461 3.800 4.086 4.455 4.741  4.951

8 099 2376 3.461 4.945 6.097 7.165 7.964 8.792 9.237  9.982 10.789 10.985
0.95 1.557 2.241 3.217 3.865 4.610 5.306 5.644 6.049 6.484 6.759  7.231
0.90 1.148 1.616 2.316 2.900 3.377 3.789 4.124 4.478 4.836 4.958  5.396

9 099 2538 3.531 5.151 6.382 7.546 8.277 9.132 10.226 10.724 11.154 11.710
0.95 1.657 2.403 3.397 4.223 4.972 5.585 5.996 6.432 6.860 7.111  7.670
0.90 1.226 1.779 2471 3.096 3.605 4.124 4.422 4.773 5.149 5449 5.693

10 0.99 2569 3.600 5.365 6.699 7.705 8.624 9.630 10.375 10.928 11.573 12.043
0.95 1.709 2.526 3.519 4.382 5.138 5.719 6.129 6.694 6.975 7.349 T7.867
0.90 1.284 1.838 2.627 3.149 3.763 4.186 4.580 4.937 5273 5.538  5.968

Notes:

1. Appendix Table 5 reports estimates of the 90th, 95th and 99th percentiles of the asymptotic distribution of the
ENC-NEW statistic when the rolling scheme is used.

2. The estimates were constructed based upon 5,000 simulated draws from the relevant distribution for a given value of
both ko and . See section 3.5 of the text for further detail on how the simulations were conducted.
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Appendix Table 6
Percentiles of the ENC-NEW Statistic: Fixed Scheme

T=
ko %o-ile 1 2 4 .6 .8 1.0 1.2 14 1.6 1.8 2.0
1099 .908 1.300 1.941 2.421 2813 3.069 3.307 3.550 3.821 4.016 4.196
0.95 489 .698 1.037 1.231 1477 1.622 1.792 1.881 2.089 2187 2.272
0.90 .322 449 670 .795 942 1.074 1.190 1.305 1.378 1.421 1.462

2 099 1.154 1.669 2411 2987 3.579 3.870 4.233 4.535 4.777 4922  5.082
0.95 .729 1.002 1.486 1.790 2.049 2307 2545 2.733 2948 3.071 3.249
0.90  .500 .701 1.003 1.247 1.473 1.621 1.782 1.931 2.047 2128 2.193

3 099 1.469 1965 2.935 3.492 4.060 4.531 4.914 5.360 5.603 6.027  6.309
0.95 .901 1.227 1.799 2.234 2.618 2.925 3.240 3.477 3.742 3.808  4.042
0.90 .663 .882 1.322 1.607 1.860 2.065 2.286 2.417 2.642 2779 2.954

4 099 1.610 2.236 3.168 3.978 4.658 5.256 5.613 6.232 6.570 7.085 7.333
0.95 1.015 1.433 2.119 2.527 2.886 3.284 3.561 3.856 4.161 4.341  4.429
0.90 .761 1.066 1.525 1.797 2.075 2.375 2.601 2.797 2.962 3.124  3.342

5 099 1.758 2474 3.344 4.190 5.013 5.431 5.961 6.493 6.891 7.536 7.675
0.95 1.135 1.582 2.295 2807 3.185 3.520 3.999 4.267 4.524 4.808 5.044
0.90 .851 1.201 1.671 2.020 2.359 2.641 2930 3.125 3.354 3.535 3.721

6 099 1.982 2672 3.783 4.697 5423 6.191 6.633 7.287 7.653 8.278 8.791
0.95 1.251 1.738 2.506 3.051 3.509 3.980 4.409 4.690 5.033 5.393 5.658
0.90 922 1.301 1.882 2.277 2.640 3.015 3.322 3.504 3.802 3.967 4.214

7 099 2120 2893 4.068 4.995 5.937 6.812 7.392 7.747 8.163 8.943 9.495
0.95 1.395 1.910 2.729 3.303 3.872 4.290 4.847 5.098 5.393 5.861  6.048
0.90 1.030 1.440 2.078 2.531 2906 3.230 3.517 3.771 4.084 4.277  4.520

8 0.99 2.218 2983 4.348 5.394 6.321 7.294 7.906 8329 8.730 9.012 9.632
0.95 1.497 2.032 2.905 3.548 4.223 4.696 5.121 5.421 5.800 6.178  6.495
0.90 1.106 1.559 2.208 2.719 3.125 3.515 3.822 4.089 4.360 4.564 4.854

9 099 2301 3.163 4.623 5.551 6.673 7.330 8.101 8879 9.003 9.876 10.113
0.95 1.552 2.205 3.145 3.744 4.511 5.013 5433 5.937 6.243 6.620 6.829
0.90 1.189 1.659 2411 2893 3.308 3.767 4.093 4.370 4.600 4.937 5.226

10 099 2.392 3.267 4.753 5.839 6.753 7.617 8.328 9.160 9.706 10.487 10.794
0.95 1.607 2.312 3.238 3.896 4.602 5.213 5.679 6.099 6.412 6.778 7.084
0.90 1.252 1.754 2.486 3.018 3.450 3.915 4.282 4.585 4.830 5.157  5.527

Notes:

1. Appendix Table 5 reports estimates of the 90th, 95th and 99th percentiles of the asymptotic distribution of the
ENC-NEW statistic when the fixed scheme is used.

2. The estimates were constructed based upon 5,000 simulated draws from the relevant distribution for a given value of
both ko and . See section 3.5 of the text for further detail on how the simulations were conducted.
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